
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, no. 4, September-October 2002

Cite this article as follows: Jesús García Molina, María José Ortín, Begoña Moros, Joaquín
Nicolás: Transforming the OOram Three-Model Architecture into a UML-Based Process, in
Journal of Object Technology, vol. 1, no. 4, September-October 2002, pages 119-136.
http://www.jot.fm/issues/issue_2002_09/article2

Transforming the OOram Three-Model
Architecture into a UML-based Process

Jesús García Molina, María José Ortín, Begoña Moros, Joaquín Nicolás,
Departamento de Informática y Sistemas,
Universidad de Murcia, 30071 Murcia, Spain

Abstract
Three-model architecture (TMA) is a software process defined for the OOram method,
and aimed at developing business information systems. In our experience, TMA is very
helpful in building client-server applications using object-oriented and database
technology. However, in order to use a standard notation and to take full advantage of
the benefits provided by use case-driven processes, it is convenient to transfer TMA to
UML. In this paper, we present the translation of TMA into a UML-based process. The
enterprise, information and task models of TMA are translated into UML models while
preserving their original purpose. An important benefit of the process obtained is to
provide guidelines for the elicitation of use cases and domain classes from the
enterprise model.

1 INTRODUCTION

OOram [Reenskaug 1996] is a method, based on the concept of role, for performing
object-oriented modeling. Three-model architecture (TMA hereinafter) [Reenskaug 1997]
is a process defined to support the analysis of information systems by means of OOram.
Some years ago, we used this process for modeling a workflow information system in a
project aimed at developing the workflow tax system for the Regional Information
Systems and Telecommunications Office in the Regional Government [Ortín et al. 1998].
This experience made us to realize that TMA is very suitable for developing business
applications involving object-oriented and database technology in a client-server
architecture. In addition, we improved TMA by using techniques drawn from the IDEA
method [Ceri Fraternali 1997] to undertake the database design. Furthermore, we realized
later the usefulness of using UML [Booch et al. 1999], instead of the techniques of
OOram and IDEA, since UML is the OMG standard language for object-oriented
modeling.

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_09/article2

TRANSFORMING THE OO-RAM THREE-MODEL ARCHITECTURE

INTO A UML-BASED PROCESS

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

Thus, in this paper we describe how to translate TMA into a use case-driven UML-
based process, by showing the mapping from the OOram concepts into those of UML,
and the way of expressing the OOram models through UML diagrams.

It is important to remark that we do not deal with the problem of expressing the role
concept of OOram in UML. This problem was addressed in a previous paper [Ortín
García-Molina 1999], which was presented prior to the interesting discussion on this
matter which took place in the UML RTF forum [OMG 2000]. Moreover, role modeling
is not essential in the underlying techniques of TMA.

This paper is structured in the following way: TMA process is briefly described in
section 2; sections 3, 4 and 5 deal with the mapping from each model of TMA into UML.
Finally, in section 6 we set out our conclusions.

2 THE THREE-MODEL ARCHITECTURE OF OORAM

Three-model architecture [Reenskaug 1997] is a software process based on the building
of three models: Enterprise Model, Information Model and Tool Model. The first is used
for identifying the roles that are played by the workers in the organization, and how they
collaborate in order to fulfill the business tasks. The second model describes the
information managed by the enterprise. The third model shows the interfaces between the
users and the services which provide access to the information (to databases), that is, the
software tools used by users in order to perform their tasks by accessing the information
services. Figure 1 (extracted from [Reenskaug 1997]) shows the relationships between
the three models. We can see that tasks and business information are provided by the
enterprise model, and the operations supported by the information model are defined in
the tool model.

Tool
Model

Information
Model

tasks

operations

information

Enterprise
Model

Fig. 1. Three-model architecture

In order to apply the TMA process, first of all the areas of concern of the organization
are identified, which form a partition of the overall system. Each area of concern is a
problem that can be modeled in an independent way, by building the three models.

