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“Design by Contract” + “Componentware” = 
“Design by Signed Contract”1 

Andreas Rausch, Technische Universität München, Germany 

Abstract 
The main goal of "Design by Contract" is to improve correctness and robustness of 
software systems. For this purpose, the interfaces of classes or modules are 
augmented with precise specifications containing assertions. By means of these 
assertions, a supplier of a service imposes contractual obligations that his clients have 
to fulfill. 
”Componentware” introduces a new software development paradigm. Systems are no 
longer implemented from scratch, but glued together from existing components. In this 
paper, we show why and how the concepts of pure design by contract fail in the context 
of component-based system development. In order to leverage the vision of design by 
contract to its full extent for component-based system development, we introduce the 
new concept of “Design by Signed Contract”. 
Signed contracts enable us to specify not only what a supplier provides to its 
environment, but also what a client needs from its environment. Signed contracts 
guarantee that client needs are satisfied by corresponding properties provided by 
suppliers. We show how signed contracts can be used for a more precise specification 
of the composition of component-based systems and a more formal verification of the 
correctness of these systems. Thereby, software system defects can already be 
detected and prevented at the specification level. 

                                                           
1 This work originates from the research project ZEN – Center for Technology, Methodology and 
Management of Software & Systems Development – a part of Bayerischer Forschungsverbund Software-
Engineering (FORSOFT), supported by the Bayerische Forschungsstiftung. 
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1 INTRODUCTION 

The idea of using assertions to check the correctness of programs has been born a long 
time ago. According to Tony Hoare, in the 1950’s none other than Alan Turing already 
proposed to make a number of assertions from which the correctness of a program can be 
checked [Hoare81]. In this context the correctness of a program means that the program 
is consistent with its specification. The well-known notion of a Hoare triple provides a 
simple mathematical notation for reasoning about the correctness of programs [Hoare69]:  

{ } { }P C Q  
In this notation, P  and Q  are predicates (or functions from the state space to the boolean 
domain) and C  is a command or program. The meaning of the Hoare triple is that any 
terminating execution of C , starting in a state where P  holds (pre-condition), will 
terminate in a state where Q  holds (post-condition). This meaning of correctness is also 
known as partial correctness. 

“Design by Contract” (DbC), introduced by Bertrand Meyer in 1987 [Meyer87], was 
one of the next milestones in the evolution of the idea of using assertions to improve the 
correctness and robustness of software systems. In DbC, interfaces of classes or modules 
are governed by precise specifications containing assertions. In the notion of DbC, these 
assertions define a contract between the client and the supplier of a service provided by 
an interface. 

Three different kinds of assertions can be used: pre-conditions, post-conditions and 
invariants. A pre-condition states the properties that must hold before an operation is 
called. A post-condition describes the properties that are guaranteed after the operation is 
executed. And finally, an invariant is a condition that must be preserved by all operations 
of a certain instance. 

According to DbC, these assertions are specified within the program code. Whenever 
the program is executed, the assertions can be validated. In case of violated assertions 
exceptions are thrown. Thus, executing test cases on the system as a whole helps you 
identifying, analyzing, and finally eliminating system defects. 

Nowadays, as systems become more and more complex, component-based software 
development (CBSD) is to a greater extent applied in industry. CBSD changes the 
development paradigm – components are for composition. Systems are no longer 
implemented from scratch, but glued together from existing components. 

In order to leverage CBSD to build correct programs we need sophisticated 
specification and high level programming techniques. On the one hand, we have to 
specify and realize software components as self-contained units of deployment. On the 
other hand, we have to specify the composition of those components to component-based 
systems. 
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As it turns out, the current concepts of DbC are not sufficiently powerful for these 
issues. The main reason for this is that the concept of a contract in DbC is actually not a 
contract, but only a service supplier's “offer” to potential clients. The supplier’s “needs” 
are not completely specified, as they are seen as “implementation details”. But in the 
context of CBSD a component is a self-contained unit of deployment. Therefore, you 
have to make the needs of a component visible. They must not be hidden  as an 
implementation detail. 

