
A logic-based formalization for component
specification

Juliana Küster Filipe,
LFCS, Division of Informatics, University of Edinburgh, United Kingdom

We consider a component-based approach to modelling complex systems using UML.
We describe how component concepts at a specification level (interfaces, compo-
nents, architectures) can be formalized in a uniform way using a distributed logical
framework. In the logic Mdtl, each component has associated to it a local logic
consisting of a home logic and a communication logic. Component contracts are
captured by formulae in Mdtl. In particular, a clear distinction between usage and
realization contracts is made: the former is captured as formulae in the home logic
of the interface specification, whilst the latter is expressed by formulae in the com-
munication logic of the component specification. Moreover, we are investigating an
extension of the framework for expressing dependability requirements.

1 INTRODUCTION

As part of an interdisciplinary research project focusing on the specification and
design of complex and highly dependable systems, we are interested in how formal
models can be used to analyse dependability requirements and consequently aid
designers understand such systems. In this paper, we consider a component-based
approach to system modelling, and describe how to formalize component concepts
using a distributed logical framework.

Component-based software development is an emerging field with promising so-
lutions for dealing with the rapidly changing requirements of present-day software
applications (see e.g., [12]). While component technologies such as COM+ and En-
terprise JavaBeans are becoming widely used, components lack an adequate treat-
ment at the specification level. Component specification is essential: it is not pos-
sible to manage change, substitution and composition of components successfully if
components have not been specified properly.

UML [9] has become a popular modelling language to describe systems following
an object-oriented approach. UML is mainly a diagrammatic language offering
several diagrams to capture different aspects of a system. It also includes the Object
Constraint Language (OCL), a textual notation for representing static constraints

Cite this article as follows: Juliana Küster Filipe: A logic-based formalization for component
specification, in Journal of Object Technology, vol. 1, no. 3, Special issue: TOOLS USA 2002
proceedings, pages 231–248, http://www.jot.fm/issues/issue 2002 08/article13

http://www.jot.fm/issues/issue_2002_08/article13

A LOGIC-BASED FORMALIZATION FOR COMPONENT SPECIFICATION

on the model which cannot be given through the diagrams.

UML also offers a component concept. However, UML has not been developed
with the aim of allowing a component-oriented style of software development. Com-
ponents in UML are low level units that exist at runtime, and thus do not denote
main features for a conceptual or specification level.

In [2], Cheesman and Daniels define a pragmatic extension of UML to capture im-
portant component concepts such as component specification, component interfaces,
component implementations, and component objects. In particular, they apply a de-
sign by contract approach to components; whilst components provide services, they
may require services from other components as well. The provide/require depen-
dencies between components are described by contracts. Component contracts are
represented partially declaratively (using OCL) and partially operationally (using
UML collaboration diagrams). OCL is used for describing pre- and postconditions
of interface operations. Collaboration diagrams are used for capturing component
interactions.

We adopt the approach in [2] for modelling component-based systems using UML
though using a declarative description of component contracts. We use a Catalysis
[4] like notation where OCL lacks expressiveness to describe component contracts
as needed. We show how the distributed logic Mdtl and the framework developed
in [7, 8] can be used to formalize components and their contracts at a specification
level. The importance of such a formalization lies in the development of verification
tools which could be used, for instance, to check component contracts and whether
components can be combined in a useful way.

For illustrating our approach, we are going to model part of the ParcelCall
system. ParcelCall1 is an European research and technology development project
looking at creating a parcel localization system: an open distributed system which is
to be integrated with the legacy systems of transport and logistic companies. This
case study also motivates the need for a future extension of our logical framework
towards an interdisciplinary approach to the development of dependable computer-
based systems. We shall discuss this extension briefly.

The paper is structured as follows. The next section describes component con-
cepts for specification and how they are represented. Section 3 introduces ParcelCall,
and models particular aspects of the components and their interactions. The logi-
cal framework is described in Section 4, and used to formalize component concepts
in Section 5. The paper finishes with a discussion on an extension of the logical
framework for dependability and some concluding remarks in Section 6.

1Publications and project description can be found at http://www.parcelcall.com.

232 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

http://www.parcelcall.com

2 BASIC CONCEPTS

2 BASIC CONCEPTS

In this paper component concepts are understood for specification essentially as
given in [2]. The following defines some component concepts at a specification level.

Components are units of software that provide services to other components and
possibly require services from other components. The provide/require dependencies
between components are described by contracts. They denote quite different kinds
of contracts and are thus in [2] specified separately: the usage contract denotes a
provide dependency whereas the realization contract denotes a require dependency.

The usage contract is specified as a component interface. A component interface
defines the details of a contract with its clients. It defines the operations it provides,
what their signatures are, their effects and when these effects can be guaranteed to
hold. To be able to specify the operations in an interface it is necessary to partially
know the state of the component. Consequently, the interface specification contains
a so-called information model with attributes, associations and classes as needed.
The information model denotes a view of the state model of the component.