The approach is both analytical and synthetic: firstly, the existing business processes
and data (current situation) are modeled by means of an enterprise model and an
information model; secondly, these two models should be refined to include new

The Three-Model Architecture of OO-Ram

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 121

requirements and improvements (future situation), by adding the tool model. An iterative
process is applied until these models are stable.

3 ENTERPRISE MODEL

The TMA enterprise model provides a static and dynamic description of the organization.
The first defines the enterprise workers, through the roles they play, establishing for each
role its features and the set of roles with which it interacts; on the other hand, the second
one defines how the roles interact in order to perform the tasks involved in the area of
concern. It focuses on describing and understanding the whole business activity related to
the software system which is going to be developed and deployed.

For us, each area of concern is a business process of the organization which is
characterized by the information that it produces and manages through a collection of
tasks in which certain agents take part (as workers or departments), and business process
is performed according to a workflow. These business processes are constrained by
business rules which determine the policies and the structure of the information of the
enterprise.

In this section we will describe the way of translating the TMA enterprise model into
UML, after explaining how to identify the business processes.

Business Processes and Actor Identification

First of all, we have to identify the strategic goals of the organization under study, in
order to obtain the set of business processes. Due to their great complexity, every goal
can usually be decomposed into a set of more specific subgoals (which must be fulfilled
for the strategic goal to be reached). These could also be subdivided into other subgoals.
In this way, a hierarchy of goals of the organization arises. Our experience indicates that
two (or a maximum of three) levels of decomposition are enough. The second level goals
correspond to business processes, which are described through business use cases.

We will use as running example the case study of a company that manufactures
products on demand (following a just in time scheme). The strategic goals of that
company might include Satisfying a customer order, Increasing sales by 25%, or
Reducing the manufacturing time by 15%. Thus, the goal Satisfying a customer order can
be divided into the following subgoals: Registering the order, Manufacturing the product,
Stock management and Generating orders to providers. These are the subgoals that we
will use to identify the business processes.

Now, we have to ascertain which agents are involved in the performance of the
identified business use cases. In order to do this, we look at the external agents of the
organization and the roles which they play when they collaborate to carry out some
business use case. For each role, a business actor is defined. In our example, we have two
roles which are clearly external to the organization: Customer and Provider.

TRANSFORMING THE OO-RAM THREE-MODEL ARCHITECTURE

INTO A UML-BASED PROCESS

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

To show the boundary and environment of the organization under study, a business
use case diagram is created (see figure 2). This is an ordinary UML use case diagram but
it shows the set of business use cases instead of the system uses cases, along with the
business actors involved.

Register order
Customer

<<initiator>>

Manufacture product

Stock management

Generate orders to providers Provider
Fig. 2. Business use case diagram for the "just in time" manufacturing system

Business use cases description

In TMA, once the areas of concern have been identified, they are described in detail by
identifying first the roles involved. Given this approach, we now focus on describing
every business use case. Initially, they are described textually and their whole set of roles
played by both internal and external agents is identified. We will take one of the business
use cases of our example, namely Register order (see figure 3 for description), which can
be validated with the users. The roles identified are Customer, Clerk, Catalog manager,
and Manufacturing manager (with the last three being internal to the system).

Enterprise Model

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 123

1. A customer submits an order, which has to include the order date,

customer data and the desired products. A clerk of the sales depart-
ment might also introduce the order on request of a customer who has
placed their order by phone, or has sent it by fax or ordinary mail to the
sales department of the company.

2. The clerk checks the order (and completes it, if necessary), and begins
its processing by sending it to the catalog manager, who is in charge of
its analysis.

3. The catalog manager analyses the viability of each product of the order
separately:
• if the product ordered is in the catalog, its manufacturing is accepted;
• otherwise, it is considered as a special product, and the catalog man-

ager studies its manufacturing:
- if it is viable, the manufacturing of the special product is accepted;
- if it is not viable, the product is rejected.

