
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 2, No. 1, January-February 2003

Cite this article as follows: Sardinha et al: An Objct-Oriented Framework for Building Software
Agents, in Journal of Object Technology, vol. 2, no. 1, January-February 2003, pages 85-97.
http://www.jot.fm/issues/issue_2003_01/article2

An Object-Oriented Framework for
Building Software Agents

José Alberto Rodrigues Pereira Sardinha, Paula Clark Ribeiro, Ruy Luiz
Milidiú, and Carlos José Pereira de Lucena, TecComm Group of the
Software Engineering Laboratory, Pontificia Universidade Catolica do Rio de
Janeiro (PUC-Rio), Brazil

Abstract
Agent technology is a new approach of Distributed Artificial Intelligence to implement
autonomous entities driven by beliefs, goals, capabilities and plans, and other agency
properties such as adaptation, interaction, and mobility. Software agents are the focus
of considerable research in the artificial intelligence community, but not much has been
done in the field of software engineering. In this paper, we present an object-oriented
framework for building software agents in a distributed environment. The design of the
framework also allows an easy mapping of the models developed in the analysis and
design phase of the Gaia Methodology to object-oriented code. We believe that object-
oriented framework technology can reduce not only the development time but also the
complexity of implementing multi-agent systems. We present an instantiated application
that uses this framework to illustrate an implementation.

1 INTRODUCTION

Multi-Agent Systems [Weiss00] [Ferber99] is a new technology that has been recently
used in many simulators and intelligent systems to help humans perform several tasks. To
achieve the system’s goal, agents have to react to events, define strategies, interact, and
participate in organizations. However, Software Agents have gained great importance for
both academic and commercial applications with the advent of the Internet. Applications
for the Internet are easily modeled with agents, mainly because of the distributed
approach. We believe that many other applications based on this technology are still to be
built to help leverage the use of the Internet.

We define Software Agents [Garcia01a] as an autonomous entity driven by beliefs,
goals, capabilities, plans and a number of agency properties, such as autonomy,
adaptation, interaction, learning and mobility. Although we recognize that the object-
oriented paradigm has some flaws [Garcia01a] [Garcia01b] [Garcia01c] related to design
and implementation of multi-agent systems, we also believe that it is still the most
practical programming language to implement the agent technology.

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_01/article2

 AN OBJECT-ORIENTED FRAMEWORK FOR BUILDING SOFTWARE AGENTS

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

Our object-oriented framework [Fayad99] implements a communication
infrastructure for agents over a network, and uses some hot spots [Fayad99] in order to
implement the agent’s beliefs, goals, capabilities, plans and some agency properties, such
as autonomy, adaptation, interaction, and learning. This framework also permits an easy
mapping of the models developed by the analysis and design phase of the Gaia
Methodology [Wooldridge00] to object-oriented code.

Kendall et all [Kendall99] also propose an agent framework that is an architectural
pattern in layers. In this architecture, an agent is composed of seven layers, such as the
layer of sensors that are responsible for detecting changes in the environment. This
pattern permits the modeling of both simple and complex agents. In [SilvaV01], this
agent design pattern is criticized for being too general. Consequently, some difficulties
arise in the maintenance process and evolution of the system. The process of modeling in
layers does not permit an easy removal of a layer when changes are needed. Adjacent
layers to the removed layer normally have to suffer changes in order to adapt the system.

We used IBM’s TSpace [Tspace00] software to implement the communication
infrastructure. IBM TSpace is a reflective tuple space architecture [SilvaO01] that
provides support to all basic associative blackboard [Ferber99] operations (read, write,
and take). TSpace can also be programmed to react to specific stimuli, and we used this
feature to enable the exchange of messages between software agents. In fact, our
communication infrastructure is a layer over TSpace that provides blackboard and
message passing communication for agents.