By contrast, the realization contract is defined within the component specifica-
tion and describes some details relevant to the implementation of the component. A
component specification consists of a set of offered interface specifications together
with a definition of how these interfaces are related (that is, how the correspond-
ing information models match each other); and a set of required interfaces from
other components. Finally, it may contain further constraints such as on the im-
plementation of an operation (given through component interactions). Structural
and behavioural dependencies between component specifications are captured by
the component specification architecture.

[2] provides a process for component-based software development focusing on
the specification phase: the identification of the components, the definition of their
dependencies, the construction of their specifications, and finally the production
of flexible application architectures. It shows first, prior to specification, how to
represent requirements in such a way that it eases the construction of component
specifications, and then how to create the component specifications themselves.

The process described in [2] uses UML1.3 for modelling component specification.
It provides a pragmatic extension of UML to capture the above concepts. In the
initial requirements phase two models are mainly used: a class diagram to represent
the initial business concept model, and a use case diagram to capture user-system
interactions. These provide the basis for identifying required interface operations as
well as the component dependencies.

The specification contains four main artifacts: a business type model, inter-
face specifications, component specifications and component architecture. All arti-
facts are modelled using class diagrams, except the component interactions within
the component architecture, which are modelled operationally by a collaboration
diagram. At this point we diverge from [2] and describe component interactions

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 233

A LOGIC-BASED FORMALIZATION FOR COMPONENT SPECIFICATION

declaratively using a notation similar to that taken in the Catalysis approach [4].
Because dependencies between components and consequently their contracts are es-
sential in a component-based approach and to be able to manage change of such
contracts and/or components, we need a precise description of them. Notice that
usage contracts are already described using OCL in [2], however further dependen-
cies or interactions between components (forming the realization contract) are not,
because this is not possible in OCL1.x. Indeed, OCL2.0 aims at including a notation
which would allow one to express components receiving events and reacting to them
(see [6]). Such an extension could replace our Catalysis-based notation (which we
introduce merely for convenience) and can in any case be formalized in our logical
framework.

The above concepts and their representation in UML is given in Section 3 as
needed when we model part of our ParcelCall example.

3 THE PARCELCALL EXAMPLE

The ParcelCall project explores the development of a low cost information infras-
tructure that will enable the continuous information about the exact geographic
position of parcels at any time. Logistic or transportation companies (referred as
carriers) will then be able to offer an additional service to customers: a customer
can query the location and status of her transportation goods.

The ParcelCall system has three main components:

• a Mobile Logistic Server (MLS): is an exchange point or a transport unit
(container, trailer, freight wagon, etc). The transport units carry the parcels.
Since containers can be inside other containers MLSs form a hierarchy. MLSs
always know their current location via the GPS satellite positioning system.

• a Goods Tracing Server (GTS): comprises several databases which contains
MLS hierarchies. Moreover, it keeps track of all the parcels registered in the
ParcelCall system. GTS is also the component which is integrated with the
legacy system of transport or logistic companies.

• the Goods Information Server (GIS): is the component which interacts with
the customers and provides the authorised customer the current location of
her parcels, keeps her informed in case of delivery delays, etc.

For the purpose of this paper we will not address the integration of ParcelCall
with a carrier system nor the arising dependability issues (see Section 6 for a dis-
cussion). We show how a component-based approach can be used for modelling the
ParcelCall system. We focus on some of the interactions between the components
within the localization system triggered by a request to localize a parcel. We use
UML to specify some interface and component specifications as well as the compo-
nent specification architecture of ParcelCall.

234 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

3 THE PARCELCALL EXAMPLE

In [2] the stereotypes <<comp spec>> and <<interface type>> are introduced
to describe component specifications and interfaces respectively. The UML lollipop
notation for interfaces is sometimes also used for the interface types when describing
the system architecture. Figure 1 shows the architecture of ParcelCall: the three
main components, some of their offered interfaces and component dependencies. For
example, the GIS component offers two interfaces ILocalizeParcel and IDispatchPar-
cel, and requires a service from component GTS via the interface IParcelInfo. We
also show where the legacy system from the carrier is going to be integrated with
ParcelCall.

Figure 1: ParcelCall component specification architecture.

The interfaces from the GIS component will establish communication with cus-
tomers: for instance a customer can enter a request to find out the current location
of a parcel via the ILocalizeParcel. Figure 2 shows the interface ILocalizeParcel with
the required information model and one operation.