In this paper, we show how the vision of DbC can be leveraged to its full extent for 
component-based systems. For this purpose, in Section 2 we provide a small working 
example that illustrates the problem of the existing notion of contracts in DbC. Then in 
Section 3, we enhance the specification techniques of DbC towards “Design by Signed 
Contract” and show how the problems with pure DbC can be avoided. In Section 4, we 
finally provide the theoretical foundation of the proposed concepts. A short conclusion 
and a section about related work rounds up the paper. 

2 “DESIGN BY CONTRACT” – APPLIED 

A small toy example serves to clarify the general problem of applying DbC in the context 
of CBSD. Consider a simple production planning system (PPS). The PPS has to schedule 
and optimize the assignment of jobs to corresponding robots handling these jobs. Each 
robot can treat only a single job at any time. Each job has to be handled by a single robot. 
Overlapping jobs assigned to the same robot cause conflicts. The major goal of the PPS is 
to assign all jobs to robots without a conflict and to minimize the required production 
time. 
As we apply a component-based approach, the PPS is built from existing components. 
The PPS contains two components: Job and Robot2. 

The important parts of the specification and implementation of our two components 
Job and Robot are shown in Figure 1 and Figure 2. The notation we use imitates the one 
known from DbC and Eiffel [Meyer97]. Keywords are written in capital letters. 

Job contains the attribute assigned which refers to the robot handling this job. On 
the other hand, Robot has the attribute scheduled which refers to a set of jobs it has to 
handle. Both Job and Robot provide the method hasConflict() to calculate whether 
they cause a conflict or not. Corresponding to DbC, each method description consists of 
three parts: The first covers the pre-conditions of the method, which is not required in this 
example. The second includes the implementation of the method starting with the 
keyword DO. The third – with keyword ENSURE – contains the post-condition of the 
method. 

                                                           
2 Although Job and Robot are more objects than components, it keeps the example small but expressive 
enough to illustrate the problem in general. 
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COMPONENT Job 
  assigned : Robot 
  start : Time 
  end : Time 
  INVARIANT interval_non_negative: start <= end 
  . 
  . 
  hasConflict() : Boolean 
    DO 
      RESULT := False 
      FORALL j IN assigned.scheduled LOOP 
        RESULT := RESULT OR ((j NOT EQUALS CURRENT) AND 
          (start <= j.end) AND (j.start <= end)) 
      END 
    ENSURE 
      RESULT = EXISTS j IN assigned.scheduled WITH 
        (j NOT EQUALS CURRENT) AND (start <= j.end) AND 
          (j.start <= end) 
    END 
END 

Fig. 1: First DbC version of component Job 
 

The post-condition of the method hasConflict() of the component Job 
determines whether a job causes a conflict or not. A conflict appears if the assigned robot 
is scheduled for another job that overlaps with the current one. The implementation of the 
method is a simple translation of the post-condition into an operational form. 

COMPONENT Robot 
  scheduled : Set(Job) 
  . 
  . 
  hasConflict() : Boolean 
    DO 
      RESULT := False 
      FORALL j IN scheduled LOOP 
        RESULT := RESULT OR j.hasConflict() 
      END 
    ENSURE 
      RESULT = EXISTS j,k IN scheduled WITH 
        (j NOT EQUALS k) AND (j.start <= k.end) AND 
          (k.start <= j.end) 
    END 
END 

Fig. 2: DbC version of component Robot 

The post-condition of the method hasConflict() of the component Robot calculates 
whether the robot has a conflict or not. A conflict appears if at least two scheduled jobs of 
the robot overlap. For the corresponding implementation the already existing method of 
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the component Job is (re-)used. For reasons of reuse and encapsulation the presented 
solution seems absolutely reasonable. 

Now, we can glue these two components together to implement and deliver the PPS 
to our customers. Once a system is shipped it usually takes only a couple of months until 
new requirements come up. In our particular case, we assume that our customers want the 
PPS to schedule jobs not only for a single robot, but also for a certain number of robots – 
the jobs they want to manage get more complex. Therefore a new version of the 
component Job has to be specified, implemented, and finally used within the PPS. 