The agent framework is called MAS Framework, and it is used in three projects of
the TecComm Group -Software Engineering Laboratory at PUC-Rio. The first
development [Sardinha01] [Milidiu01] uses agents to build a tool for creating offerings
automatically in a retail market. The second tool [Bevilacqua01] uses software agents to
encourage people to participate in Consuming Groups, and the third project [Ribeiro01]
uses agents for negotiation purposes in a virtual marketplace. All projects were able to re-
use the same code and consequently reduce the development time and effort.

In Section 2, the MAS Framework is presented in detail and in Section 3 we describe
how to instantiate an application that uses this framework. In Section 4, we present a case
study of a project that uses the framework.

2 THE MAS FRAMEWORK

The main goal of the MAS Framework is to diminish the development time and reduce
the complexity of implementing Software Agents. The design of this framework is
inspired on the Gaia Methodology, and it can introduce an easy implementation of all the
models developed by the analysis and design phase.

Gaia is a methodology for building models in the analysis and design phase. It is
applicable to a wide range of multi-agent systems, and also deals with both the macro-
level (societal) and the micro-level (agent) aspects of the system. It considers the system
as a computational organization consisting of various interacting roles.

THE MAS FRAMEWORK

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 87

Gaia allows an analyst to go systematically from a statement of requirements to a
design of models that can be coded, for example, with the MAS Framework. The first
two models that are built in Gaia are the Roles model and the Interaction Model. The
Roles model identifies the key roles in the system or an entity’s expected function.
However, there are many dependencies and relationships between the various roles in an
agent organization. These dependencies and relationships originate the interaction model,
which is responsible for describing the various interaction situations between the agent’s
roles.

Both the Roles model and the Interaction model derive three other models: Agent
model, Services model, and Acquaintance model. The Agent model describes an agent
type with set of roles (as identified in the Roles model). The Services model is to identify
the services associated with each agent role, or we can understand as the agent’s
functions. The Acquaintance model defines the communication links that exist between
agent types.

The MAS Framework is composed of one abstract class – Agent, two final classes –
ProcessMessageThread and AgentCommunicationLayer and four interfaces –
AgentMessage, AgentBlackBoardInfo, InteractionProtocol and AgentInterface. All of
these classes have been developed in Java, and in the following paragraphs we will
describe in detail each class and interface.

The Agent model in Gaia has a direct mapping with the MAS Framework.
Consequently, every software agent modeled in the Agent model has to instantiate an
Agent from the MAS Framework. This instantiation includes the specialization of the
abstract class Agent, the implementation of the interfaces (AgentMessage,
AgentBlackBoardInfo, InteractionProtocol and AgentInterface), and the use of the objects
ProcessMessageThread and AgentCommunicationLayer.

Every service in the Services model will be implemented as a method. The services
that are derived from activities in the Roles model will be coded as methods in the
specialized class of Agent. Analogously, the services that are derived from protocols are
coded in the class that implements the interface InteractionProtocol. Furthermore, the
inputs and outputs of the Services model and the permissions of the Roles model are
coded as attributes of the specialized class of Agent. The pre-conditions and post-
conditions of each service are also coded in the specialized class of Agent, and it is
possible that some of these pre-conditions and post-conditions have to be implemented
using monitors.

The Interaction model in Gaia is very useful because it represents the interactions
between the roles in the Roles model. As the roles are mapped to agents in the Agents
model, the interactions also represent interactions between agents. Consequently, there is
a direct mapping between the interaction models and the sequence diagrams in UML. The
sequence diagrams will use the methods coded in the specialized class of Agent and the
class that implements the interface InteractionProtocol.