The operation whereParcel is a query and returns the current location of a cer-
tain parcel provided the parcel exists in the system and the customer is authorised to
know its location (we assume a data type Coordinates). The interface specification
therefore contains the following OCL precondition for the operation.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 235

A LOGIC-BASED FORMALIZATION FOR COMPONENT SPECIFICATION

Figure 2: The interface ILocalizeParcel.

context ILocalizeParcel::whereParcel(idParcel:String,
idCustomer:String):Coordinates

pre: self.Parcel->exists(p| p.id=idParcel and p.Customer=idCustomer)

What is not explicit to a client of GIS is that to provide the parcel location
GIS requires a service from component GTS. The specification of GIS contains
therefore the two offered interface specifications, the required interface specification
IParcelInfo and further constraints (below). Figure 3 shows the required interface
IParcelInfo of component GTS.

Figure 3: The interface IParcelInfo.

Within GIS constraints can be imposed on the implementation of the opera-
tion whereParcel. We provide two possible constraints written in Catalysis-based
notation (see [4] for details). The first possible constraint is as follows.

context GIS::whereParcel(idParcel:String,idCustomer:String):Coordinates
post: [[r:=-> IParcelInfo.where(idParcel)]] and result = r

236 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

4 LOGICAL FRAMEWORK

Here the postcondition tells us that whereParcel’s execution synchronously in-
vokes another operation. A message is sent synchronously to an arbitrary instance
of the component supporting the interface IParcelInfo. r is the value returned from
the message and the result value of whereParcel is equal to r.

Alternatively, we can give another constraint, involving asynchronous invokation.

context GIS::whereParcel(idParcel:String,idCustomer:String):Coordinates
post:[[sent m-> IParcelInfo.where(idParcel)]]

and [[m(idParcel)=r]] and result = r

Here, executing whereParcel will asynchronously send a message to an arbitrary
instance of the component supporting the interface IParcelInfo. m is an event identi-
fier used also to describe that when the sent message has eventually been completed
it returns r. Finally, the result of whereParcel is equal to r.

The component GTS will require a service from component MLS to be able to
satisfy the service required by GIS. We omit further details.

4 LOGICAL FRAMEWORK

In what follows we present the logical framework developed in [7, 8]. The presenta-
tion of the formalism has been simplified in this paper to increase readability. We
refer the interested reader to [7] for further details. Note that in [7, 8], components
for specification have been designated object-oriented modules or modules for short.
In particular, Mdtl stands for Module Distributed Temporal Logic. For consis-
tency, however, we stick to the component terminology in this paper.

The Idea

In our framework, component descriptions are theory presentations of a certain logic.
A component description is a pair consisting of a component signature, defining the
specific vocabulary symbols that are relevant for the description of the component;
and a set of component axioms, a collection of formulae in the logic generated from
the signature. The logic that has been developed for describing components is
Mdtl, a distributed temporal logic which is interpreted over labelled prime event
structures. The idea of the distributed approach is that each distributed compo-
nent in a system has its own local logic whereby this is split into a home logic
and a communication logic. The home logic allows one to express internal compo-
nent properties, whereas the communication logic expresses interactions with other
components.

Note that in our framework a component is understood as a collection of inter-
acting object classes, unlike in [2] where a component is essentially a class and its
instances complex objects. We return to this distinction in Section 5. Further, in

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 237

A LOGIC-BASED FORMALIZATION FOR COMPONENT SPECIFICATION

our framework methods or operations are called actions, and associations are cov-
ered implicitly through attributes.

Component Signature

We recall the definition of an order-sorted data signature ΣD = (SD,ΩD,≤D), where
SD is a finite set of data sorts ; ΩD is an S∗D × SD-indexed family of sets of data
operations, and ≤D⊆ SD × SD is a binary relation on the set of data sorts such
that (SD,≤D) is a partial order. For each o ∈ ΩDw,s, w is the parameter list of the
operation o and s the result sort. The elements of ΩDε,s are called constant symbols
of sort s. The partial order on the data sorts specifies a subsort relation. Moreover,
the partial order is monotone, that is, it satisfies the following condition: if o ∈
ΩDs1...sn,s ∩ΩDr1...rn,r and si ≤D ri for 1 ≤ i ≤ n then s ≤D r. This condition on the
operations allows one to deal with partial functions, overloading and polymorphism.
It is particularly important for expressing inheritance and polymorphism in object-
oriented languages.

Let X be an SD-indexed family of disjoint sets of variables. A data signature may
be extended with variables by considering them as constant symbols of a given sort.
A data signature with variables is sometimes written ΣD(X). From the symbols
defined in the order-sorted data signature and the variables we can construct data
terms in the usual way. TΣD,s(X) denotes the set of data terms of sort s over
ΣD(X). TΣD(∅) is the family of closed terms, also written TΣD . Terms denote a
certain value, so they can be evaluated under a given interpretation. We refer the
interested reader to [5] for a detailed presentation of order-sorted signatures, their
interpretation structures (algebras), and categorical results. As an example of the
latter, we can define morphisms between order-sorted signatures in such a way that
the signatures and morphisms define a category. For the purpose of this paper it
suffices to understand a morphism between signatures as a function mapping the
symbols of one signature onto the symbols of another. We omit further details in this
paper. We want to define the notion of a component signature using order-sorted
signatures so that we can profit from all the known results on them.

