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Abstract 
During the past several years, many enterprises have created data warehouses (and 
data marts) in order to run applications. Data warehousing technologies used have 
been primarily extract-transform-load (ETL) tools, database modeling and design tools, 
and relational database (RDB) systems. There are three major holes in data 
warehousing today. These include inadequate attention to dirty data, inadequate 
performance and scalability in supporting scan-oriented operations, and inadequate 
selection of source data to load into the data warehouse. In this article, these three 
problematic areas are explored and approaches to addressing them are outlined. 

1 INTRODUCTION 

During the second half of the 1990s, many enterprises came to recognize that the data 
they had at their disposal is an important asset that, if properly leveraged, can give them 
competitive advantages. However, they realized that their data had been kept in disparate 
systems, and that in order to run applications, they had to integrate the data. This need to 
integrate enterprise data provided an impetus to the creation of data warehouses (or data 
marts, the “departmental equivalent” of data warehouses). Many enterprises invested 
heavily to create data warehouses and data marts, to run applications against them, and 
even re-engineer their business processes.  

To create a data warehouse, an enterprise in general needs to iterate the following 
steps: 

1. Analyze the data at its disposal to inventory the semantics and contents of the data 
in all relevant data sources. 

2. Design (the database schema of) the data warehouse by considering the data 
available in all relevant data sources and the data needs of (i.e., queries to be 
generated by) the applications. 

3. Extract appropriate data from the data sources, transform the extracted data to 
match the design of the data warehouse, and load the transformed data into the 
data warehouse.  
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Relational database systems (RDBs) are typically used to store and manage the data 
warehouses and data marts. Once a stable data warehouse has been created, it must be 
refreshed, as frequently as appropriate, to reflect updates to the data in the data sources.  

Once a data warehouse has been created, an enterprise may run one or more 
applications against it. Applications typically include query tools for generating reports, 
customer relationship management (CRM) applications (e.g., marketing campaign 
tracking, customer segmentation, customer purchase behavior analysis), weblog data 
analyzers, data mining applications (e.g., fraud detection), business analytics (e.g., 
profitability analysis), etc. The applications generate SQL queries, which are passed to 
the RDBs that manage the data warehouse. 

Despite the fairly large number of data warehouses and data marts that have been 
created and a fairly large number of applications that are being run, there are at least three 
major issues with data warehousing today. They include the disposition of dirty data, the 
optimal selection of source data, and performance and scalability against scan-oriented 
operations. The level of attention paid to the quality (correctness) of data and the impact 
(cost) of dirty data on the results of queries, data mining, and analytics is less than 
adequate. The issue of loading a data warehouse with all the data needed and only the 
data needed to answer queries generated by the applications has also not received 
adequate attention. RDBs perform well in evaluating queries that tend to select a small 
fraction of records from a large database, but come under the mercy of I/O speed when 
evaluating queries that require an entire table (or file) to be read from or written to disk. 
In this article, each of these issues will be explored and some approaches to addressing it 
will be discussed. 

2 DATA QUALITY ISSUES 

We encounter the results of dirty data in our daily lives. We receive mass mailing pieces 
with misspelled names, multiple mass mailing pieces with different aliases of the same 
name, mass mailing pieces addressed to people who moved out long ago, bank statements 
that show multiple withdrawals (for a single actual withdrawal), and so on. Dirty data 
includes missing data, incorrect data, and unusable data (e.g., due to being in a wrong 
format, not complying with the standard). Dirty data may arise for a variety of reasons, 
such as data entry errors, use of different representation formats or units of measurement, 
non-compliance with the standards, failure to update in a timely manner, failure to update 
all replicas of data, failure to remove duplicate records, and so on.  

Obviously, the results of queries or data mining or business analytics against a data 
warehouse with a high proportion of dirty data cannot be reliable or usable. Only now 
enterprises are starting to adopt data cleansing tools to clean dirty data. Data cleansing 
tools on the market today, such as Vality/Ascential Software, Trillium Software, and First 
Logic, help to detect and automatically repair some important types of data, most notably 
names and addresses of people (using a nationwide directory of names and addresses). 
However, these tools still have a long way to go as they do not address all types of dirty 
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data, and not enough enterprises make use of even such tools. Further, most enterprises 
do not employ credible methodologies and processes to ensure high-quality of data in 
their data warehouses. The reasons for the inadequate attention to data quality may 
include a lack of appreciation of the types and extent of dirty data that permeate data 
warehouses, the impact (cost) of dirty data on the business decisions made and actions 
taken, and also the fact that the data cleansing products on the market have not been well-
enough marketed or are too pricey. 