 AN OBJECT-ORIENTED FRAMEWORK FOR BUILDING SOFTWARE AGENTS

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

1 1

1 0..*

11

1 0..*

1

0..*

1

1

Thread
ProcessMessageThread

-agentMsgPtr:AgentMessage
-ip:InteractionProtocols

+ProcessMessageThread(agM
+run():void

java.io.Serializab
interface

AgentMessage

java.io.Serializab
interface

AgentBlackboardIn

Runnable
interface

AgentInterfac

+run():void

Agent

+traceLevel:int=0
-runnit:Thread

+Agent(nameTemp:String)
+initialize():void
+process(ag:AgentInterface
+stopAgent():void
+terminate():void
+trace(msg:String):void

 name:String

Callback
AgentCommunicationLaye

-listeners:Vector=new Vector()
-host:String
-msgTSName:String
-msgTS:TupleSpace
-blackboardTSName:String
-blackboardTS:TupleSpace
-seqNumEventReg:int
-name:String
ip:InteractionProtocols

+AgentCommunicationLayer(h
+addAgentBroadcastListener(
+blockingReadBBInfo(key:Stri
+blockingTakeBBInfo(key:Stri
+call(eventName:String,tsNam
+deleteAllBB():void
-initBlackboard():void
+readBBInfo(key:String):Agen
-registerCallBack():void
+removeAgentBroadcastListe
+removeBBInfo(key:String):vo
+removeBBInfo(key1:String,ke
+scanBBInfo(key:String):Tuple
+scanBBInfo(key1:String,key2
+sendBBInfo(key1:String,key2
+sendBBInfo(key:String,info:A
+sendBroadcast(msg:AgentM
+sendMsg(agentName:String,
+stopCommunicationLayer():v

interface
InteractionProtocols

+processMsg(msg:AgentMess

Fig. 1: The MAS Framework

Agent is an abstract class, and the subclass that inherits it implements the “private”
actions or activities [Wooldridge00] of the Software Agent’s roles. These private actions
do not depend on any interaction with other agents in order to accomplish specific tasks.
The developer is obliged to implement methods related to the startup code (method
initialize), ending code (method terminate), and display of messages (method trace). The
methods process and stopAgent are to start and stop the agent. The attribute name
specifies the agent’s name in the system, and due to implementation details it has to be
unique.

The AgentInterface is responsible for making the subclass inherited by Agent into a
thread. This subclass implements a method called run, and this method is responsible for
starting the agent’s private activities.

The InteraactionProtocols is an interface of a class that will define the way a
software agent can interact with other agents in the society. All the code related with
interaction is placed in this class. The implemented class also requires the implementation

THE MAS FRAMEWORK

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 89

of a method called processMsg. This method is called every time a new message is
received from another agent.

The ProcessMessageThread is in charge of processing messages received by agents.
In fact, it creates a new thread for every incoming message, which will automatically call
the abstract method processMsg. The AgentMessage is an interface used by the class that
specifies the message format, and AgentBlackboardInfo is an interface used by the class
that specifies the blackboard message format. Thus, all blackboard information and
messages in the system must implement these interfaces.

The AgentCommunicationLayer is a class that implements the entire communication
infrastructure needed for agents to interact in a distributed system over a network. This
infrastructure is a layer over IBM Tspaces. A summarized description of every method is
displayed below:

• addAgentBroadcastListener – Method that adds an agent to the broadcast listener

group;
• blockingReadBBInfo – This method is used for reading information in the MAS

blackboard. When the agent issues a blockingReadBBInfo call, and the data is not
yet there on the MAS blackboard, the application blocks the call until an answer is
returned. When the information arrives on the MAS blackboard that matches the
blockingReadBBInfo query, it is sent to the Agent and it resumes;

• blockingTakeBBInfo – This method is used for removing information in the MAS
blackboard. When the agent issues a blockingTakeBBInfo call, and the data is not
yet there on the MAS blackboard, the application blocks the call until an answer is
returned. When the information arrives on the MAS blackboard that matches the
blockingTakeBBInfo query, it is sent to the Agent and it resumes;

• deleteAllBB – Method used for deleting all information in the MAS blackboard;
• readBBInfo – This method is used for reading information in the MAS

blackboard;
• removeAgentBroadcastListener - Method that removes an agent from the

broadcast listener group;
• removeBBInfo - This method is used for removing information in the MAS

blackboard. No blocking service is offered in this call;
• scanBBInfo - This method is used for querying information in the MAS

blackboard;
• sendBBInfo - This method is used for posting information in the MAS blackboard;
• sendBroadcast - This method is used for sending a broadcast message for the

registered agents;
• sendMsg - This method is used for sending a message to an agent;
• stopCommunicationLayer - This method is used for ending the communication

layer.