4. Once the whole order has been studied, the catalog manager...
• informs the sales department if every product ordered is accepted or

rejected;
• in the case that all the products of an order have been accepted, a

work order for every product is created, starting from a manufacturing
template (the standard one, if the product was in the catalog, or a new
one, specifically designed for the product if it was not in the catalog).
Every work order is sent to the manufacturing manager, and its
launching is considered pending.

5. The clerk informs the customer whether the order has been accepted.

Fig. 3. Description of the Register order business use case

In TMA, the collaboration view is used for showing the static aspect of the collaboration
among the roles within each area of concern. In our approach, a role diagram is used
[Ortín García-Molina 1999], which provides the same information as a collaboration
view. A role diagram (see figure 4) is a UML class diagram in which every role (a
stereotyped UML class) appears linked to the roles with which it can collaborate. Thus,
such a diagram allows us to express the knowledge that some roles have about the others
as well as the characteristics of the relationships between roles (i.e. multiplicity). In
addition, the diagram can serve for defining some characteristics of the roles identified,
for example their attributes and responsibilities.

*
*

«Role»
Catalog
Manager

«Role»
Clerk

«Role»

Customer

«Role»
Manufacturing

Manager

Fig. 4. Role diagram for the Register order business use case

On the other hand, TMA uses scenario views for describing the dynamic aspect of the
collaboration among the previous roles. In a similar way, UML sequence diagrams are
used in our approach with the aim of describing how the roles collaborate to perform the
related business use case (see figure 5). Therefore, the objects that appear in the sequence

TRANSFORMING THE OO-RAM THREE-MODEL ARCHITECTURE

INTO A UML-BASED PROCESS

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

diagrams are instances of the roles defined in the role diagram for the business use case
that is being modeled.

: Catalog
manager : Customer : Clerk : Manufacturing

manager
sendOrder() studyOrder()

* analyzeProdManufact()

informOrderAnalysis()
planManufacturing()

acceptOrder()

Fig. 5. Sequence diagram for the Register order business use case

In every business use case the normal (or basic) interaction flow (accepted order, showed
in figure 5) has to be distinguished from the possible alternative flows (accepted or
canceled order).

Finally, TMA uses the process view (based on the IDEF0 standard [CSL-NIST
1993]) with the aim of describing the workflow performed to reach some goal of the
organization, and indicating the role in charge of every activity, together with the data
produced and required by each one. Activity diagrams with swimlanes are used to
translate this TMA view to UML (see figure 6). We call these process diagrams.

Enterprise Model

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 125

Fill in order

Pass on order

Notify order acceptance

End OK

Notify order rejection

End KO

Analyze suitability

Viable ?[NO]

Establish manufacturing
planning

[YES]

: Manufacturing manager: Catalog manager : Clerk : Customer

o:Order
[proposed]

o:Order
[rejected]

o:Order
[accepted]

 :W ork order
[pending]

:Manufacturing
template

:Catalog

:Special
product

o:Order
[under_review]

o:Order
[reviewed]

 :Manufacturing
template

Launch manufacturing

Fig. 6. Process diagram for the Register order business use case

A process diagram is built by starting from each sequence diagram. This process diagram
consists of a swimlane for every role involved in the related sequence diagram. This
swimlane contains all the activities performed by that role. The process diagram also
shows the data needed and produced by each activity, and the synchronization required
between different activities. Data appear as objects which flow between activities and can
be labeled with their state. We refer to these objects as information objects.

During the description of a business use case by means of a process diagram, it is
possible to find an activity which is complex enough (like the Analyze suitability activity
in figure 6) to be described in another activity diagram. This new activity diagram will
therefore describe a subgoal related to the goal associated with the original business
process. In this fashion, business processes can be hierarchically organized.