Figure 3 shows this new version of this component. The modified parts are 
highlighted in gray color. A job can now be assigned to a set of robots with respect to the 
number of required robots to handle the job. The method hasConflict() has also been 
modified. Now, a job causes a conflict if there is another job assigned to one of the robots 
the current job is assigned to, which overlaps with the current job. 

The new version of the component Job fulfills the required new features. Moreover, 
it still fits together with the already existing component Robot. Probably the new version 
of the PPS will be again glued together, compiled, tested and eventually shipped to 
customers. 

COMPONENT Job 
  assigned : Set(Robot) 
  numberOfRequiredRobots : Integer 
  start : Time 
  end : Time 
  INVARIANT interval_non_negative: start <= end 
  . 
  . 
  hasConflict() : Boolean 
    DO 
      RESULT := False 
      FORALL r IN assigned LOOP 
        FORALL j IN r.scheduled LOOP 
          RESULT := RESULT OR ((j NOT EQUALS CURRENT) AND 
            (start <= j.end) AND (j.start <= end)) 
        END 
      END 
    ENSURE 
      RESULT = EXISTS r IN assigned WITH 
        EXISTS j IN r.scheduled WITH 
          (j NOT EQUALS CURRENT) AND (start <= j.end) AND 
            (j.start <= end) 
    END 
END 

Fig. 3: Second DbC version of component Job 

Unfortunately the new version of the PPS has a defect: A robot is expected to signal a 
conflict if at least two of its scheduled jobs overlap, corresponding to the post-condition 
of hasConflict() in Figure 2. However, the implementation of the Robot‘s method 
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hasConflict() (re-)uses the Job’s method hasConflict() which has been modified 
(see Figure 2). Hence, the behavior of the Robot’s method hasConflict() has also 
been changed. A conflict for a robot R1 may now also be signaled if a job J1 scheduled 
for robot R1 and robot R2 overlaps with a job J2 assigned to robot R2. This behavior 
violates the corresponding post-condition of the Robot‘s method hasConflict(). 

The component Robot is no longer correct in the context of the new version of the 
PPS, although it has not been modified. The implementation is not consistent with the 
specification (see Figure 2). The resulting defect may cause fatal faults, as for instance 
the optimizing algorithm of the PPS relies on a correct calculation of the conflicts of jobs 
and robots. Hence, the core functionality of the PPS is no longer correct. 

Of course, this defect could have been detected during the integration test of the new 
version of the PPS. In order to detect it, a corresponding test case containing proper test 
data must be available and executed. Usually, new test cases including new test data are 
only specified and implemented for new functionality. Existing functionality is typically 
tested with existing test cases in so-called regression tests. As the discussed defect only 
appears if existing functionality is executed with new test data, it is quite likely that it will 
not be detected during integration test. 

To sum up, applied CBSD means that systems are built from existing components. 
These components are self-contained units of deployment, but they have to work together 
to realize the functionality of the system as a whole. Correspondingly, the components of 
a component-based system rely on each other. The behavior of a single component 
depends on the “surrounding” components within the component-based system. It 
depends on the context in which the component is embedded. Hence, the correctness of a 
component-based system depends on an appropriate “component-mixture”. 

For instance, if a single component is correct but does not fulfill the needs of the 
others (like the modified Job component), the behavior of other components depending 
on it may be influenced unintentionally, resulting in software system defects. 

Using the concepts of DbC in the way they are used in today’s software engineering 
practice, namely for specification, programming, and testing issues, it is difficult to 
prevent those system defects. To detect these defects one has to either inspect the 
implementation or realize and execute a failure-producing system test scenario. 

Both options are unacceptable in CBSD. Components are units of deployment and 
may be delivered by third parties. As you do not have access to the implementation of all 
components, you cannot inspect all of them. Therefore you still need to realize a 
complete set of system test scenarios for the system integration test, as the use of correct 
components does not enforce the correctness of the component-based system built from 
these components. But as we all know, one cannot identify all required test scenarios. 
Thus, one expected benefit of CBSD will not be achieved: improvement of system 
quality by (re-)using quality proven components. 

The main reason for this is that DbC “only” guarantees local correctness at the level 
of objects, classes, or components, but it does not guarantee global correctness when 
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components are used and combined together. Therefore we have to provide a means for 
explicit specification of the dependencies between the components of a component-based 
system. 