A component is more than a class and typically contains several related classes.
For describing a component signature, apart from data sorts and data operations
as above, we will need object and component sorts (SO and SC) and operations on
them (ΩO and ΩC). Intuitively, each class is equipped with an object sort. Since
classes can be arranged in hierarchies through inheritance, a partial order defined
on the object sorts reflects an inheritance relation. Furthermore, a partial order
on component sorts denotes component dependency (also referred as subcomponent
relationship).

A class describes the attributes and actions of its potential instances. Attributes,
actions, and instances can be understood as special object operations, but we need to
be able to distinguish them: we need to know whether a certain object operation is an
action operation or else. Thus, we distinguish between: an attribute object sort (SatO),

238 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

4 LOGICAL FRAMEWORK

an action object sort (SacO), and an instance object sort (SiO). We also distinguish
within action object sorts between synchronous action sorts (SsynO), asynchronous
send action sorts (SasdO), and asynchronous receive action sorts (SarcO), all disjoint
sets.

The following defines what we call a component kernel signature.

Definition 4.1 (Kernel Signature) A kernel signature is an order-sorted signa-
ture Σ = (S,Ω,≤) such that:

• S is a finite set of sorts, data, object and component sorts, that is, S =
SD ∪ SO ∪ SC where:

– SO = SiO ∪ SatO ∪ SacO is a disjoint union of sets of object sorts such that
SacO = SsynO ∪ SasdO ∪ SarcO is a disjoint union as well.

– SC = SeC ∪ SiC is a union of sets of component sorts such that SeC ∩ SiC =
{α}. α is designated the local component sort, the sorts in SeC are export
component sorts, and in SiC are import component sorts.

• Ω is an S∗ × S-indexed family of sets of operation symbols such that ΩD ⊆ Ω.
Let Si = SiO ∪ SD. Further operations in Ω are

– Ωsixi,si with xi ∈ Si∗ and si ∈ SiO, denolte object instance operations;

– Ωsisat,ri with si ∈ SiO, sat ∈ SatO and ri ∈ Si, denote attribute operations;

– Ωsixi,sac with si ∈ SiO, x ∈ Si∗ and sac ∈ SacO , denote action operations;

– Ωε,c with c ∈ SC is a singleton, denotes a component instance operation.

• ≤⊆ S × S is a binary relation on the set of sorts such that (S,≤) is a partial
order satisfying:

– only sorts of the same kind can be related;

– for any s1, s2 ∈ SO,
si1 ≤ si2 iff sat1 ≤ sat2 iff sac1 ≤ sac2 ;

– for any c ∈ SC, c ≤ α;

– for any c, d ∈ SC \ {α},
if c 6= d then c 6≤ d and d 6≤ c.

The monotonicity condition given before has to hold.

Attribute operations and action operations are always associated with an object
instance sort. For example, the attribute operation o ∈ Ωsisat,ri is associated to an
object instance sort given by si. (We antecipate that this is to be able to build terms
in a special way.) Moreover, sat indicates that the operation is an attribute operation
and ri is the sort of the attribute. For an action operation m ∈ Ωsixi,sac , x

i denotes

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 239

A LOGIC-BASED FORMALIZATION FOR COMPONENT SPECIFICATION

the sorts of the arguments including possibly the result sort. The reason why in an
instance operation o ∈ Ωsixi,si , s

i appears twice is so that instance operations can
be inherited by subclasses: notice that if the first si is omitted the monotonicity
condition can never be satisfied. The only component operations available are com-
ponent instance operations. We need a unique constant component operation that
denotes the instance of the component at hand.

From a kernel signature we can construct not only data terms (as usual) but
instance, attribute and action terms for objects, and component terms. For a given
signature Σ(X), we will denote TΣ(X) the family of sets of data and instance terms,
ATTΣ(X) the family of sets of attribute terms, and ACTΣ(X) the family of sets of
action terms. Since action sorts are distinguished we also have synchronous action
terms SΣ(X), asynchronous send action terms SACΣ(X) and asynchronous receive
action terms RACΣ(X). CΣ denote component instance terms.