The glossary (an Information Resource Dictionary) includes the description of the
activities and information objects that appear in the process diagrams. The semantics of
each activity will be illustrated by its source (that is, the previous activities), agent (who
is the responsible for doing the activity), and pre and post conditions (stating which have
to hold before and after the activity). Each information object is described by a set of
attributes together with their integrity constraints (if any). Figure 7 shows an extract of
the glossary.

TRANSFORMING THE OO-RAM THREE-MODEL ARCHITECTURE

INTO A UML-BASED PROCESS

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

-

...
Information Object: Order
 Attributes

Order code
Submission date
Maximum delivery date
Set of {Products}
Customer
Total price
Current state

 Constraints
- Order code uniquely identifies the

order, and has to be assigned
automatically by the system

- Submission date has to be previ-
ous to the maximum delivery
date.

- An order must contain at least
one product, but there is no
maximum number.

- An order is always processed for
one (and only one) customer.

- The total price is calculated start-
ing from the price of every de-
sired product of the order.

...
Activity: Launch manufacturing
 Source: Analyze suitability
 Agent: Catalog manager
 Precondition: All ordered prod-

ucts are viable and a manufactur-
ing template exists for all of them.

Postcondition: A work order for
each product has been created,
and has been sent to the Manufac-
turing manager for planning.

Use Case: - to be specified -

Activity: Notify order acceptance
Source: Analyze suitability
Agent: Clerk
Precondition: All products ordered

are viable and have been ac-
cepted.

Postcondition: The customer is
informed that his or her order has
been accepted. Order state is ‘ac-
cepted’.

Use Case: - to be specified -
...

Fig. 7. Glossary: information objects and activities

The business rules of the organization [García Molina et al. 2000] are also collected in
the glossary, which, moreover, allows us to establish traceability relationships between
the different modeling artifacts.

System use cases identification

Most of the main processes currently proposed for UML (such as UP [Jacobson et al.
1999]) are defined as use-case driven. However, the use case concept is not provided by
OOram, although TMA implicitly associates a system function to every task in the
enterprise model, which will be performed by the software system as described by the
tool model.

We propose to extend the enterprise model with a requirements analysis phase aimed
at identifying and defining the system use cases. Therefore, two different models are
obtained when the enterprise model is translated into UML: the business model and the
requirements model. The former corresponds to the TMA enterprise model in a strict
sense and has been described in the two previous sections.

The requirements model is constructed from the business model, which allows us to
obtain an initial set of the system use cases (that is, the use cases that describe the
functional requirements of the software-intensive system), which are the most important
ones architecturally. We have learned that it is appropriate to define a system use case
(referred to simply as a use case hereinafter) for every activity from the process diagram

Enterprise Model

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 127

that has to be supported by the system software, since we believe that both artifacts have
a similar level of granularity. The role performing the activity will be the primary actor in
the use case. It should be observed that, according to the use case definition, not all the
activities in a process diagram will be considered as use cases, but only those which
provide some value for an actor.

For instance, figure 8 shows the use case diagram obtained starting from the business
use case Register order (the process diagram is described in figure 6), assuming that all
the activities will be supported by software.

Analyze suitability

Launch manufacturing

Catalog
manager

Fill in order

Customer

Notify order acceptance

Pass on order

Manufacturing
manager

Establish
manufacturing planning

Clerk

Notify order rejection

Fig. 8. Initial system use case diagram

Not all use cases will be directly obtained from the process diagrams. Some of them will
appear as the result of approving –or modifying– new user requirements, and others will
be detected during the iterative process of describing and refining the initial use cases.
These new use cases represent functions that the system has to perform in order to reach
the goal related to some existing use case. For instance, in our running example, to
Analyze suitability (see figure 8) it is necessary to look up in the product catalog whether
an ordered product exists, therefore this catalog must be kept up to date. Thus, we would
have to add the use case Maintain product catalog.