In order for the enterprises to start paying adequate attention to the quality of data in 
their data warehouses, they need first to come to understand the wide variety of dirty data 
that may exist, how they may come about, and how they may be prevented or detected 
and repaired. [Kim et al 2003] may be a reasonable starting point to this end. It presents a 
substantially comprehensive taxonomy of 33 types of dirty data, and also develops a 
corresponding taxonomy of techniques for preventing or detecting and repairing all types 
of dirty data. The taxonomy of dirty data reveals many types of dirty data that today’s 
data-cleansing tools do not address. It also indicates various types of dirty data that can 
be automatically detected and repaired or even prevented. Frustratingly, however, it also 
exposes a large number of dirty data that do not appear to lend themselves readily to 
automated detection and repair or prevention. For example, the age of a person is 
erroneously entered as 26, when it is actually 25; or the name of a person is entered as 
“Larry Salcow”, when it is actually “Larry Salchow”; or “Richard Guerrero at 4989 
California Street, Thousand Oaks” and “R. Jorge Guerrero at 983 San Pedro Road, San 
Diego” refers to the old and current addresses of the same person. Data entry errors and 
failure to update the address of a person and failure to standardize the representation of a 
person’s name are the causes of these dirty data. Clearly, it is practically impossible for 
any software (even a person) to detect that these are dirty data. Of course, in theory, 
extensive cross checks can be made against separate data sources (files or tables) that 
contain information on the same person’s age, name, and address. 

Next, enterprises need to come to appreciate that cost is associated with dirty data; 
that is, dirty data can actually bring about financial losses and legal liabilities if  it is not 
prevented or detected and repaired. Suppose that a business sends out product 
promotional materials to 100,000 addresses at a cost of $2 per address. If 2% of the 
addresses were dirty such that the materials are undeliverable, 2,000 mailings would have 
been wasted at a cost of $4,000. (For simplicity, let us ignore the fact that actually 98% of 
typical mass mailings, even if correctly delivered, fall on deaf ears.)  

The fact that dirty data has cost associated with it does not necessarily mean that it 
should be always prevented or detected and repaired. The reason is that it costs to prevent 
or detect or repair dirty data. The cost of dirty data must be weighed against the cost of 
preventing or detecting and repairing it. If it will take a 2-hour run of a data cleansing 
tool to correct the wrong addresses in the current example, and if the enterprise already 
has a data cleansing tool, most likely it makes sense to take the time to correct the 
addresses before mailing out the promotional materials. However, it will be better not to 
do anything about the wrong addresses if it will take paying a person $10,000 over a 100-
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day period to manually check the accuracy of all addresses in a database against the 
telephone directory or a motor vehicle registration database.  

Let us explore the cost of preventing or detecting and repairing dirty data. Any type 
of dirty data may be prevented or detected and repaired, automatically or manually, but at 
a cost. In general, there is more than one way to prevent or detect and repair any given 
type of dirty data, each at a different cost. For example, the transaction management 
facilities in RDBs prevent certain types of dirty data, such as lost updates, dirty reads, and 
non-repeatable reads [Kim et al 2003]. Such integrity constraints as data types, Unique, 
Null Not Allowed, and foreign key, once specified, cause RDBs to automatically enforce 
integrity of data against inserts, updates, and deletes. These facilities are part of RDBs 
and take up only a relatively small amount of computer time. A spell checker may be 
used to detect some misspelled words. A directory of names and addresses may be used 
to repair misspelled names and addresses, and fill in additional address information, such 
as the zip code, county name, etc. These typically require human intervention to accept 
the recommendations of software tools. For certain types of dirty data, automated 
detection is possible to a good extent, but absolute correctness may be impossible to 
guarantee. For example, an automatic value-range checker may be used to ensure that a 
person’s age is within a range, say 18 and 67. To ensure that there was no data entry 
error, more than one data entry persons may be assigned to check and double-check each 
data entry. 

The cost of repairing dirty data also depends on the volume of data involved and the 
proportion of dirty data. Obviously, a file with a larger number of records and a larger 
number of fields will take a greater effort to check than a file with a smaller number of 
records and a smaller number of fields. The cost of detecting and repairing a single dirty 
data in a single field in a single record also varies depending on the type of dirty data. 