 AN OBJECT-ORIENTED FRAMEWORK FOR BUILDING SOFTWARE AGENTS

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

Object-oriented framework design can be divided into two parts [Fontoura98]: the kernel
sub-system and the hot spot subsystem. The kernel subsystem design is common to all
instantiated applications, and in the MAS Framework the classes
AgentCommunicationLayer and ProcessMessageThread represent it. Hot spot design
describes the different characteristic of each instantiated application. In our framework
the hot spots are the classes Agent, InteractionProtocol, AgentMessage,
AgentBlackboardInfo and AgentInterface.

3 HOW TO INSTANTIATE THE MAS FRAMEWORK

In this section we will describe the instantiation process of the framework, and show the
interdependence of the classes. It is important to have an IBM TSpace server running in
your network or local machine. The configuration of the IBM TSpace server can be found
in [Tspace00].

The first class to be extended is Agent, and the subclass that inherits it will
implement the “private” actions or activities of the software agent’s roles. This subclass
shall also implement the interface AgentInterface, and write code for the methods
initialize, run, terminate, and trace. When an activity ends up in an interaction protocol, it
is necessary to have a reference to the class that implements the InteractionProtocols.

A class has to implement the interface InteractionProtocols, and all the code related
with interaction is placed here. The method processMsg needs to have code that interprets
an incoming message, and a reference to AgentCommunicationLayer is required in order
to implement interaction through the communication infrastructure. In Fig. 2, we present
a simple instantiation of the MAS Framework.

Fig. 2: An instantiated application

If the implemented software agent uses message passing in order to communicate, a

class that specifies the message format shall implement the interface AgentMessage. If

HOW TO INSTANTIATE THE MAS FRAMEWORK

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 91

the agent also uses a blackboard for communication, another class that specifies the
message format shall implement the interface AgentBlackboardInfo.

4 THE BABILONIA APPLICATION – A CASE STUDY

The Babilonia application is a virtual marketplace for buying and selling goods. It also
implements an automatic negotiation of the buyer and the seller with software agents.
The system uses certification of buyers, sellers and goods to ensure the security of the
transactions.

Our multi-agent system is modeled using an organizational design with the following
roles: buyers, sellers and certification agent. The buyer is responsible for registering a
profile that shall be used by the system to find goods. This profile shall include some
characteristics of the item such as brand and model. Every item that matches the
registered profile is sent to the buyer, which shall decide whether or not to start the
negotiation process. If the negotiation is authorized, a software agent conducts such work.
However, the agent requires some parameters: initial offering price, maximum price
offered, and an incremental value used in the counter-proposal.

The seller also is responsible for registering a profile that will be used by the system
to find goods. An agent is created for each profile, and to conduct the automatic
negotiation some parameters are required: initial offering price, minimum price offered,
and a decrement value used in the counter-proposal. The seller also shall inform the
system if a certification of the buyer is required.

The certification agent is responsible for certifying the seller, the buyer and the
goods involved in a transaction. This agent has to look up information in public databases
outside of the system to be able to certify the whole transaction. The agent may
eventually require help from a user.

The system waits for the registering of profiles, and the first step involves the
matching of a buyer profile and a seller profile. If a match is found and both parties agree
to start to negotiate, software agents start the automatic negotiation. If both agents agree
to a price for the item, everyone is notified that the transaction has ended. The system is
not responsible for delivering the item, but sends a notification to both parties with each
other’s personal information. In Fig. 3, we present an illustration of an instantiated buyer
agent.