Finally, the use cases should be organized into several levels according to the
hierarchical decomposition proposed in the business modeling. Relationships between
use cases could also be found, such as include and extend. Nevertheless, we support the
recommendations (cf. [Cockburn 2000] [Fowler 1998] [Pols 1997]) about not overusing
these relationships and not showing them in the use case diagrams.

Each use case will be described by means of a template which can be filled in
starting from the specification of the associated activity included in the glossary. We have

TRANSFORMING THE OO-RAM THREE-MODEL ARCHITECTURE

INTO A UML-BASED PROCESS

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

chosen the template proposed by [Coleman 1998] because it combines simplicity and
completeness, as is shown in figure 9.

Use Case Launch manufacturing

Description

Work orders for every product ordered
will be created, and will be sent to the
manufacturing manager so as to be
planned.

Actors Catalog manager

Assumptions
All products ordered are viable and there
exists a manufacturing template for all of
them.

Steps

1. REPEAT
1 Get a product from the order.
2 Look for the manufacturing template

of this product.
3 Create the work order.
4 Store the work order with ‘pending’

state.
Variations -
Non-Functional -
Issues -

Fig. 9. Launch manufacturing use case description

It is worth remarking that the identification, description and organization of use cases is
carried out at the same time as the conceptual model is constructed (described in the next
section). In this way, a useful set of use cases, which use the domain vocabulary in the
right way, is obtained.

4 INFORMATION MODEL

The purpose of the TMA information model is to describe the information managed by
the organization under study. As we already stated in section 2, it consists of building the
semantic view (a technique similar to the entity/relationship model) of the roles which
represent the data extracted from the process view in the enterprise model (see figure 10).
The expressiveness of this view is rather poor since it lacks many concepts needed for the
conceptual modeling of information systems with intensive use of data.

Information Model

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 129

Work order

Customer

Order 0..*launches

1..*

Product

1..*

0..*

Manufacturing template

0..*

based on

Catalog

has a

Catalogued product 1..*

1 1

1

1

1

Special product

Fig. 10. Initial conceptual model for the Register order business use case

This conceptual model will be transformed into a design class model, made up of classes
that are closer to the implementation ones. Our proposal extends TMA at this point, since
this only addresses the analysis phase. To begin with, all the classes in the conceptual
model are considered design classes. Next, new classes and associations could be added
as the result of the refinement of the model and the use of design patterns [Gamma et al.
1994], although the building of the tool model determines those classes which will finally
become design classes (as described in section 5). Figure 11 shows the design class
model that includes classes coming from the conceptual model (for instance, this is the
case of Order), as well as new classes to model the set of states of an order (by using the
state pattern [Gamma et al. 1994]).

Product Manufacturing template

1

Customer

Catalog

Order line

0..*

1..1

Work order

1

0..*

0..11

Proposed

Under_review Accepted

Rejected

Delivered

1..*

1

OrderState

10..*

state

Reviewed

Order
code
subm_date
creat_date
deliv_date
 /total_price

10..1 1..*

1..*

1

TRANSFORMING THE OO-RAM THREE-MODEL ARCHITECTURE

INTO A UML-BASED PROCESS

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

Fig. 11. Design class model

Once the definition of the design class model is stable, we have to identify the subset of
persistent classes, which will conform to the database schema. This schema can be
represented by means of a UML class diagram in which it is possible to include all the
specific features of database design. With this aim, we made use of IDEA [Ceri Fraternali
1997], an analysis and design method for information systems with intensive use of data.
In particular we used its object diagram, with its semantic expressiveness that can be
adapted to the UML context, following the schema given in figure 12.