In the next section we will illustrate – based on our working example – how the 
concepts of DbC can be improved towards signed contracts which are needed for 
successful CBSD. 

3 DESIGN BY SIGNED CONTRACT 

Before we can introduce our new improved specification technique for CBSD, we need a 
clear understanding of the notion of a component and of CBSD. Instead of presenting our 
own, we use Clemens Szyperski’s definition of a component, which is widely accepted: 

“A software component is a unit of composition with contractually specified 
interfaces and explicit context dependencies only. A software component can be 
deployed independently and is subject to composition by third parties.” 
(Quotation from [Szype97], page 34) 

These properties have several implications. For a component to be independently 
deployable, the component needs to be well separated from its environment and from 
other components. It needs to be sufficiently self-contained. A clear specification of what 
a component provides and needs is required. This specification has to be delivered 
together with the component by the component vendor. 

The existence of such a specification is crucial for a component to be composable 
with other components by a third party, the component user. The component user needs 
an integrated but decoupled specification technique to explicitly describe the 
collaborations between the components under composition. 

We need two kinds of specification techniques for CBSD: 
• a self-contained component island specification provided by the component 

vendor and 
• a component composition specification elaborated by the component user. 

As shown in the previous section, the concepts of DbC are currently not sufficiently 
powerful to express the required component island specifications and component 
composition specifications. Based on our working example we show in the following 
how the concepts of DbC can be extended with respect to the requirements of CBSD. 

For each component a component island specification has to exist. This island 
specification is structured in two parts. The first contains the provided properties. In our 
example this section starts with the keyword PROVIDE. The PROVIDE part is identical 
with the specifications well known from DbC that have been shown in the previous 
section. It specifies the properties the component provides to its environment, assuming 
the environment fulfills the second part, the NEED part. 
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The second part of the specification captures the needed properties of the 
component, therefore we use the keyword NEED. The NEED part is syntactically identical 
to the PROVIDE part. It also contains a complete behavior specification based on pre-
conditions, post-conditions, and invariants. In contrast to the PROVIDE part it specifies 
behavior the component expects from its environment. Hence, the NEED part will never 
be implemented, instead the needed behavior will be mapped to a provider-component 
during system compostion. 

 
COMPONENT Job 
  PROVIDE 
    assigned : n_Robot 
    start : Time 
    end : Time 
    INVARIANT interval_non_negative: start <= end 
    . 
    . 
    hasConflict() : Boolean 
      DO 
        RESULT := False 
        FORALL j IN assigned.n_scheduled LOOP 
          RESULT := RESULT OR ((j NOT EQUALS CURRENT) AND 
            (start <= j.end) AND (j.start <= end)) 
        END 
      ENSURE 
        RESULT = EXISTS j IN assigned.scheduled WITH 
          (j NOT EQUALS CURRENT) AND (start <= j.end) AND 
            (j.start <= end) 
      END 
  END 
  NEED 
    . 
    . 
    COMPONENT n_Robot 
      n_scheduled : Set(Job) 
  END 
END 

Fig. 4: First version of component island specification of Job 

Figure 4 contains the component island specification of the component Job. The 
PROVIDE part of the component island specification is almost identical with the one 
shown in Figure 1. Only some of the identifiers have been exchanged. Instead, 
corresponding identifiers from the NEED part of the specification have been used. 

For reasons of uniformity and clarity all needed properties of a component start with 
the prefix “n_”. As shown in Figure 4 the component Job needs a component named 
n_Robot that has an attribute named n_scheduled which contains a set of jobs. 
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Note, a component island specification is a complete and self-contained 
specification, all used identifiers are defined. An implementation of such a specification 
can be independently tested and verified, an important feature for successful CBSD. 

Figure 5 shows the corresponding component island specification of the component 
Robot. Again, this specification consists of the two parts PROVIDE and NEED. The 
PROVIDE part is similar to the one shown in Figure 2. The additional NEED part describes 
the required component n_Job including all needed properties.  
 

