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Abstract
The “external structure” in an object oriented system refers here to the graphs of objects
and classes. The class structure graph or class model is derived from the object
structure graph or object model, and in this operation structural information is lost, or
never made explicit. Although object oriented programming languages capture the class
model as declarations, contradictory assumptions about object model properties may be
made introducing faults into the design. Consistent assumptions about the object model
can be specified in the code using assertions such as Eiffel’s invariants, preconditions
and postconditions. Three examples specifying the external structure are considered.

1  INTRODUCTION

I have been challenged on occasions by my colleagues for using the words “higher level”
as distinct from “lower level” in relation to code and design. By these terms, I was trying
to convey the fact that in the former case, I was talking about structure between classes
and objects, and in the latter, about the internal structure of code implementing routines.
I was strongly challenged for my usage because my listeners were hearing that external
structure was more important than internal, rather than that it frequently determined
details of the code to be developed. 

On casting around for a better term, I lighted upon the terms “internal structure” and
“external structure”. “Internal structure” is the concept of code structure that has been
with us for many years, the result of methods of structured programming. “External
structure” actually refers to two kinds of structure, the object model and the class model.
The external structure of the object model refers to the graph of links (the arcs) between
objects (the nodes) that are established at run-time when the system executes. This
structure is dynamic. The external structure of the class model refers to the graph of
associations (the arcs) between classes (the nodes) and is static. 

It is the purpose of this paper to explore the use of external structure in design by
examining the role it plays in several examples. The assertion mechanism of Eiffel
[Meyer92] is used in these examples to specify structural properties of the system of
objects, so that in mapping models to code, these properties can be verified as the models
develop. It is shown that assertions about structure remove ambiguities and contribute to
the seamlessness of code and object model.
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2  OBJECT ORIENTED METHODS

Object oriented methods start by modeling underlying data structure, partitioning the data into
objects, mapping this structure into classes and then building a superstructure of routines, each
belonging to the class of the data it manipulates. This work begins with possible systems of
objects, seeking appropriate external structure for the object model, and mapping this to the
class model when the system is properly understood. Issues addressed by modeling include
packaging of data, interconnection of data and setting up of objects for later use. In reasoning
backwards from the system of objects, eventually to the code, the danger is that the code
depends on assumptions about the structure of the system which are forgotten. Methods of
object oriented design will be more powerful if assumptions about the external structure of a
system of objects are specified as properties of the system and recorded as assertions in the code.

Three examples are presented here to illustrate the role of external structure in software
design. The first shows the replacement of code with the building of external structure, the
second compares procedural, recursive and structural solutions and how efficiency can be
regained by use of appropriate structure, and the last is an example of specifying code to develop
the dynamic structure required by the object model.

3  MODELS AND THEIR RELATIONSHIPS

We can model an object as a memory structure containing simple data values, references to other
objects and references to routine entry points. With this knowledge, the class which creates such
an object can be discerned. A class is required for each distinct kind or type of object. 

The class is derived from an object as follows: for each simple data value, a class has an
entity (a name in the software text that denotes a run-time value) of a suitable type; for example,
for integer values, entities of the integer type; for references to objects, a class has entities of
references of a type from which the target object inherits. This information is sufficient to
encode the object model and represents the first lines of code to be written. For example, the
object structure in Figure 11 implies the class structure in Figure 2 which is mapped to the Eiffel
code in Listing 12.

1. I have not used the rectangular notation of UML for objects but used rounded rectangles, after OMT, to 
distinguish them visually from classes.

2. This analysis ignores class hierarchy and will lead to the flat form of the class [Meyer96].

 Figure 1. Some objects in a system
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These three views, object model, class model, code, all need to be considered in design. None
conveys the whole story. Note that the object model in Figure 1, a graph of objects and links, is
mapped precisely to one class model in Figure 2, a graph of classes and associations, whereas
the class model can be mapped back to many object models. For example, nothing in the class
model or the code, as it stands, specifies the existence of any of the SCORE or TEAM objects.
There is nothing to indicate precisely what system of objects is meant to exist at any particular
time. For example, a routine used early may depend on the absence of an object, whereas one
used later may depend on its presence. The class model is silent in such cases.

The mapping from a class and its associations to code is not lossy because the class model
can be recovered from the code, but information about the clients of a class is less accessible in
the code than it is in the class model. The arrow leaving a class in Figure 2 is a declaration in
the code in Listing 1. An arrow tail and a matching declaration represent the same information,
the supplier of a service. However, the arrow head, representing a reference by a client to a class,
is filtered out and does not appear in the code. Information about clients is encoded indirectly
as references to suppliers.