Instance terms are constructed like data terms ignoring the first argument sort.
Attribute terms have the form t.a where t is an instance term and a an attribute
operation. The sort of the term t.a is given by the result sort of a, i.e., if a ∈ Ωsi sat,r

then the attribute term t.a has sort r and t is a term of sort si. Action terms have
the general form t.c(t1, . . . , tn) where t is an instance term, c denotes an action
operation, and there is a list (possibly empty) of argument terms t1 . . . tn. The sort
of an action term t.c(t1, . . . , tn) is given by the action sort of c, i.e., if c ∈ Ωsix,sac

then the action term is of sort sac. Component instance terms, or component terms
for short, are always closed and given by constants of a given sort m ∈ SC since the
only component operations available are constants. In particular, c ∈ Ωε,α is the
local component term. Closed data and instance, attribute, and action terms are
written TΣ, ATTΣ and ACTΣ respectively.

The interpretation structures over kernel signatures are essentially the same as
for order-sorted signatures. Morphisms between kernel signatures can be defined in
a similar way as well.

An export signature over a kernel signature is defined as follows.

Definition 4.2 (Export Signature) Let Σ1 and Σ2 be kernel signatures, and µ :
Σ2 ↪→ Σ1 be an inclusion morphism. Let α1 and α2 be the local component sorts of
Σ1 and Σ2 respectively. E = (Σ2, µ) is an export signature over Σ1 iff α2 ∈ SeC1

and SC2 = {α2}. Moreover, for two arbitrary export signatures E1 and E2 over Σ
with β1 and β2 the local component sorts, E1 6= E2 iff β1 6= β2.

The local component sort of the kernel of an export signature over Σ has to be
an export component sort of Σ. An export signature has a unique component sort.

Import signatures are defined in exactly the same way (just replace in the above
definition SeC1 by SiC1). With the notions of kernel, export and import signatures
we can define a component signature.

240 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

4 LOGICAL FRAMEWORK

Definition 4.3 (Component Signature) A component signature is a triple Θ =
(Σ, Imp,Exp) where Σ is a kernel signature, Imp and Exp are finite sets of import
and export signatures over Σ respectively.

From an export signature over a kernel signature we can build a special kind of
component signature which we call view component signature (of the component
signature of the kernel). I.e., let E = (Σ1, µ) be a an export signature over Σ, and
Σ be the kernel signature of a component signature given by Θ. The component
signature Θ1 = (Σ1, ∅, {(Σ1, id)}) is a view of the component signature Θ where id
is an identity kernel morphism.

Distributed Logic

We now introduce a simplified component logic Mdtl.

Definition 4.4 (Mdtl) Let Θ = (Σ, Imp,Exp) be a component signature, β ∈ SiC,
and Σβ be the corresponding kernel signature. Let Σβ = (Sβ,Ωβ,≤β), and X be an
Siβ-indexed family of sets of variables, x ∈ Xs and s ∈ Siβ. The abstract syntax of
MdtlΘ may be defined as follows:

MdtlΘ ::= {Mdtlm}m∈CΣ,β

Mdtlm ::= m.Hm | m.Cm
Hm ::= Atomm | ¬(Hm) | (Hm ⇒ Hm) | ∀x(Hm) | (Hm U∀ Hm) | (Hm U∃ Hm) |

(Hm S Hm) | ∆(Hm)

Cm ::= SYm ↔ k.SYk | ASm → k.ARk | ARm ← k.ASk | ∀x(Cm)

for some k ∈ CΣ,β ,m 6= k

SYm ::= �SΣβ (X) | SYm ∧Qm | ∀x(SYm) | ∃x(SYm)

ASm ::= �SACΣβ (X) | ASm ∧Qm | ∀x(ASm) | ∃x(ASm)

ARm ::= �RACΣβ (X) | ARm ∧Qm | ∀x(ARm) | ∃x(ARm)

Qm ::= Atomm | ¬(Qm) | ∀x(Qm)

Atomm ::= true | �ACTΣβ (X) | �ACTΣβ (X) | TΣβ,s(X) θ TΣβ,s(X) |

ATTΣβ,s(X) θ TΣβ,s(X)

Each component Θ has a component logic given by MdtlΘ. MdtlΘ associates to
each imported subcomponent of Θ a local logic Mdtlm, where m is the component
term of the subcomponent. The local logic Mdtlm allows m to make assertions
about itself, and what it knows from communication with other subcomponents.
The local logic Mdtlm is split into a component home logic Hm and a component
communication logic Cm.

Hm is a first-order temporal logic with an additional operator ∆, the concurrency
operator. The atomic formulae of the home logic Hm are given by Atomm. An
atomic formula can be the logical constant true; the predicate � (enabling) applied

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 241

A LOGIC-BASED FORMALIZATION FOR COMPONENT SPECIFICATION

to an action term; the predicate � (occurrence) applied to an action term; or the
predicate θ applied to two data terms or to an attribute and a data term, where θ
is a comparison predicate (e.g., =,≤, . . .). Notice that the predicates � and � are
needed to be able to distinguish among actions that may occur next (are enabled)
and are occurring. Essentially, they reflect pre and postconditions of actions.