COMPONENT Robot 
  PROVIDE 
    scheduled : Set(n_Job) 
    . 
    . 
    hasConflict() : Boolean 
      DO 
        RESULT := False 
        FORALL j IN scheduled LOOP 
          RESULT := RESULT OR j.n_hasConflict() 
        END 
      ENSURE 
        RESULT = EXISTS j,k IN scheduled WITH 
          (j NOT EQUALS k) AND (j.n_start <= k.n_end) AND 
            (k.n_start <= j.n_end) 
      END 
  END 
  NEED 
    . 
    . 
    COMPONENT n_Job 
      n_assigned : Robot 
      n_start : Time 
      n_end : Time 
      INVARIANT n_interval_non_negative: n_start <= n_end 
      n_hasConflict() : Boolean 
        ENSURE 
          RESULT = EXISTS j IN n_assigned.scheduled WITH 
            (j NOT EQUALS CURRENT) AND (n_start <= 
              j.n_end) AND (j.n_start <= n_end) 
        END 
  END 
END 

Fig. 5: Component island specification of Robot 

Once these component island specifications are finished, the components can be 
implemented, tested, and shipped to component users. Then, component users glue these 
components together to implement their envisioned system. 



 
 
 “DESIGN BY CONTRACT” + “COMPONENT WARE” = “DESIGN BY SIGNED CONTRACT” 
 
 
 
 

28 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 3 

Therefore, component users need a specialized component composition specification 
technique. This specification technique has to enable component users to explicitly state 
the behavioral dependencies between the components under composition. This means 
needed properties of all components have to be mapped to provided properties of other 
components. 

In our example the component user glues the components Job and Robot together to 
realize the PPS. Therefore, he has to map the needed properties of our two components to 
corresponding provided properties. For instance in Figure 6, which contains the 
component composition specification of the PPS, the needed method n_hasConflict() 
of the needed component n_Job is mapped to the provided method hasConflict() of 
the provided component Job (see gray colored line in Figure 6). 

SIGNED CONTRACT BETWEEN Component Job, Robot 
  MAPPING Job 
    n_Robot -> Robot 
    n_Robot.n_scheduled -> Robot.scheduled 
  END 
  MAPPING Robot 
     n_Job -> Job 
     n_Job.n_assigned -> Job.assigned 
     n_Job.n_start -> Job.start 
     n_Job.n_end -> Job.end 
     n_Job.n_interval_non_negative ->  
       Job.interval_non_negative 
     n_Job.n_hasConflict() -> Job.hasConflict() 
  END 

Fig. 6: Component composition – signed contract between Job and Robot 

Note, an important feature of the proposed specification technique is that the NEED part 
covers not only the syntax but also behavior – the NEED part is more than an “import” 
statement in common programming languages. For instance, the specification includes a 
post-condition for the needed method n_hasConflict() specifying the behavior of this 
required method (see Figure 5). Accordingly, the correctnes of the mapping does not 
require syntactical or logical equality of required and provided pre- and post-conditions, 
but “merely” suitable implications (see Section 4). 

Hence, a component composition specification allows the component user to 
explicitly state the behavioral dependencies between the components under composition. 
Such a specification forms a so-called signed contract. Thereby the needed properties of 
all components of a system are mapped to provided properties of other components of 
this system. These signed contracts enable tools or at least developers to check and 
validate at the specification level whether all needed properties of the used components 
are fulfilled or not. 

Consequently, a component-based system is correct if all components are correct and 
the signed contract of the system is fulfilled. If the signed contract is not fulfilled, at least 
one component may cause failures leading to system failures. Using signed contracts can 
help detecting and avoiding system defects at the specification level in advance. 
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For instance in our example from the previous section the method hasConflict() 
of the component Job has been modified. Figure 7 shows the corresponding new version 
of the component island specification of the component Job. (Re-)checking the signed 
contract from Figure 6 by a tool or a developer shows that this method is used within the 
component Robot with the synonym n_hasConflict(). The post-conditions of the 
needed method n_hasConflict() and the provided method hasConflict() are no 
longer logically equal. The signed contract is broken. The whole system is not correct any 
more. Applied “Design by Signed Contract” helps you identifying those defects at the 
specification level and thus preventing system failures. 