As the system of objects is what we require at run-time, how can we specify our models to
match that system more accurately? How can we capture structural information that the system
depends on? The assertion mechanisms in Eiffel [Meyer96] can be used to capture structural
information, which may be otherwise invisible. For example, in Eiffel we can use an invariant
clause to specify the existence of objects. The invariant clause

invariant

scores_exist: home_score /= Void and away_score /= Void

in the GAME class ensures the existence of two SCORE objects attached to every GAME object, a
static property of the class. Invariants can also specify dynamic structure as in 

consistent: home /= Void implies home.score = home_score

It may also be appropriate to specify structure by using postconditions when routines are
defined.

SCOREGAME

 Figure 2. Classes which define the objects

home, away
TEAM

home_score, away_score

 Listing 1. The GAME class and its neighbourhood encoded in Eiffel

class GAME
feature

home, away: TEAM
home_score, away_score: SCORE

end
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Example 1: Building a system at run-time

The first example is provided to show that there are gains to be made from considering the
external object and class structure, and capturing its properties in the form of assertions. Three
solutions, a procedural one and two closely related structural solutions are considered.

When a system starts, the first task is to build the system of objects, based on information
in the classes. As each object is allocated memory, variables are initialized and cross references
to other objects are set up. In the simplest case, the run-time system creates a root object,
allocating memory space for it. An initialization routine gives initial values to any simple
variables. Cross reference values are initialized by creating new objects and allocating
references to them. This can proceed, growing a tree of objects from the root. For example,
when the GAME object in Figure 1 is created, it can be initialized by creating the two SCORE
objects at the same time. 

The TEAM objects are not built at the same time because they may exist independently of
GAME objects whereas SCORE objects do not. Precisely how and when a team is selected in a
game is outside the scope of this discussion, but the mechanism select_home_team belongs
in class GAME and is specified by Eiffel code in Listing 2. The feature select_away_team is
similarly specified.

Specifications written in Eiffel shows the preconditions which are assumed in the require
clause and the postconditions which are guaranteed in the ensure clause. 

Later, we wish one team to be able to access its own score in a game and also the score of
its opponent. This information is not contained in the structure shown in Figure 1. One solution
is procedural (that is, relationships between data are maintained by routines and not in structure)
and depends on the GAME object to associate the home team with the home score and the away
team with the away score. We can determine which score is which by specifying a query my_
score (a query is a function with no side effect) in the GAME object (Listing 2).

select_home_team(t: TEAM) is
require

argument: t /= Void
ensure

linked: home = t
end

my_score(t: TEAM): SCORE is 
require

argument: t /= Void and then (t = home or t = away)
ensure

consistent: (t = home implies Result = home_score) and
(t = away implies Result = away_score)

end

 Listing 2. Specification of select_home_team and my_score
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Similarly, opposing_score(t: TEAM): SCORE returns the other result. This code
depends on t referring to the home or away team being allocated to the game as the precondition
indicates.

A second solution is to initialize links between objects (Figure 3). When a team is selected
into a game, these links to the scores are also set by using set_scores in class TEAM (Listing
3).

The requirement that a team is linked to the correct score can be specified in GAME by modifying
the postcondition of select_home_team and select_away_team. Listing 4 shows the
specification of select_home_team.

A third solution, a variation of the second, is to set up links between the two scores at the
time of creation so that each score is linked to its opposing score without involving the game or
team object (Figure 4) This change means that the feature opposing_score is moved from
TEAM to SCORE, that the postcondition of set_home_team in GAME is simplified accordingly
and that the invariant 

cross_linked: opposing_score /= Void implies

opposing_score.opposing_score = Current

is added to the SCORE class.

 Figure 3. Access from TEAM to SCORE
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score, opposing_score: SCORE
set_scores(s, o_s: SCORE) is

require
arguments: s /= Void and o_s /= Void

ensure
linked: score = s and opposing_score = o_s

end
 Listing 3. Specification of set_scores in class TEAM
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What are the advantages and disadvantages of each solution? The procedural solution (Listing
2) avoids making the object model complex, but the code itself may be complex as the
postcondition shows, and underlying assumptions may not be made explicit. The developer has
the choice of recomputation each time the query is called, perhaps sacrificing performance, or
of caching the result, perhaps leading to inconsistency if the result goes out of date. If there are
many like queries, the maintenance cost may be large. In any case, no assertions have been made
about the object model upon which the developer can rely. Perhaps this is the greatest
disadvantage of the procedural approach, yet, not obvious for its omission.