Formulae in Hm can be obtained by applying successively the connectives ¬
and ⇒, the temporal operators U (until) and S (since), the operator ∆ and the
∀ quantifier to atomic formulae. Within the temporal operators we distinguish
between a for all until U∀, and an exists until U∃. They are used to reflect the
branching-time nature of the temporal logic. Moreover, this distinction is only
sensible for the future-oriented temporal operators.

The logical constant false and the well-known connectives of propositional cal-
culus such as ∧, ∨ and⇔ are defined in terms of ¬ and⇒ in the usual way, whereas
∃ can be obtained combining ¬ and ∀. Furthermore, the temporal operators next
X, sometime in the future F , always in the future G, yesterday Y , sometime in the
past P , and always in the past H can be derived from U and S. Notice that our U
and S are weak, they do not include ”now”. Details of the derivations can be found
in [7].

The new operator ∆ is a concurrency operator that can be used to express, for
instance, that certain actions are executed concurrently. It is not used in this paper,
so we dismiss it.

The communication logic Cm allows one to express communication among several
objects from distinct subcomponents of Θ. A communication formula thus expresses
intercomponent communication. Notice that intracomponent communication is ex-
pressed as a formula in the home logic instead.

A formula in the logic Cm reflects the knowledge the component denoted bym has
of others, gained through communication, and from the local viewpoint of m. The
component denoted by m may communicate with any other imported subcomponent
of Θ denoted by k.

There are three possible statements in the logic concerning communication, the
first refers to synchronous communication while the second and third refer to asyn-
chronous communication.

SYm ↔ k.SYk︸ ︷︷ ︸
synchronous

|
send︷ ︸︸ ︷

ASm → k.ARk |
receive︷ ︸︸ ︷

ARm ← k.ASk︸ ︷︷ ︸
asynchronous

A formula in SYm contains at least one occurrence of a synchronous action of
an object belonging to the component denoted by m. Moreover, SYm ↔ k.SYk
expresses a synchronous calling of actions of objects from the distinct components
denoted by m and k. ASm and ARm denote formulae containing at least one oc-
currence of a send and a receive communication action respectively. ASm → k.ARk

242 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

5 FORMALIZING COMPONENTS

states that m knows that the occurrence of a send action of an object in m implies
that eventually there will be an occurrence of a corresponding receive action of an
object in k. Conversely, ARm ← k.ASk states that m knows that the occurrence of
a receive action of an object of m means that sometime before a send action of an
object of k occurred.

Component Descriptions

A component description CD = (Θ, Ax) is a pair containing a component signa-
ture Θ and a set of axioms in its corresponding component logic (i.e., Ax ⊆MdtlΘ).

The Underlying Model

The semantics for the logic consists of labelled prime event structures: a truly
concurrent model of computation (e.g., [13]). Each component has a model (a
labelled prime event structure) associated with it where the events are labelled by
formulae indicating the state of the component. We omit details on the model and
semantics of Mdtl for space reasons and since it is not essential for this paper. We
refer the interested reader to [7].

5 FORMALIZING COMPONENTS

In this section, we show how component concepts are formalized using our approach.
We use the introduced example for illustration.

Because component objects are essentially complex objects we need to consider
that a component has associated with it a class with the same name. Consequently,
component objects are actually instances of this class.

Interface specification

An interface specification can be seen as a component description where the compo-
nent signature is a view component signature of another. An interface specification
is given by IS = (Θ, Ax), where Θ = (Σ, ∅, {(Σ, id)}) and Σ is a kernel signature
with a unique component sort. The component sort corresponds to the interface
type. The object sorts contain a sort for every class in the information model of
the interface, and an additional sort for the interface type. There is only one con-
stant component instance operation of the component sort and consequently only
one component term. By contrast, there are several instances for the object sort
associated to the interface (which denote component objects in the terminology of
[2]). Attributes, associations and operations of the classes in the information model
define corresponding object sort attribute and action operations. Interface opera-
tions are defined as operations for the class with the interface name. The axioms in
the interface specification (Ax) denote pre and postconditions of the interface opera-
tions. Note that there are no imported signatures in an interface signature therefore

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 243

A LOGIC-BASED FORMALIZATION FOR COMPONENT SPECIFICATION

MdtlΘ is given entirely by m.Hm where m is the local component term (interface
term). In other words, the axioms of an interface specification correspond to formu-
lae in the home logic of the interface (Ax ⊆ m.Hm). A precondition is for instance
written as the formula m.(�o.a ⇒ o.att1 = v) meaning that the operation a on an
object o can only happen provided the object is in a state where its attribute att1 has
the value v. A postcondition on an operation a could be m.(�o.a ⇒ o.att2 = 100)
and means that the value of attribute att2 changes to 100 after the occurrence of
the operation a on object o.