IDEA Method UML

Built-in Constraints:
- Primary key (•)
- Not null value (NN)
- Unique value (U)

A constraint after name:type of
attribute:

{*}
{NN}
{U}

Referential Integrity
Constraints:
- Cascade Deletion
- Restrict

(an arrow labeled
with CD or R)

A dependency (dashed arrow),
from the referencing class to
the
referenced one,
and labeled with a constraint

{CD} or {R}

Generic Integrity
Constraints:
- Immediate or Deferred,
- Static or Dynamic,
- Targeted or Untargeted

A note including constraints
(immediate or deferred;
dynamic or static) and the text
of the integrity constraint,
written in either OCL or
pseudo-language

The note can be linked to a
class (targeted) or a group of
classes (untargeted)

Fig. 12. Extract of the mapping from IDEA notation to UML

Figure 13 shows the database schema obtained starting from the design class model (see
figure 11), which includes some referential integrity constraints (for instance, when an
order is deleted all the order-lines involved have to be deleted too, and a customer cannot
be deleted while one of his orders still exists), as well as other generic integrity
constraints.

In contrast to our proposal, the TMA information model only includes those domain
classes of the system that will make up the database schema.

Information Model

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 131

{ R }

Product Manufacturing template

1

Customer

Catalog

Order line

0..*

1

Work order

1

0..*

0..11

1..*1

{ CD }

{ R }

{ R }

{ CD }

 { R }

Order

code {*}
subm_date {NN}
creat_date {NN}
deliv_date {NN}
 /total_price

 {static deferred}
subm_date <= creat_date

 {static deferred}
creat_date <= deliv_date

{ R }

10..1 1..*

1..*

1

Fig. 13. A partial view of the database schema

From the business model it is also possible to identify some classes whose behavior
depends on a rich set of reachable states. In this case, it could be interesting to define a
state machine for them, represented by means of a UML statechart diagram. These
classes are easily detected in the process diagrams since they correspond to information
objects labeled with several states. In our running example, Order would be a candidate
for building a state machine that shows the states of an order (proposed, under_review,
reviewed, accepted and rejected) and the events concerning the changes from one state to
another.

5 TOOL MODEL

TMA tool model describes how the users access the information, through a specific
software tool (user environment) which supports the tasks of each role. These tasks are
extracted from the process view in the enterprise model. First of all, a textual detailed
description is written for every task. Next, they are graphically described by means of a
scenario view or process view. These diagrams show the interaction between the tools
and information services to obtain and modify the information stored in the database.
Consequently, a tool model diagram is formed by three types of role: i) one role
representing the user of the system (detected in the enterprise model) that will perform

TRANSFORMING THE OO-RAM THREE-MODEL ARCHITECTURE

INTO A UML-BASED PROCESS

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

the task; ii) one role representing the specific tool that the user will use to carry out the
task, and iii) a set of information service roles (databases). In this way, the interface of
the classes that model the information objects is obtained.

The tool model is translated into UML by building a sequence diagram which will
show the interaction needed to provide the functionality associated to the system use
case. It should be observed that, in general, every activity in the process diagram of the
business model is transformed into a use case, as we explained in section 3.3.

In order to build the tool model, both the design classes and the templates of the
system use cases are needed. It is an iterative process which, at first, only takes into
account the basic flow of each use case that is described through a sequence diagram.
Descriptions of the exceptional and alternative paths are postponed until later iterations.

As figure 14 shows, the instances which appear in the sequence diagram match the
types of role in the TMA tool model, since this diagram includes an instance of an actor
(Catalog manager), an instance of the tool used by the actor (Launch Manufacturing
GUI), and the set of objects involved in the interaction. These objects might be instances
of persistent classes, such as Order and Product, or transient objects such as
OrderManager. However, in the TMA tool model, only the objects that provide the
access to the information services are considered.

At this point it is necessary to apply the heuristics about the assignment of
responsibilities to the classes [Larman 1998] and the utilization of design patterns
[Gamma et al. 1994] for defining the most appropriate interaction in order to achieve the
expected software quality.

The diagram in figure 14 shows the interaction needed to realize the use case Launch
Manufacturing. As we can see, a work order for every product is created. The tool
Launch Manufacturing GUI interacts with the system object OrderManager, a controller
object whose class was not included in the conceptual model. This controller, in turn,
interacts with instances of classes already present in the conceptual model.