The two structural solutions make the object model more complex by adding links leading
to more complex initialization code, but dependent code is usually simplified. Identifying and
specifying structure is a major gain and avoids the need for recomputing associated queries.
Making the links explicit also allow the external structure to be specified as postconditions and
invariants affording protection from conflicting modifications. Lastly, linkages between objects
are naturally local – what you see in a declaration is what you get – leading to stability and
maintainability. As for the choice between the two structural solutions (i.e., as shown in Figure
3 and Figure 4), the latter is to be preferred in my opinion, because more structure is built early.

select_home_team(t: TEAM) is
require

argument: t /= Void
ensure

linked: home = t
consistent_score: home.score = home_score
consistent_opposing_score: home.opposing_score = away_score

end

 Listing 4. Specification of select_home_team in class GAME

 Figure 4. Revised access from TEAM to SCORE
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The point of the example is that there are gains to be made from considering the external
object and class structure, and capturing its properties in the form of assertions – even in the
procedural case. Working solutions can be obtained without considering external structure as in
the first solution above. But, the two structural solutions – not readily obtainable from
procedural thinking – allow the capture and protection of structural assumptions upon which
later behavior depends.

Example 2: Structure and efficiency

In this example, a polymorphic system is used to regain performance lost by conversion from a
procedural to a recursive system. Three versions are compared, nested loop, recursive and chain
of polymorphic objects. 

Consider the problem of computing the distribution of total runs of a team of eleven
batsmen in the game of cricket from the distributions of runs scored by each batsman in the
previous (say) ten innings. So, every possible total, computed by taking one score from each
batsman, is used to build a histogram. In effect, we are convolving eleven individual
distributions together. To evaluate the result in a procedural manner requires eleven nested loops
to compute all the possible totals. The two innermost loops appear in Listing 5.

Alternatively, recursion could be used, as shown in Listing 6. The recursive structure may be
modelled as a chain of BATSMAN objects, all with access to the DISTRIBUTION object, as in
Figure 5.
Lastly, one can build a chain of BATSMAN objects terminated by a DISTRIBUTION object
(Figure 6), which eliminates the need to test during the computation by replacing the test with
a polymorphic call. This is achieved by making classes BATSMAN and DISTRIBUTION inherit
from a common ancestor, ELEMENT as shown in Listing 7.

from
i_10 := 1

until
i_10 > batsman_10.scores.count

loop
sum_10 := sum_9 + batsman_10.score.item(i_10)
from

i_11 := 1
until

i_11 > batsman_11.scores.count
loop

sum_11 := sum_10 + batsman_11.scores.item(i_11)
distribution.put(distribution.item(sum_11) + 1, sum_11)
i_11 := i_11 + 1

end
i_10 := i_10 + 1

end

 Listing 5. Innermost two of eleven loops for computing a distribution
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class BATSMAN
feature

next: BATSMAN
distribution: DISTRIBUTION
make is 

ensure
distribution /= Void

end
build(s: INTEGER) is

local
i, sum: INTEGER

do
from

i := 1
until

i > scores.count
loop

sum := s + scores.item(i)
if next /= Void
then

next.build(sum)
else

distribution.build(sum)
end
i := i + 1

end
end

end

class DISTRIBUTION
creation make
feature

distribution: ARRAY[INTEGER]
make is

ensure
distribution /= Void

end
build(s: INTEGER) is

require
distribution /= Void

ensure
updated: distribution.item(s) = old distribution.item(s) + 1

end
end

 Listing 6. Computing a distribution using recursion
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This example shows the factoring of multiple loops into a chain of data structures or objects
using firstly, recursion and secondly, polymorphism. The multiple loops version in Listing 5
requires many variables to hold the batsmen data and index over their scores and the number of
batsman is fixed by the code. The recursive version in Listing 6 requires access to a chain of
BATSMAN objects, but introduces a test for the last element in the chain, which must be tested at
every level of recursion. In the polymorphic case, (Listing 7), computation passes from object
to object without the test used in the recursive solution. Instead, the test has been moved into
the construction code in the feature make and the object linkages play an active role in
determing which code is run.

The difference in the structures is reflected in the postconditions of the make features in the
recursive and polymorphic versions. It does not appear to be possible to say more about the
structure of the recursive case than that distribution is not Void, because the object that
next references is optional. However, in the polymorphic case, the postcondition specifies the
required presence of a DISTRIBUTION object at the end of the chain. In neither case, however,
do we have a ready means of specifying a finite chain using a postcondition.