COMPONENT Job 
  PROVIDE 
    assigned : Set(n_Robot) 
    numberOfRequiredRobots : Integer 
    start : Time 
    end : Time 
    INVARIANT interval_non_negative: start <= end 
    . 
    . 
    hasConflict() : Boolean 
      DO 
        RESULT := False 
        FORALL r IN assigned LOOP 
          FORALL j IN r.n_scheduled LOOP 
            RESULT := RESULT OR ((j NOT EQUALS CURRENT) AND 
              (start <= j.end) AND (j.start <= end)) 
          END 
        END 
      ENSURE 
        RESULT = EXISTS r IN assigned WITH 
          EXISTS j IN r.n_scheduled WITH 
            (j NOT EQUALS CURRENT) AND (start <= j.end) AND 
              (j.start <= end) 
      END 
  END 
  NEED 
    . 
    . 
    COMPONENT n_Robot 
      n_scheduled : Set(Job) 
  END 
END 

Fig. 7: Second version component island specification of Job
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4 FORMAL FOUNDATION 

To apply or integrate the presented specification techniques into existing approaches a 
precise understanding of the basic concepts and notations is required. For these reasons, 
in this section we elaborate a formal foundation of the concepts introduced in the 
previous section. 

Such a formal foundation usual incorporates two levels: The instance level 
represents the individual operational units of a component-based system that determine 
its overall behavior. The specification level contains a normalized abstract description of 
a subset of common instances with similar properties. 

int i =7
String s = "Hello"

<message>

<message>

int i =5

time t1 time t2  
Fig. 8: Instance Level of the Formal Foundation 

Although the instance level is the reliable semantic foundation of the specification level, 
we cannot discuss the complete mathematical definitions for the constituents of a 
component-based system at runtime – the instance level. This is beyond the scope of this 
article, as the resulting formulae are rather lengthy. 

However, for the formal foundation of the specification level you still need at least a 
small number of basic concepts from the instance level. In [Rausc00] and [Rausc01] we 
have already presented a complete formal model for the instance level. In this model we 
distinguish between system, component, interface, connection, variable, message, and 
value instances, as shown in Figure 8. 

In order to uniquely address these basic elements of the instance level we introduce 
the infinite set INSTANCE  of all instances: 

{ }
defINSTANCE

SYSTEM COMPONENT INTERFACE ATTRIBUTE CONNECTION MESSAGE VALUE

=

∪ ∪ ∪ ∪ ∪ ∪
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The formal foundation in [Rausc01] is powerful enough to handle the most difficult 
aspects of component-based systems: dynamically changing structures, a shared global 
state, and at last mandatory call-backs. For this purpose the behavior of a component-
based system is separated into three essential parts: 

• Structural behavior captures the changes in the system structure, including the 
creation or deletion of instances and changes in the connection as well as 
aggregation structure: 

{ }{ }

= →

= →

= →

= → ∈

def

def

def

def

ALIVE INSTANCE BOOLEAN
ASSIGNMENT INTERFACE COMPONENT
ALLOCATION ATTRIBUTE INTERFACE

CONNECTS CONNECTION i, j i, j INTERFACE

 

• Variable valuations represent the local and global data space of the system. This 
enables us to model a shared global state: 

defVALUATION ATTRIBUTE VALUE= →  
• Component communication describes message-based asynchronous interaction 

between components. Thus, we can specify mandatory call-backs without 
problems. 

*
defEVALUATION INTERFACE MESSAGE= → 3 

As illustrated in Figure 8, the behavior of a component-based system is given by an 
infinte sequence of finite subsets of the set SNAPSHOT , which covers any possible system 
snapshot. 

= × × × × ×defSNAPSHOT ALIVE ASSIGNMENT ALLOCATION CONNECTS VALUATION EVALUATION  

Finally, as shown in [Rausc01] this system behavior can be derived from the behavior 
functions of all components. The behavior function of a single component is a simple 
transition function that takes a snapshot and calculates the following snapshot: 

behavior : SNAPSHOT SNAPSHOT→  
Based on this formal foundation of the instance level we can provide a precise definition 
of the sepcification level. A specifier at the specification level models all common 
properties of a set of instances in an abstract way. Let SPECIFIER  be the infinite set of 
all specifiers, as for instance system specifications, component specifications, interface 
specifications, attribute specifications, and method specifications. 

