

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, No. 2, July-August 2002

Cite this column as follows: Anthony J.H. Simons: The Theory of Classification, Part 2: The
Scratch-Built Typechecker, in Journal of Object Technology, Vol. 1, No. 2, July-August 2002,
pages 47-54. http://www.jot.fm/issues/issue_2002_07/column4

The Theory of Classification
Part 2: The Scratch-Built Typechecker

Anthny J. H. Simons, Depdpartment of Computer Science, University of Sheffield, UK

1 INTRODUCTION

This is the second article in a regular series on object-oriented type theory, aimed
specifically at non-theoreticians. Eventually, we aim to explain the behaviour of
languages such as Smalltalk, C++, Eiffel and Java in a consistent framework, modelling
features such as classes, inheritance, polymorphism, message passing, method
combination and templates or generic parameters. Along the way, we shall look at some
important theoretical approaches, such as subtyping, F-bounds, matching and the object
calculus. Our goal is to find a mathematical model that can describe the features of these
languages; and a proof technique that will let us reason about the model. This will be the
"Theory of Classification" of the series title.

Exact

Subtyping

Subclassing

Schemas Interfaces Algebras

1 2

5

8

4

7

3

6

9

Figure 1: Dimensions of Type Checking

The first article [1] introduced the notion of type, ranging from the programmer's
concrete perspective to the mathematician's abstract perspective, pointing out the benefits
of abstraction and precision. From these, let us choose three levels of type-checking to
consider: representation-checking (bit-schemas), interface-checking (signatures) and
behaviour-checking (algebras). Component compatibility was judged according to
whether exact type correspondence, simple subtyping or the more ambitious subclassing

 THE THEORY OF CLASSIFICATION – PART 2: THE SCRATCH-BUILT TYPECHECKER

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

was expected. Combining these two dimensions, there are up to nine combinations to
consider, as illustrated in figure 1. However, we shall be mostly interested in the darker
shaded areas. In this second article, we shall build a typechecker that can determine the
exact syntactic type (box 2, in figure 1) of expressions involving objects encoded as
simple records.

2 THE UNIVERSE OF VALUES AND TYPES

Rather like scratch-building a model sailing ship out of matchsticks, all mathematical
model-building approaches start from first principles. To help get off the ground, most
make some basic assumptions about the universe of values. Primitive sets, such as
Boolean, Natural and Integer are assumed to exist (although we could go back further
and construct them from first principles, in the same way as we did the Ordinal type [1];
this is quite a fascinating exercise in the λ-calculus [2]). All other kinds of concept have
to be defined using rules to say how the concept is formed, and how it is used. We shall
assume that there are:

• sets A, B, ..., corresponding to the given primitive types in the universe; and
• elements a, b, ..., of these sets, corresponding to the values in the universe; and
• set operations such as membership ∈, inclusion ⊆, and union ∪; and
• logical operations such as implication ⇒, equivalence ⇔ and entailment ├ .

With this starter-kit, we can determine whether a value belongs to a type, since: x : X ("x
is of type X") can be interpreted as x ∈ X in the model; or whether two types are related,
for example: Y <: X ("Y is a subtype of X") can be interpreted as the subset relationship
Y ⊆ X in the model [3].

3 RULES FOR PAIRS

An immediately useful construction which we do not yet have is the notion of a pair of
values, 〈n, m〉, possibly taken from different types N and M. The type of pairs is known
as a product type, or Cartesian product, since there are N × M possible parings of
elements n ∈ N, and m ∈ M. Formally, we require a rule to introduce the syntax for a
product type. This is called a type introduction rule. In its simplest form (ignoring the
notion of context, which is roughly the same idea as variable scope), the rule for forming
a product is:

 n : N, m : M
 [Product Introduction]
〈n, m〉 : N × M

Rules for pairs

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 49

This rule is expressed in the usual style of natural deduction, with the premises above the
line and the conclusions below. In longhand, it says "if n is of type N and m is of type M,
then we may conclude that a pair 〈n, m〉 has the product type N × M". The rule introduces
the syntax for writing pair-values and pair-types, but also defines the relationship
between the values and the types (the order of the values n and m determines the structure
of the type N × M).

For pair constructions to be useful, we need to know how to access the elements of a
pair, and determine their types. We define the first and second projections of a pair,
usually written in the style: π1(e), π2(e) applied to some pair-value e. The projections are
defined formally in an elimination rule, so called because it deconstructs the pair to
access its elements:

 e : N × M
 [Product Elimination]
π1(e) : N, π2(e) : M

"If e is a pair of the product type N × M, then the first projection π1(e) has the type N, and
the second projection π2(e) has the type M." Note that, in this rule, e is presented as a
single expression-variable, but we know it stands for a pair from its type N × M. In both
rules, the horizontal line has the force of an implication, which we could also write using
⇒.