 AN OBJECT-ORIENTED FRAMEWORK FOR BUILDING SOFTWARE AGENTS

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

1 0..*

1

0..*

1

1

1 111

1 0..*

Thread
ProcessMessageThread

-agentMsgPtr:AgentMessage
-ip:InteractionProtocols

+ProcessMessageThread(agM
+run():void

Callback
AgentCommunicationLaye

-listeners:Vector=new Vector(
-host:String
-msgTSName:String
-msgTS:TupleSpace
-blackboardTSName:String
-blackboardTS:TupleSpace
-seqNumEventReg:int
-name:String
ip:InteractionProtocols

+AgentCommunicationLayer(h
+addAgentBroadcastListener(
+blockingReadBBInfo(key:Stri
+blockingTakeBBInfo(key:Stri
+call(eventName:String,tsNam
+deleteAllBB():void
-initBlackboard():void
+readBBInfo(key:String):Agen
-registerCallBack():void
+removeAgentBroadcastListe
+removeBBInfo(key:String):vo
+removeBBInfo(key1:String,ke
+scanBBInfo(key:String):Tuple
+scanBBInfo(key1:String,key2
+sendBBInfo(key1:String,key2
+sendBBInfo(key:String,info:A
+sendBroadcast(msg:AgentM
+sendMsg(agentName:String,
+stopCommunicationLayer():v

java.io.Serializab
interface

AgentBlackboardIn

java.io.Serializab
interface

AgentMessage

Runnable
interface

AgentInterfac

+run():void

Agent

+traceLevel:int=0
-runnit:Thread

+Agent(nameTemp:String)
+initialize():void
+process(ag:AgentInterface
+stopAgent():void
+terminate():void
+trace(msg:String):void

 name:String

interface
InteractionProtocols

+processMsg(msg:AgentMess

AgentBuyerIP

aclAgBuyer:AgentCommunica
agBuyer:AgentBuyer

+AgentBuyerIP(name:String)
+informListEncounteredItems(
+sendNegotiationParameters(
+negotiate():void
+sendCounterProposal():void
+sendUserMsg():void
+sendNegotiationResult(items
+terminateBuying(transactionI
+informTermination():void
+informTimeExpired():void
+processMsg(msg:AgentMess

AgentBuyer

itemsEncountered:Vector
buyProfile:Hashtable
user:Hashtable
agentUserName:String
agentBuyerName:String
buyProfileName:Message
buyProfileMsg:Profile
negotiationParameters:Hashta
proposal:Hashtable
closedProposal:Hashtable
itemsNegotiated:Vector
transactionItem:Hashtable
newValue:Double
negotiationParameterList:Vect
idadd:String
transactionItem:String
agBuyerIP:AgentBuyerIP

+AgentBuyer(name:String)
+initialize():void
+run():void
+terminate():void
+trace(msg:String):void
+findItem(buyProfile:Vector):V
+evaluateReceivedProposal(p

Fig. 3: An instantiated buyer agent

When we use Gaia, the first step we must take is to transform a problem into the Roles
model and the Interaction model. In this paper we will only describe the modeling
process that created the buyer agent. However, a complete modeling and mapping to the
MAS Framework can be found in [Ribeiro01]. It is important to emphasize that the Roles
model and the Interaction model should not be constructed separately. The models must
be developed together in order to maintain the consistency of the process.

THE BABILONIA APPLICATION – A CASE STUDY

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 93

Fig. 4: The Buyer’s Role Model

One of the roles of the Babilonia application is called Buyer, and it is responsible for
finding items in the environment and negotiating them for the best possible price. A role
indicates a presence of an entity that may turn into a software agent, but this is not
necessarily true. In this phase, it is important to notice that we do not have to worry if a
role will become an agent or not. Another important step in the Roles model is to identify
a role’s functions or responsibilities. Every responsibility is composed of protocols and
activities. The protocols represent functions that need interaction with other roles, and the
activities are internal functions of a role. The Role model of the buyer is found in Fig. 4.