The function specified  assigns to each instance its corresponding specifier. This 
function models the semantic bridge from the instance level to the specification level and 
vice versa: 

specified : INSTANCE SP ECIFIER®  
For the formal foundation of the specifiers we use the infinite set vTERM  of all logical 
expressions with a single free variable v . For instance, one specified property of a system 
could be: All instances of the attribute At t ributeWithConstantValue  should always have 

                                                           
3 Whereas *MESSAGE  denotes any finite sequence of messages. 
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the value 5 . This specification would be formulated by the following logical expression 
vt TERMÎ : 

( ) ( )v va At t ribute . specified a At t ributeWithConstantValue a,5 valuat ion" Î = Þ Î  

where vAt t ribute  is the set of attribute instances in an arbitrary component-based system 
v  and vvaluat ion  assigns values to attribute instances in the system v . 

An instance s INSTANCEÎ , particularly a system during runtime, is a valid 
interpretation of such a vt TERMÎ  if the predicate [ ]t s  holds: 

[ ] v. . : TERM INSTANCE BOOLEAN´ ®  
This function is the foundation of our semantics. It defines the set of predicates we use in 
our specifications, similar to the predicates used in Hoare triples. They allow us to 
determine whether an instance is a correct implementation of a specification or not. 
 

«component»
A

 Aprovide sp  Aneed sp

Asp SPECIFIER�

«component»
B

 Bprovide sp  Bneed sp

Bsp SP ECIFIER�

Contract

xxxx xxxxx x xxxxxx

 
Fig. 9: Formal Foundation of Design by Signed Contract 

To each specifier, especially to each component specification, we can now assign a set of 
provided properties and a set of needed properties4: 

                                                           
4 ( )AR  denotes the powerset of the set A . 
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( )

( )

v

v

provide : SPECIFIER TERM

need : SPECIFIER TERM

® R

® R
 

These sets correspond to the NEED and PROVIDE part of the specifications presented in 
the previous section (see Figure 9). The function ( )need spec  models all needed properties 
of a certain specifier spec SPECIFIERÎ . Are all properties valid the specifier spec  
provides the properties described by ( )provide spec . Hence, if an instance s INSTANCEÎ  
is a correct implementation of a given specification spec SPECIFIERÎ , the following 
condition must hold: 

( )
( )( )[ ] [ ]

n need spec
p provide spec . n s p s

" Î
" Î Ù Þ  

Based on these two functions provide  and need  we are able to explicitly model the 
dependencies between the various specifiers used within a specification. A signed 
contract Contract CONTRACTÍ  maps a set of specified needed properties of a certain 
specifier to a set of specified provided properties of another specifier: 

v v
defCONTRACT SP ECIFIER TERM SP ECIFIER TERM= ´ ´ ´  

For a given signed contract the predicate fulfilled  denotes whether the contract is valid for 
a specific specifier or not: 

( ) ( )fulfilled : SP ECIFIER CONTRACT SP ECIFIER BOOLEAN´ R ´ R ®  

Let Contract CONTRACTÍ  be a given signed contract and Specifier SPECIFIERÍ  a set of 
specifiers used within a specification, then the signed contract holds for the 
specifier SpecifierÎ  if all needed properties of specifier  in the contract, are assigned to 
provided properties of other specifiers, and finally the needed and provided properties are 
logical equal. 

( ) ( )

( ) ( ) ( )
deffulfilled specifier, Cont ract, Specifier n need specifier

specifier, n, x, p Cont ract . x Specifier p provide x holds p, n

Û " Î Þ

$ Î Î Ù Î Ù
 

The predicate holds  thereby denotes the logical equivalence of two properties. This 
predicate is valid, if the provided property implies the needed property with respect to all 
possible interpretations with an arbitrary instance s INSTANCEÎ : 

v vholds : TERM TERM BOOLEAN´ ®  
( ) [ ] [ ]( )defholds p, n p s n sÛ Þ  

Whenever a component-based system is glued together from components the developer 
or a tool have to validate whether the signed contract of the system is fulfilled for all used 
components. Still not satisfied needed properties of components can be identified. Thus 
system defects may be detected and prevented in advance. These not satisfied needed 
properties have to be mapped to provided properties of other components. 