4 RULES FOR FUNCTIONS

Consider an infinite set of pairs: {〈1, false〉, 〈2, true〉, 〈3, false〉, 〈4, true〉, 〈5, false〉...}.
This set is an enumeration of a relationship between Natural numbers and Boolean values
- it is in fact one possible representation of the function even(). Since functions have this
clear, natural interpretation in our model, we are justified in introducing a special syntax
for them:

 x : D ├ e : C
 [Function Introduction]
 λx.e : D → C

"If variable x has the type D and, as a consequence, expression e has the type C, we may
conclude that a function of x with body e has the function type D → C." This rule
introduces the λ-syntax for functions and the arrow-syntax for function types. If you
happen to be a hellenophobic1 engineer, simply consider that: λx.e ⇔ f(x) = e. The type

1 Hellenophobe: a hater of Greek symbols.

 THE THEORY OF CLASSIFICATION – PART 2: THE SCRATCH-BUILT TYPECHECKER

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

signature for a function is always written as an arrow type D → C, with the function's
domain (input set) D on the left and the codomain (output set) C on the right. The
premise of this rule relates the required types of x : D, e : C using entailment ├, since the
type of the body expression e : C is not independent, but "follows from" the type of the
variable x : D. This is because the body expression will contain occurrences of x, the
variable. Consider that a function may return its argument - in that case, the result type is
the argument type; there is clearly a dependency.

The function elimination rule explains the type of an expression involving a function
application. In so doing, it also defines the parenthesis syntax for function application:

f : D → C, v : D
 [Function Elimination]
 f(v) : C

"If f is a function from D → C, and v is a value of type D, then the result of the function
application f(v) is of type C". This rule also expresses the notion of type-sound function
application: it allows f to be applied only to values of the domain type D (technically, the
rule allows you to deduce that the result of function application is well-typed in this
circumstance, but is otherwise undefined).

Do we need rules for multi-argument functions? Not really, because we already have
the separate product rules. The domain D in the function rules could correspond, if we so
wished, to a type that was a product: D ⇔ N × M. In this case, the argument value would
in fact be a pair v : N × M. We assume that any single type variable in one rule can be
matched against a constructed type in another rule, if we so desire.

5 RULES FOR RECORDS

Most model encodings for objects [4, 5, 6] treat them as some kind of record with a
number of labelled fields, each storing a differently-typed value. So far, we do not have a
construction for records in our model. However, consider that a record is rather like a
finite set of pairs, relating labels to values: {〈name, "John"〉, 〈surname, "Doe"〉, 〈age, 25〉,
〈married, false〉}. Since a record has this clear, natural interpretation in the model, we are
justified in introducing a special syntax. If A is the primitive type of labels:

 αi : A, ei : Ti
 for i = 1..n [Record
{α1 a e1, ..., αn a en} : {α1 : T1, ..., αn : Tn} Introduction]

"If there are n distinct labels αi, and n values ei of different corresponding types Ti then a
record, constructed by pairing the ith label with the ith value, has a record type, which is

Rules for Functions

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 51

constructed by pairing the ith label with the corresponding ith type". This rule uses the
index i to link corresponding labels, values and types. In the conclusion, the set-braces
are used for records and record types deliberately, since these are sets of pairs. The label-
to-value pairings are notated as mappings αi a ei, for visual clarity and convenience.

The corresponding record elimination rule introduces the dot or record selection
operator, defining how to deconstruct a record to select a field and then determine its
type:

e : {α1 : T1, ..., αn : Tn}
 for i = 1..n [Record Elimination]
 e.αi : Ti,

"If e has the type of a record, with n labels αi, mapping to types Ti, then the result of
selecting the ith field e.αi has the ith type Ti."

6 APPLYING THE RULES

We have a set of rules for constructing pairs, functions and records. With this, we can
model simple objects as records. Ignoring the issue of encapsulation for the moment, a
simple Cartesian point object may be modelled as a record whose field labels map to
simple values (attributes) and to functions (methods). We require a function for
constructing points:

make-point : Integer × Integer → Point
This is a type declaration, stating that make-point is a function that accepts a pair of
Integers and returns a Point type (which is so far undefined). The full definition of make-
point:

make-point = λ(e : Integer × Integer) .
 { x a π1(e), y a π2(e), equal a λ(p : Point).(π1(e) = p.x ∧ π2(e) = p.y) }

names the argument expression e supplied upon creation and returns a record having the
fields x, y and equal. The x and y fields map to simple values, projections of e; the equal
field maps to a function, representing a method. Note that make-point is built up in stages
according to the type rules. The product introduction rule can construct a pair type:
Integer × Integer from primitive Integers. The function type of equal: Point → Boolean
can be inferred from the type Point supplied as the argument, and the type of the body
expression, using the function introduction rule: the body is a logical "and" ∧ expression,
a primitive Boolean operation provided with the starter-kit. The record type Point is the
type of the value returned by make-point. Using the record introduction rule, we
determine that this is equivalent to a record type: { x : Integer, y : Integer, equal : Point
→ Boolean }, by examining the individual types of the label-value pairs supplied as its

 THE THEORY OF CLASSIFICATION – PART 2: THE SCRATCH-BUILT TYPECHECKER

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

fields. Finally, even make-point is properly constructed using the function introduction
rule, with Integer × Integer as the domain type and Point as the codomain type.