Every protocol in the Roles model will participate in an interaction that is explicitly
modeled in the Interaction model. The main purpose of this model is to indicate how

 AN OBJECT-ORIENTED FRAMEWORK FOR BUILDING SOFTWARE AGENTS

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

every protocol will execute, and consequently point out the roles that participate in this
execution. More details about the Interaction model of the Babilonia application can be
found in [Ribeiro01].

The Agent model is simple and formalizes something that usually is already known
in the Roles model – which roles are associated with a software agent. In our system, the
buyer agent has the attribution of only one role – Buyer. Another model that derives from
the Roles model and Interaction model is the Services model, and it is responsible for
identifying the services offered from every agent. The Service model of the buyer agent
can be found in Fig. 5.

Fig. 5: The Buyer’s Service Model

Every service in the Buyer’s Services model is implemented as a method. The services
that are derived from activities in the Roles model will be coded as methods in the
BuyerAgent class. Similarly, the services that are derived from protocols are coded in the
BuyerAgentIP class. In addition, the inputs and outputs of the Services model and the
permissions of the Roles model are coded as attributes of the specialized class of Agent.
The pre-conditions and post-conditions of each service are also coded in the BuyerAgent.

Final Comments

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 95

5 FINAL COMMENTS

Although the Gaia methodology is a very useful tool for the analysis and design phase,
the MAS Framework can also be used with other methodologies. However, we encourage
a developer to think of building a multi-agent system as part of the process of an
organizational design. Consequently, our agent-based system can be seen as an artificial
“society” or “organization.” In this artificial organization, every software agent has one
or more roles, and can interact in order to achieve a common goal.

The MAS Framework is being used in many projects in the TecComm group of the
Software Engineering Laboratory at PUC-Rio, and in all of these projects we were able to
reduce the implementation time of agent-based systems. The IBM TSpace [Tspace00]
server also enables our agents to cooperate in a distributed system over a network. We
decided to implement the framework using Sun’s Java [Java01], because we wanted to
enable our software agents to run in almost any operating system that has a Java Virtual
Machine. Consequently, the framework enables the construction of a very good agent-
based system to run over the Internet.

REFERENCES

[Weiss00] Weiss, G. Multiagent systems: a modern approach to distributed artificial
intelligence. The MIT Press, Second printing, 2000.

[Ferber99] Ferber, J. Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison-Wesley Pub Co, 1999.

[Garcia01a] Garcia, A.; Silva, V.; Lucena, C.; Milidiú, R. An Aspect-Based
Approach for Developing Multi-Agent Object-Oriented Systems.
Simpósio Brasileiro de Engenharia de Software, Rio de Janeiro, Brazil,
October 2001.

[Garcia01b] Garcia, A.; Lucena, C. J.; Cowan, D.D. Engineering Multi-Agent
Object-Oriented Software with Aspect-Oriented Programming.
Submitted to Practice & Experience, Elsevier, May 2001.

[Garcia01c] Garcia, A.; Lucena, C. J. An Aspect-Based Object-Oriented Model for
Multi-Agent Systems. 2nd Advanced Separation of Concerns Workshop
at ICSE'2001, May 2001.

[Fayad99] Fayad, M.; Schmidt, D. Building Application Frameworks: Object-
Oriented Foundations of Design. First Edition, John Wiley & Sons,
1999.

 AN OBJECT-ORIENTED FRAMEWORK FOR BUILDING SOFTWARE AGENTS

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

[Wooldridge00] Wooldridge, M; Jennings, N. R.; Kinny, D. The Gaia Methodology for
Agent-Oriented Analysis and Design. Kluwer Academic Publishers,
2000.

[Kendall99] Kendall, E.; Krishna, P.; Pathak, C.; Suresh, C. A Framework for Agent
Systems. In: Implementing Application Frameworks – Object-Oriented
Frameworks at Work, M. Fayad et al. (editors), John Wiley & Sons,
1999.