Note, the correctness of this mapping is not calculable by a tool in general. To 
accomplish this  the tool would have to calculate the predicate holds . But the number of 
instances for which the tool would have to prove the implication of properties is infinite. 
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However, holds  can be proven with the use of specialized tools that require human 
interactions, e.g. theorem proving techniques, but this is beyond the scope of this article. 

5 CONCLUSION 

“Design by Contract” (DbC) is a well-known applied approach for the specification, the 
programming, and the testing of object-oriented systems. Component-based software 
development (CBSD) is a new paradigm. Systems are no longer implemented, they are 
glued together from existing components, which are self-contained units of deployment. 

In our working example we have shown that applying the pure concepts of DbC fails 
in the context of CBSD. The main reason for this is that the components of a component-
based system rely on each other, but one cannot explicitly specify the dependencies 
between these components with the concepts of DbC. Hence, to validate the correctness 
of the system as a whole, one has either to inspect all component implementations or to 
design and execute all failure-producing test scenarios. Both options are not possible in 
CBSD. 

For these reasons we have elaborated a new sophisticated specification technique 
“Design by Signed Contract”, based on the concepts of DbC. Thereby, we distinguish 
between component island specifications provided by component developers and 
component composition specifications developed by component users. With component 
island specifications we precisely describe what a component provides to and needs from 
its environment. In component composition specifications the mapping of needed 
properties to provided properties is specified within the context of a specific component-
based system. 

These composition specifications form a signed contract which can be checked and 
validated by developers or tools. Thereby situations can be detected where the needs of a 
single component are not fulfilled within a component-based system. Thus, software 
system defects can be identified and prevented in advance at the specification level. This 
will improve the correctness and robustness of component-based systems. 

The presented formal foundation of the proposed concepts of “Design by Signed 
Contract” provide a reliable base to integrate these concepts into existing specification 
techniques and programming languages. This may be the next step towards a successful 
applied component-based software development in practice. 

6 RELATED WORK ON CONTRACTS 

As already mentioned, a lot of work on the integration of the concepts of DbC into 
programming languages has been done by Bertrand Meyer and the Eiffel-Community 
(see [Meyer87] and [Meyer97]). Surely, more sophisticated specification techniques have 
been developed based on the concepts of DbC. The most important ones that have 
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influenced this work are Interaction Contracts [Helm90], Reuse Contracts [Steya96], 
Evolving Interoperation Graphs [Rajli99], and Requirements/Assurances Contracts 
[Rausc00]. 

Interaction Contracts are used to specify the collaborations between objects. 
Although the basic idea of interaction contracts – to specify the behavioral dependencies 
between objects – seems to be quite a good suggestion, this approach takes neither CBSD 
nor DbC sufficiently into account. Interaction contracts strongly couple the behavior 
specification of the component seen as an island and the behavioral dependencies to other 
components. Hence, those components are still not self-contained units of deployment as 
required for successful CBSD. 

Reuse Contracts address the problem of changing implementations of a stable 
abstract specification. There, defects in the scope of object-oriented software evolution 
are discussed. This might be helpful to predict the consequences of evolving a single 
component, but effects for a component-based system glued together from existing 
components are not clear at all. 

Evolving Interoperation Graphs provide a framework for change propagation if a 
single class changes. These graphs only take the syntactical interface of classes and the 
static structure (class hierarchy) of the system into account, but not the behavioral 
dependencies. Moreover, neither CBSD nor DbC is taken into account. 

Finally, Requirements/Assurances Contracts can be used to model and track the 
dependencies between the set of specification documents of a component-based system. 
Based on this approach, developers are able to track and manage the software evolution 
process and to recognize and avoid failures during software evolution. However, this is 
done at the level of specification documents and not at the level of specific specification 
specifiers. For these reasons DbC is not taken into account in this approach. 
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