Most enterprises today certainly do not do enough to ensure high quality of data in 
their data warehouses. To ensure high quality of data, enterprises need to have a process, 
methodologies and resources to monitor and analyze the quality of data, methodologies 
for preventing and/or detecting and repairing dirty data, and methodologies for measuring 
the cost of dirty data and the cost of ensuring high quality of data. DAQUM (Data 
Quality Measurement) is a prototype tool developed at Ewha Women’s University for 
monitoring most types of dirty data and assigning quantitative measures of data quality to 
different types of dirty data under different application situations [Kim et al 2002]. 
Additional efforts along this line are needed. 

3 SOURCE DATA SELECTION ISSUES 

Today data warehouse designers design the database schema of the target data warehouse 
using a database-modeling tool. The database schema consists of tables, columns (fields) 
within the tables, data types for the columns and constraints on the columns, and 
relationships between tables. The designers also specify the mappings (transformations) 
from the schemas of the data sources to the schema of the target data warehouse. 
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But how do the designers determine that the data warehouse contains all the data 
required by the applications that will be run against it, and that the data warehouse does 
not contain any data not needed by the applications? Today, it is an educated guesswork 
by experienced designers. The designers have to elicit the data needs (tables and 
columns) by interviewing application developers, business analysts (people who 
understand the data needs of applications and businesses), and database administrators. 
When a data warehouse is initially created, often it is missing certain data needed to 
answer certain types of queries, and also has data that applications do not ever need. 
Although storage may be relatively cheap, all fields, both needed and unneeded, are 
stored in the same records and are stored and retrieved together, slowing down retrieval 
time, adding to the processing time, as well as taking up storage space needlessly. 

In the research literature, there are many proposals for modeling the data warehouse 
as a repository of the results of all the queries that are run [Gupta 1997][Yang et al 
1997][Kotidis and Roussopoulos 1999]. These proposals attempt to find algorithms that 
will select (for loading into the data warehouse) a subset of the source data that will 
minimize the total query response time. Some attempt to also minimize the cost of 
updating the data warehouse. In other words, they start with the assumption that all 
queries against a data warehouse can be obtained or predicted, and that all updates against 
the data warehouses, and thus the original data sources, can be obtained or predicted.  

An ideal way to select data to load into a data warehouse is to first determine all the 
queries that will be generated by all the applications to run against the data warehouse, 
and determine all the tables and fields included in the queries. Determining all the queries 
in advance of creating a data warehouse is difficult. However, after the initial creation of 
a data warehouse, by logging all the queries generated by all the applications for a 
reasonable period of time, it may become possible. An analysis of the queries logged may 
be used to fine-tune the data warehouse, by removing data that is not accessed by the 
applications.  

A potentially helpful and practical tool is one that can take the applications’ data 
needs, automatically match them against the schemas of the data sources, and recommend 
an optimal subset of the data sources that need to be loaded into the data warehouse, such 
that all the data needed are in the data warehouse and only the data needed are in the data 
warehouse. MaxCentra is such a tool that has become commercially available recently 
[Kim et al 2000]. The only dependence MaxCentra has is a pre-built knowledgebase of 
keywords that represent the data needs of the applications. The keywords are basically 
hints for the tables and fields to be accessed or retrieved in queries generated by the 
applications. Such a list of keywords must be provided by business analysts or 
application developers, or may be automatically collected from the queries logged from 
the applications that run against a non-optimal data warehouse. MaxCentra starts from 
there and, with help and confirmation by the data warehouse designer, arrives at an 
optimal database schema for the data warehouse. MaxCentra includes several 
computational stages, and the data warehouse designer may confirm or modify the results 
at the end of each stage. If MaxCentra is only given keywords for business hints, rather 



 
ON THREE MAJOR HOLES IN DATA WAREHOUSING TODAY 

 
 
 
 

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4 

than logged set of queries, it performs all standard processing of the keywords (stemming 
of words, decomposition of compound words, similar words, etc.). Then it rank orders the 
tables and fields in the data sources in terms of relevance to the data needs of the 
applications, groups the tables and fields that may be redundant or may be derived from 
one another (so that redundant or non-essential fields or tables may be removed), and 
rank orders the groups in terms of relevance to the data needs of the applications. 

4 PERFORMANCE AND SCALABILITY ISSUES 

RDBs use access methods such as hashing and/or B+-tree indexes to retrieve a small 
number of desired records without having to scan the entire table or database. Such 
access methods are highly effective in answering queries that are keyed on a single field 
(or a small number of fields) when the results are small fractions of the entire table. 
Examples of such queries are “find all 25-year olds”, “find all software engineers”, and 
“find all 25-year old software engineers”. To answer such queries fast, an index may be 
created on the “Age” column in the “Employee” table, the “Job” column in the 
“Employee” table, and the “Age” and “Job” columns jointly in the “Employee” table, 
respectively.  