The rules permit us to deduce that objects can be constructed using make-point, and
also that they are well-typed. Let us now construct some points and expressions involving
points, to see if these are well-typed. The let ... in syntax is a way of introducing a scope
for the values p1 and p2, in which the following expressions are evaluated:

let p1 = make-point(3, 5) in
 p1.x;

Is p1.x meaningful, and does it have a type? The record elimination rule says this is so,
provided p1 is an instance of a suitable record type. Working backwards, p1 must be a
record with at least the type: {... x : X ... } for some type X. Working forwards, p1 was
constructed using make-point, so we know it has the Point type, which, when expanded,
is equivalent to the record type: { x : Integer, y : Integer, equal : Point → Boolean },
which also has a field x : Integer. Matching up the two, we can deduce that p1.x : Integer.

let p1 = make-point(3, 5), p2 = make-point(3, 7) in
 p1.equal(p2);

Is p1.equal(p2) meaningful, and does it have a type? Again, by working backwards

through the record elimination rule, we infer that p1 must have at least the type {... equal
: Y ...} for some type Y. Working forwards, we see that p1 has a field equal : Point →
Boolean, so by matching up these, we know Y ⇔ Point → Boolean. So, the result of
selecting p1.equal is a function expecting another Point. Let us refer to this function as f.
In the rest of the expression, f is applied to p2, but is this type correct? Working forwards,
p2 was defined using make-point, so has the type Point. Working backwards through the
function elimination rule, the function application f(p2) is only type-sound if f has the
type Point → Z, for some type Z. From above, we know that f : Point → Boolean, so by
matching Z ⇔ Boolean, we confirm that the expression is well-typed and also can infer
the expression's result type: p1.equal(p2) : Boolean.

7 CONCLUSION

We constructed a mathematical model for simple objects from first principles, in order to
show how it is possible to motivate the existence of something as relatively sophisticated
as an object with a (constant) state and methods, using only the most primitive elements
of set theory and Boolean logic as a starting point. The type rules presented were of two
kinds: introduction rules describe how more complex constructions, such as functions

Conclusion

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 53

and records, are formed and under what conditions they are well-typed; elimination rules
describe how these constructions may be decomposed into their simpler elements, and
what types these parts have. Both kinds of rule were used in a typechecker, which was
able to determine the syntactic correctness of method invocations. The formal style of
reasoning, chaining both forwards and backwards through the ruleset, was illustrated.
The simple model still has a number of drawbacks: there is no updating or encapsulation
of state; there are problems looming to do with recursive definitions; and we ignored the
context (scope) in which the definitions take effect. In the next article, we shall examine
some different object encodings that address some of these issues.

REFERENCES

[1] A J H Simons, Perspectives on type compatibility, Journal of Object Technology
1(1), May, 2002.

[2] A J H Simons, Appendix 1 : λ-Calculus, in: A Language with Class: the Theory
of Classification Exemplified in an Object-Oriented Language, PhD Thesis,
University of Sheffield, 1995, 220-238. See
http://www.dcs.shef.ac.uk/~ajhs/classify/.

[3] L Cardelli and P Wegner, On understanding types, data abstraction and
polymorphism, ACM Computing Surveys, 17(4), 1985, 471-521.

[4] J C Reynolds, User defined types and procedural data structures as
complementary approaches to data abstraction, in: Programming Methodology:
a Collection of Articles by IFIP WG2.3, ed. D Gries, 1975, 309-317; reprinted
from New Advances in Algorithmic Languages, ed. S A Schuman, INRIA, 1975,
157-168.

[5] W Cook, Object-oriented programming versus abstract data types, in:
Foundations of Object-Oriented Languages, LNCS 489, eds. J de Bakker et al.,
Springer Verlag, 1991, 151-178.

[6] M Abadi and L Cardelli. A Theory of Objects. Monographs in Computer Science,
Springer-Verlag, 1996.

 THE THEORY OF CLASSIFICATION – PART 2: THE SCRATCH-BUILT TYPECHECKER

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching in the
Department of Computer Science, University of Sheffield, where he
leads object-oriented research in verification and testing, type theory
and language design, development methods and precise notations. He
can be reached at a.simons@dcs.shef.ac.uk