[SilvaV01] Silva, V.T.; Lucena, C.J.P. Um Modelo Orientado a Objetos para
Sistemas Multi-Agentes. MCC30/01. Departamento de Informática.
PUC-Rio. October 2001.

[Tspace00] IBM TSpaces Web Site http://www.almaden.ibm.com/cs/TSpaces/

[SilvaO01] Silva, O; Garcia, A; Lucena, C.J. T-Rex: A Reflective Tuple Space
Environment for Dependable Mobile Agent Systems. III WCSF at IEEE
MWCN 2001, Recife, Brasil, August 2001.

[Sardinha01] Sardinha, J. A. R. P. Vgroups:Um framework para grupos virtuais de
consumo. Master's dissertation, epartamento de Informática,PUC-Rio.
March 2001.

[Milidiu01] Milidiu, R.L.; Lucena, C.J.; Sardinha, J.A.R.P. An object-oriented
framework for creating offerings. 2001 International Conference on
Internet Computing (IC'2001) June 2001.

[Bevilacqua01] Bevilacqua, F.; Sardinha, J. A. R. P. Estruturas dinâmicas de incentivos
para grupos de consumo. Multi-agent system workshop. Departamento
de Informática. PUC-Rio. July 2001.

[Ribeiro01] Ribeiro, P.C. Modelagem e Implementação OO de Sistemas Multi-
Agentes. Master's Dissertations, Departamento de Informática, PUC-
Rio, 2001.

[Fontoura98] Fontoura, M.F.; Haeusler, E.H.; Lucena, C.J.P. The Hot-Spot
Relationship in OO Framework Design. MCC33/98, Computer Science
Department, PUC-Rio, 1998.

[Java01] Java Web Site http://java.sun.com/

http://www.almaden.ibm.com/cs/TSpaces/
http://java.sun.com/

Final Comments

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 97

About the authors

José Alberto R. P. Sardinha received the M.Sc. degree in Computer
Science in 2001 from the Pontificia Universidade Catolica of Rio de
Janeiro, Brazil, where he is currently working to obtain his Ph.D.
degree. He is a research assistant in the TecComm group of the
Software Engineering Laboratory, and a professor at Pontificia
Universidade Catolica and Fundacao Getulio Vargas. His research

activity is in machine learning applied to software agents and agent-based software
engineering. He can be reached at sardinha@inf.puc-rio.br.

Paula Clark Ribeiro received the M.Sc. degree in Computer Science in
2002 from the Pontificia Universidade Catolica of Rio de Janeiro,
Brazil. She is currently working as a Senior System Analyst at
Timnet.com, a Telecom Italia Group company. She worked as a
research assistant in the TecComm group of the Software Engineering
Laboratory in 2001, and her research activity is in agent-based software

engineering. She can be reached at pclark@corp.timnet.com.

Ruy Luiz Milidiú received the Ph.D. degree in operations research
from the University of California, Berkeley. He is currently an Assistant
Professor in the Computer Science Department at the Pontificia
Universidade Catolica of Rio de Janeiro, Brazil, where he also
coordinates the Algorithms Engineering and Neural Networks Lab. His
research activity is in data compression, systems optimization, and

machine learning. He can be reached at milidiu@inf.puc-rio.br.

Carlos José Pereira de Lucena received the Ph.D. degree from the
University of California, Los Angeles. He is currently a Full-Professor
in the Computer Science Department at the Pontificia Universidade
Catolica of Rio de Janeiro, Brazil. He was awarded with the first and
fifth National Awards in Computer Science, and the Science and
Technology Award from the Brazilian Government. He is currently a

member of the President’s National Council for Science and Technology, where he is in
charge of Information Technology area. His research activity is in Software Engineering,
Formal Methods (Software Engineering Environments and Formal Specification
Methods) and applications of Information Technology. He can be reached at
lucena@inf.puc-rio.br.

mailto:sardinha@inf.puc-rio.br
pclark@corp.timnet.com
mailto:milildiu@inf.puc-rio.br
mailto:lucena@inf.puc-rio.br