Recall the precondition of whereParcel of our example. Let self be an instance
of class ILocalizeParcel; ip and ic variables of data sort string; p an instance of class
Parcel. The precondition in the interface specification ILocalizeParcel is given by
the following formula in the corresponding home logic (∀ quantifiers are omitted for
simplification).

ILocalizeParcel.(�self.whereParcel(ip, ic, r)⇒ ∃p(p.id = ip∧ p.customer = ic)))

Component specification

A component specification can be seen as a component description where the com-
ponent signature contains as many export signatures as the offered interfaces and
as many import signatures as the required interfaces. A component specification is
given by CS = (Θ, Ax), where Θ = (Σ, Imp,Exp) and Σ is a kernel signature. The
local component sort of Σ corresponds to the component specification type. The
set of object sorts contains a sort for every class in the business type model and
an additional sort for the component specification type. Attributes, associations
and operations are treated as above. How the information models of the offered
interfaces relate is given by kernel signature morphisms (in an export signature,
an inclusion morphism describes how the symbols in the interface correspond to
the symbols in the component specification signature). The constraints reflecting
require dependencies and how operations are to be implemented are given by for-
mulae in Cm where m is the local component term of the component specification.
It can express communication with all the imported subcomponents.

Recall the two possible constraints imposed on the implementation of operation
whereParcel in the component specification GIS. Let GIS denote the local compo-
nent term of the specification, g an instance of class GIS; r a variable of data sort
Coordinates; and q an instance of class IParcelInfo.

The synchronous operation calling in the context of the component specification
GIS is given by a formula in the communication logic GIS.CGIS.

GIS.(�g.whereParcel(ip, ic, r)↔ IParcelInfo.(�q.where(ip, r)))

The asynchronous operation calling is given by the next formula in the same
communication logic.

244 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

6 CONCLUSIONS

GIS.(�g.whereParcel(ip, ic, r)→ IParcelInfo.(�q.where(ip, r)))

Component Specification Architecture

A component specification architecture can also be given by a component description
CSA = (Θ, Ax) where Θ is a component signature and all the components in the
system correspond to an imported signature of Θ. Export signatures may exist if we
have an open component architecture (as is the case in the ParcelCall example). The
formulae in Ax describe: (1) the way components are connected, their dependencies
and the way they interact with each other (through the communication logic), (2)
internal component properties (through the home logic of the component).

6 CONCLUSIONS

In this paper we have shown how to uniformly formalize the specification of different
component concepts like interfaces, components and component architectures. In
particular, component contracts are described as formulae of the distributed logic
Mdtl: usage contracts are given by formulae in the home logic of an interface,
whereas design contracts are captured by formulae in the communication logic of
the component specification.

In this paper, we have restricted the presentation of our framework in several
ways. We have not described the semantics underlying the logic because it is not
essential for the purpose of the paper. Details can be found in [7]. Moreover, in our
framework components can be parameterised by other components. This is omitted
in the presentation as it is not covered by the approach in [2].

Several approaches in the literature provide a semantics to OCL including [10,
1, 3]. The latter is the only known logic-based approach. It uses BOTL, an object-
based temporal logic, to formalise a subset of OCL. BOTL essentially results from
combining CTL and an object logic in such a way that OCL expressions and con-
straints can be translated into it. Mdtl compares to BOTL if we understand that
the home logic of a module in Mdtl is an object logic containing CTL. OCL does
not, currently, allow to express more than static constraints on UML models. In par-
ticular, we have seen that OCL is not expressive enough to describe our component
contracts as needed. Extending OCL to allow the description of such contracts would
make BOTL insufficient as an underlying logical framework. By contrast, Mdtl

contains a communication logic which we believe to be as expressive as needed to
describe interactions between components and/or objects. Whilst BOTL has been
developed essentially for verification based on model checking, Mdtl has not. Mdtl

is a logic for specification which is far to expressive to allow verification in general.
For instance, Mdtl contains past temporal operators as well as a concurrency oper-
ator which may be a problem for model checking (the so-called backtracking problem

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 245

A LOGIC-BASED FORMALIZATION FOR COMPONENT SPECIFICATION

which makes model checking undecidable). It is not clear that Mdtl has indeed
this problem, and this needs to be further investigated.

The ParcelCall system is an example of a complex open distributed system which
when integrated with the legacy system of a transport or logistic company will
contain dependability issues in the human-computer interactions. Notice that the
carrier system includes humans and machines: the computer-based activities of the
system involve entwined actions performed by several humans and machines. The
localization system offered by ParcelCall will necessarily affect and influence the
carrier’s organisation and culture: working practices by human carriers will change,
new dependability requirements (e.g., reliability, safety, security) on the system will
emerge, etc.