Of course, the classes of the new identified objects will be included in the design
class model, as well as their associations. This is the case of OrderManager in our
example.

The sequence diagrams of the tool model show the messages exchanged between the
system objects to realize the related use case, thus these messages are services which
must be provided by the corresponding classes. This allows us to refine the design class
model, by adding the suitable methods to every class (which has only been characterized
by its attributes and constraints, so far).

Moreover, through the creation of the tool model, the specific operations requested
by each user (the messages sent to the system) are identified. Thus, it is possible to detect
the different commands that should be available for the users. This is very useful in
designing the user interfaces.

Tool Model

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 133

:OrderManager: Catalog
Manager : Launch

Manufacturing GUI
:EvaluatedOrders o : Order : Product : WorkOrder : OrderLine

selectOrder()
selectOrder(cod) o:=find(cod)

LaunchManufacturing()
LaunchManufacturing(cod)

launch manufacturing() *generateWO()
tpl:=getTemplate()

createWO(tpl)

Fig. 14. Sequence diagram for Launch manufacturing system use case

6 CONCLUSIONS

In this paper we have presented how three-model architecture, a process for the
development of business information systems, defined in the context of the OOram
method, can be adapted to UML. Figure 15 shows the mapping between the TMA models
and our proposal.

Design Class
Model

Business
Model

activities

operations

information objects

Requirements
Model

Database
Schema

Information Model

Enterprise Model
use cases

classes
Tool Model

Nada de nada

Conceptual
Model

Fig. 15. Three model architecture for UML

• TMA enterprise model is translated into UML by means of two models because
use cases have to be included in order to elicit the functional requirements of the
software system. In this way, we have connected the business model (with an
identical purpose to the TMA enterprise model) to the requirements model, given
that each activity of a business process can be the origin of a system use case.

TRANSFORMING THE OO-RAM THREE-MODEL ARCHITECTURE

INTO A UML-BASED PROCESS

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

• TMA information model is mapped into UML by using three models: i) the
conceptual model, describing domain concepts, whose initial version is created
from the information objects extracted from the business model; ii) the design
class model, including the system classes, and created in parallel with the tool
model; and iii) the database schema, including only persistent classes, and
enriched with specific features of database design extracted from the IDEA
method.

• TMA tool model describes how a system use case, defined in the requirements
model, is realized by an interaction between instances of classes included in the
design class model; the protocol of these classes must include methods for each
message that appears in the interaction.

The result of the transformation of TMA into UML described in this paper is the
definition of an iterative, use case-driven UML process for modeling business
information systems organized by a client-server, three-tier architecture.

We think that this process is well-suited to developing object-oriented applications
with persistent objects in a database system. The mapping from our proposal into the
client-server three-tier architecture is established by identifying the user-interface classes
in the tool model as the presentation tier, the classes in the design model as the logical
tier, and the classes in the database schema as the persistence tier.

REFERENCES

[Booch et al.99] G. Booch, J. Rumbaugh, and I. Jacobson: The Unified Modeling
Language User Guide, Addison-Wesley Longman, Inc., Reading,
Massachusetts, 1999.

[Ceri Fraternali97] S. Ceri, and P. Fraternalli: Designing Database Applications With
Objects and Rules. The IDEA Methodology, Addison-Wesley
Longman, Inc., Harlow, England, 1997.

[Cockburn00] A. Cockburn: Writing Effective Use Cases (pre-pub. Draft 3),
Addison-Wesley Longman, Inc., Reading, Massachusetts, 2000.

[Coleman98] D. Coleman: A Use Case Template: Draft for discussion, 1998,
http://www.cs.colorado.edu/users/kena/classes/6448/s02/links/hp_us
e_case_template.pdf

[Fowler98] M. Fowler: Use and Abuse Cases, Distributed Computing,
http://www.martinfowler.com/articles/abuse.pdf, April 1998.