However, access methods are in general not helpful in answering queries whose 
results are substantial parts of a table. Examples are “find all females”, “find all non-
smokers”, and “find young employees”. Further, access methods are not helpful if the 
values in the column are to undergo frequent updates, as such updates will require the 
access methods to be recreated. These are examples of even “simple” queries that render 
access methods in RDBs useless.  

Besides these “simple” queries, there are two classes of operations that render access 
methods in RDBs powerless. One is the “aggregation” operation, including the grouping 
of all records in a table and computing aggregation functions on the grouped records 
(average, total, sum, min, and max). This type of operation is important in such 
applications as weblog data analysis, customer data segmentation, and so on. Various 
techniques for addressing the performance issues for this class of operations are explored 
in [Kim 1998], including data compression, field-based table storage technique (storing 
each field of a table as a separate file), pre-calculation (of OLAP cubes, summary tables) 
from detailed data, normalization (partitioning of a table into multiple smaller tables), and 
parallel-processing. MaxScan and Ab Initio are software products on the market that are 
designed to address the performance and scalability issues for this type of operation. 
MaxScan employs a field-based table-storage technique, hashing techniques for grouping 
and aggregating records, and parallel processing techniques. On average it achieves a 10-
20 times performance and scalability improvement over RDBs for the aggregation 
operation. Ab Initio is an ETL tool in which the data transformation engine employs 
performance techniques. 

Another is the “file movement” operation, that is, operations that read entire file(s) 
and/or write out entire file(s). This type of operation is important in the time-consuming 
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“data transformation” phase in creating a data warehouse or the “data preparation” phase 
in automatic knowledge discovery (data mining) from stored data [Pyle 1999]. The data 
transformation phase involves the transformation of the format and representation of data 
in a given field (unit change, date time format change, abbreviation changes, etc.), 
merging two or more fields into one, splitting a field into two or more fields, sorting a 
table, creating a summary table from a table with detailed data, creating a new table by 
joining two or more tables, merging two or more tables into a single table, splitting a 
table into two or more tables, and so on. The data preparation phase involves the 
transformation of data in a given field into numeric code (for neural networks), the 
transformation of continuous numerical data in a given field into categorical data (e.g., 60 
and higher in age as ‘old’), adding a new field to a record, taking samples of data from a 
table, replicating certain records in a table (to achieve a desired distribution of records), 
and so on. More detailed discussions of these operations are given in [Kim 1999]. 

Today these file-movement operations are almost entirely at the mercy of the 
sequential file operations of RDBs, that is, the reading of one or more files, the creating 
of temporary files, and the writing of resulting file or files. The frequency of such 
operations and the volume of data involved may justify a dedicated data 
transformation/preparation server. Such a server may ideally consist of multiple CPUs 
running in parallel. Regardless of the CPU configuration, it should run data 
transformation/preparation software tools that are designed for parallel processing. 
Whenever the workflow justifies it, pipelined parallel processing needs to be employed, 
where incremental results of one operation feed the next operation without having to wait 
for the completion of the first operation. Pipelined parallel processing obviates the need 
to have the full results of one operation written into a temporary file and read by the 
subsequent operation, saving two file I/Os. To create summary tables, it may make sense 
to use a fast sort engine, such as SyncSort, or a fast aggregation engine, such as 
MaxScan, rather than using the native functions of RDBs. Further, to perform record-by-
record computations (sampling, transformation of data format or representation, etc.), it 
may make sense to partition a file into multiple sub-files and assign them to different 
CPUs for parallel processing. 

5 CONCLUDING REMARKS 

In this article we identified three major issues that have not been adequately addressed in 
data warehousing: data quality, optimal source data selection, and performance and 
scalability. There are a few data cleansing tools on the market and they are starting to be 
used to cleanse various types of dirty data. However, these tools certainly do not address 
all types of dirty data, and certainly not many enterprises have adopted either the tools or 
the process for preventing or detecting and repairing dirty data and for monitoring and 
quantifying data quality in their data warehouses. Today, data warehouses contain lots of 
data that are never needed by the applications that run against them, and such unneeded 
data is one of the sources that slow down query performance. It should be possible to log 
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a complete set of queries that are generated by all applications, and use the tables and 
fields included in the queries to fine-tune the contents of the data warehouses. Today’s 
data warehouses largely use RDBs for storing and managing data. However, RDBs today 
are not adequate in processing scan-oriented queries such as grouping records and 
computing aggregations, and file-movement operations that predominate in the data 
transformation phase of data warehousing or the data preparation phase of data mining. 
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