Humans are normally part of the environment of a system. In dependable sys-
tems, however, it is crucial to integrate the human or the organisation (with several
humans playing different roles and interacting with the system in different ways) in
the specification. It is necessary to understand how the humans in the organisation
behave and interact with the system in order to be able to assess or predict possible
errors, faults, etc.

One approach that considers the human in systems where human-computer in-
teractions are highly critical is the work by Rushby (as described e.g., in [11]). To
try to analyse how errors can result from human-computer interaction, the approach
compares what is called the mental model of an operator (system user) and the sys-
tem model. The mental model corresponds to the model the operator believes to
be the real model of the system. Both the system model and the mental model
are described as finite state transition systems and checked for consistency using
a mechanised formal method. The outcome of such a check suggests places where
design should be improved.

In any case, to model human behaviour there is a need to borrow concepts and
models from other disciplines like cognitive science and/or artificial intelligence. A
combined formal approach can then be used to describe software systems, part of
their environment, as well as their interactions. Verification tools based on such
combined formalisms would make it possible to verify for instance quality of service
and dependability constraints in systems with human-computer interaction.

An advantage of our component-based formalism is that it permits an integra-
tion of such aspects in a straightforward way. The human(s) can be regarded as a
special kind of component with a distinct logic for describing her behaviour. The
communication logic in Mdtl as given can describe human-machine interactions in
the same way. We are currently investigating an approach based on the distributed
logic Mdtl combined with agent logics (essentially logics of knowledge and belief)
for describing relevant aspects of human behaviour. How feasible such an approach
is for verification needs to be investigated.

246 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

6 CONCLUSIONS

REFERENCES

[1] M. Bidoit, R. Hennicker, F. Tort, and M. Wirsing. Correct realization of inter-
face constraints with OCL. In R. France and B. Rumpe, editors, The Unified
Modeling Language — Beyond the Standard, Proc. 2nd Int. Conf., (UML’99)
Fort Collins, CO, USA, Oct. 1999, volume 1723 of LNCS, pages 399–415.
Springer, 1999.

[2] J. Cheesman and J. Daniels. UML Components. Component Software Series.
Addison-Wesley, 2001.

[3] D. Distefano, J.-P. Katoen, and A. Rensink. On a temporal logic for object-
based systems. In S. F. Smith and C. L. Talcott, editors, Formal Methods
for Open Object-based Distributed Systems, pages 305–326. Kluwer Academic
Publishers, 2000.

[4] D. D’Souza and A. Wills. Objects, Components, and Frameworks with UML:
The Catalysis Approach. Object Technology Series. Addison-Wesley, October
1998.

[5] J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for
multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science, 105:217–273, 1992.

[6] A. Kleppe and J. Warmer. Extending OCL to include actions. In S. Kent and
A. Evans, editors, UML’2000 — The Unified Modeling Language: Advancing
the Standard, Third International Conference, York, UK, October 2-6, 2000,
volume 1939 of LNCS, pages 440–450. Springer, 2000.

[7] J. Küster Filipe. Foundations of a Module Concept for Distributed Object Sys-
tems. PhD thesis, Technical University of Braunschweig, Germany, September
2000.

[8] J. Küster Filipe. Fundamentals of a Module Logic for Distributed Object Sys-
tems. Journal of Functional and Logic Programming, 2000(3), March 2000.

[9] OMG Unified Modeling Language Revision Task Force. OMG Unified Modeling
Language Specification, Version 1.4 draft, February 2001.

[10] M. Richters and M. Gogolla. OCL: Syntax, semantics and tools. In T. Clark
and J. Warmer, editors, Advances in Object Modelling with the OCL, LNCS,
pages 38–63. Springer, 2001.

[11] J. Rushby. Modeling the human in human factors. In Proceedings of the 20th In-
ternational Conference on Computer Safety, Reliability and Security (Safecomp
2001), Budapest, Hungary, September, volume 2187 of LNCS, pages 86–91.
Springer, 2001.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 247

A LOGIC-BASED FORMALIZATION FOR COMPONENT SPECIFICATION

[12] C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, 1997.

[13] G. Winskel and M. Nielsen. Models for Concurrency. In S. Abramsky, D. Gab-
bay, and T. Maibaum, editors, Handbook of Logic in Computer Science, Vol. 4,
Semantic Modelling, pages 1–148. Oxford Science Publications, 1995.

ABOUT THE AUTHORS

Juliana Küster Filipe is a research fellow at the University of Edinburgh, UK. She
got her PhD from the Technical University of Braunschweig, Germany in 2000. She
is currently working on two EPSRC funded projects on Dependability of Computer-
based Systems and Logic for UML. She can be reached at jkf@dcs.ed.ac.uk. For
more information about her research see http://www.dcs.ed.ac.uk/home/jkf.

248 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 3

mailto:jkf@dcs.ed.ac.uk
http://www.dcs.ed.ac.uk/home/jkf