[Gamma et al.94] E. Gamma, R. Helm, R. Johnson, and J. Wlissides: Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley
Longman, Inc., Reading, Massachusetts, 1994.

http://www.cs.colorado.edu/users/kena/classes/6448/s02/links/hp_use_case_template.pdf
http://www.martinfowler.com/articles/abuse.pdf

References

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 135

[García Molina et al.00] J. García Molina, M.J. Ortín, B. Moros, J. Nicolás, and A. Toval:
Towards Use Case and Conceptual Models through Business
Modeling, Proceedings of 19th International Conference on
Conceptual Modeling (ER2000), Salt Lake City, USA, October
2000.

[CSL-NIST93] Computer Systems Laboratory, National Institute of Standards and
Technology: Integration Definition for Function Modeling, FIPS
Pub. 183, December 21, 1993.

[Jacobson et al.99] I. Jacobson, G. Booch, and J. Rumbaugh: The Unified Software
Development Process, Addison-Wesley Longman, Inc., Reading,
Massachusetts, 1999.

[Larman98] C. Larman, Applying UML and Patterns. An Introduction to Object-
Oriented Analysis and Design, Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1998.

[OMG00] OMG Revision Issues. Issues for UML 1.4 Revision Task Force.
Issue 2837: role concept in UML remains rather vague.
http://cgi.omg.org/issues/issue2837.txt

[Ortín et al.98] M.J. Ortín, J. García Molina, A. Martínez, and A. Pellicer:
Combining OOram and IDEA for Information Systems Modeling,
Technical Report TR-01-00, Facultad de Informática, Universidad de
Murcia, December 1998.

[Ortín García-Molina99] M.J. Ortín, and J. García Molina: Role-Based Modeling with
UML, Actas de las IV Jornadas de Ingeniería del Software y Bases
de Datos, Cáceres, Spain, 1999.

[Pols97] A. Pols: Use Case Rules of Thumb: Guidelines and lessons learned,
Fusion Newsletter. Hewlett-Packard Laboratories, Vol.5.1, February
1997.

[Reenskaug96] T. Reenskaug: Working with Objects: the OOram Software
Engineering Method, Manning Publications, Greenwich, England,
1996.

[Reenskaug97] T. Reenskaug: Working with Objects: a Three-Model Architecture
for the Analysis of Information Systems, Journal of Object Oriented
Programming, vol. 10 no. 2, 1997, pp. 22-30.

http://cgi.omg.org/issues/issue2837.txt

TRANSFORMING THE OO-RAM THREE-MODEL ARCHITECTURE

INTO A UML-BASED PROCESS

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

About the authors
Jesús García Molina is a professor in the Department of Computer
Science at Universidad de Murcia, Spain since 1984. His research
interest include object-oriented modeling, requirement specification,
software architecture and object databases. He received his Degree and
PhD in Chemistry-Physics from the University of Murcia in 1983 and
1987, respectively. He is currently Dean of the Faculty of Computer

Science. He can be reached at jmolina@um.es.

María José Ortín is a lecturer in databases at the Universidad de
Murcia since 1996, where she obtained his BSc degree in Computer
Science in 1994. Her current research interests include object-oriented
modeling, software development methods and object databases. She can
be reached at mjortin@um.es.

Begoña Moros is an lecturer in object oriented programming at
Universidad de Murcia since 1998, where she obtained her BSc degree
in Computer Science in 1997. Her research interest include prototyping
environment for UML, software development methods and
requirements engineering. She is currently developing her PHD in the
requirements reuse field. She can be reached at bmoros@um.es.

Joaquín Nicolás is a lecturer in sofware engineering at the Universidad
de Murcia since 1996, where he obtained his BSc degree in Computer
Science in 1994. His current research interests include requirements
engineering and software reuse at the requirements level. He can be
reached at jnr@um.es.

mailto:molina@um.es
mjortin@um.es
mailto:bmoros@um.es
mailto:jnr@um.es