 Figure 5. Structure for computing a distribution recursively
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distribution
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 Figure 6. Computing a distribution using polymorphism
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deferred class ELEMENT
feature

make is do end
build is deferred end
next: ELEMENT

end

class BATSMAN 
inherit

ELEMENT
redefine make end

creation
make

feature
scores: ARRAY[INTEGER]
make is

ensure
last_element: next = Void
continuation: next.next /= Void implies

next.generator.is_equal(“BATSMAN”)
termination: next.next = Void implies 

next.generator.is_equal(“DISTRIBUTION”)
end

build(s: INTEGER) is
require

next /= Void
local

i, sum: INTEGER
do

from
i := 1

until
i > scores.count

loop
sum := s + scores.item(i)
next.build(sum)
i := i + 1

end
end

end

 Listing 7. Polymorphic version for computing a distribution
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This example has been implemented in the three versions using ISE Eiffel version 4.5.
Comparative measurements of the three versions using an in-lining depth of 9, shows that the
multiple loop version is fastest, the object oriented version being about 17% slower and the
recursive version 48% slower. This quantifies the losses and gains using procedural and object
oriented methods.

Example 3: Dynamic structures

In this example, a correct specification for a dynamic structure is captured. Consider the
problem of dynamic linking of a model object to an interface object, such as a dialog box,
providing the user with means of viewing and modifying the model data. This structure is
related to the subject-observer pattern [Jézéquel99], but in which the subject changes
dynamically. In this situation, only one of each dialog box is available. (The dialog box object
is a singleton). Given many MODEL objects, only one can be displayed and modified at one time.
Figure 7 shows several objects, instances of the MODEL class, accessible via a CONTAINER class.
The DIALOG object is known to all the MODEL objects.

To display the selected MODEL object, the DIALOG object requires access to it. This can be
done by providing the MODEL class with a command display specified in Listing 8.

The postcondition of display ensures three things. First, the DIALOG object has a correct
reference to the MODEL object being displayed. This is required to synchronize the correct
MODEL object when the data is changed. Secondly, the fact, that the MODEL object is displayed,
is recorded. This makes it possible to assert, thirdly, that if a different MODEL object was
displayed previously, it becomes undisplayed. Note that the precondition does two things: it
excludes re-displaying the currently displayed object simplifying the postcondition (and also
the code), and it requires the DIALOG object to be synchronized with the previously displayed
MODEL object.

class DISTRIBUTION
inherit

ELEMENT
creation

make
feature

distribution: ARRAY[INTEGER]
make is

ensure
distribution /= Void

end
build(s: INTEGER) is

ensure
updated: distribution.item(s) = 

old distribution.item(s) + 1
end

end
Listing 7. (cont.) Polymorphic version for computing a distribution
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The postcondition includes the term dialog.selection, and implies that this is
changed. It follows that the DIALOG class must supply the command specified in Listing 9
which will be called from the body of display with the argument Current. The fact that a
selection should not be changed without saving data is specified by the precondition tagged
synchronised.

It is sometimes suggested that such reflexive coupling between objects should be avoided.
However, a correct version can be specified without writing a line of the actual code, by
considering the external structure between the objects in the system and capturing its properties
as assertions in the specification of routines. A legitimate objection may also be raised that the
model and dialog are strongly coupled [Jézéquel99], but this is a design issue and outside the
scope of this discussion.

 Figure 7. Linking a dialog to a model
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display is
require

not_displayed: not displayed
dialog_synchronized: dialog.synchronized

ensure
notified: dialog.selection = Current
displayed: displayed
other_undisplayed: old dialog.selection /= Void implies 

not (old dialog.selection).displayed
end

 Listing 8. Specification of command display in class MODEL

set_selection(m: MODEL) is
require

argument: m /= Void
synchronized: not modified

ensure
selection: selection = m

end

 Listing 9. Specification of command set_selection in class DIALOG
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4  CONCLUSIONS

The three examples show the importance of considering the external structure of a system and
specifying its important aspects as assertions. In the first example, links are added between
objects to make access explicit, allowing the structure to be defined and protected by assertions.
Clients can rely on the structure and do not need to compute access paths. In the second
example, replacing procedural code with structure using recursion sacrifices some performance
most of which can be recovered by a polymorphic structure. In the third example, structural
constraints on dynamic links are specified as postconditions. Frequently, assumptions made by
the developer about the external structure are hidden in the code. Developing the model to
expose implicit assumptions and capturing them as assertions serves to make the model closer
to the required system. 

When all is said and done, it is the behavior of the system of objects created by executing
code that we require. It helps to build and manipulate the object model seeking more effective
structures. But, it is also helpful to record assumptions made about structure in order to define
the code more completely. If the external structure of the object model is undefined or dynamic,
developers and maintainers may make contradictory assumptions. As the examples show, Eiffel
invariants and postconditions can be used to define and protect the original assumptions. Such
mechanisms allow the developer to claim that the code both implements the required system and
is represented accurately by the object model.
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