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The Theory of Classification 
Part 6: The Subtyping Inquisition 

Anthony J H Simons, Department of Computer Science, University of 
Sheffield, U.K.

1 INTRODUCTION 

This is the sixth article in a regular series on object-oriented type theory, aimed 
specifically at non-theoreticians. The series has been investigating the notion of simple 
object types and has so far developed a theory of subtyping which judges object type 
compatibility from both the syntactic point of view, that is, by the type signatures of an 
object's methods [1] and from the semantic point of view, that is, by the logical axioms 
asserted on an object's methods [2]. In terms of the dimensions of type checking in figure 
1, we have considered the exact type correspondence of signatures (box 2) and behaviour 
(box 3), and the subtype correspondence of modified signatures (box 5) and refined 
behaviour (box 6). 
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Figure 1: Dimensions of Type Checking 

This kind of theory provides a much-needed tool for analysing the type safety and 
behavioural correctness of programming languages. In the late 1980s and early 1990s, the 
possibility that object-oriented languages might be insecure in their type systems, when 
judged according to subtyping [3], caused quite a stir, particularly in the software 
engineering community. This led to the greater prominence of subtype-conformant 
languages [4], but also sparked a new interest in the way object-oriented languages really 
seemed to behave [5]. The debate swung between the desire to force languages into 
obeying subtyping and the desire to develop more sophisticated formal models of object-
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oriented classes and inheritance. In this article, we take the former side (as devil's 
advocate, since we shall take the latter side in a subsequent article) and examine a 
number of popular object-oriented languages for their type safety, asking of each 
candidate subclass: "Are you, or have you ever been, a proper subtype?". 

2 A PRACTICAL TEST FOR SUBTYPING 

How well do popular object-oriented languages follow the rules of subtyping? How type 
secure are they generally? A quick survey may reveal hidden weaknesses or 
unappreciated strengths in your favourite language. Recall that our theory deals in terms 
of objects and object types (so far, we have not used the term class in any formal sense). 
Practical object-oriented languages have concrete classes which define the structure and 
behaviour of objects created at runtime. A class in this sense has both an implementation 
aspect and a typeful aspect, in that class names are usually also treated as type identifiers. 
We shall assume the same correspondence when making typing judgements here. 

The main syntactic type rules of interest derive from the record subtyping and 
function subtyping rules [1]. These can be expressed informally for classes-viewed-as-
types in the following way: 

• Where a class S is intended to be a subtype of a class T, it must obey the 
extension rule: S may add to the methods of T, but never remove any methods 
from T; and the overriding rule: S may replace some methods of T, so long as the 
replacement methods Ri in S are subtypes of the corresponding methods Mi in T 
that they replace. 

• Where a method R is intended to be a subtype replacement for a method M, it 
must obey the argument contravariance rule: any arguments of R may be more 
general than corresponding arguments in M, but never more specific; and the 
result covariance rule: the result of R may be more specific than the result of M, 
but never more general. 

The main semantic behavioural rules of interest derive from the addition of new 
constraints and the generalisation of constraints [2], both of which are said to strengthen 
an axiom. These are converted into the more familiar assertion format below: 

• Where a class S is intended to be a behavioural subtype of a class T, it must obey 
the invariant strengthening rule: S may have a stronger invariant than T, but never 
weaker; and the behavioural conformance rule: any replacement methods Ri in S 
must be behavioural subtypes of the corresponding methods Mi in T that they 
replace. 

• Where a method R is intended to be a behavioural subtype replacement for a 
method M, it must obey the precondition weakening rule: R may weaken M's 
precondition, but never strengthen it; and the postcondition strengthening rule: R 
may strengthen M's postcondition, but never weaken it. 
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In Eiffel [6], strengthening is typically obtained by adding extra assertions in conjunction 
(combined with logical AND) with the existing set, making the constraint harder to 
satisfy. Weakening is obtained by providing alternative assertions in disjunction 
(combined with logical OR) with the existing set, making the constraint easier to satisfy. 

3 SMALLTALK AND OBJECTIVE C 

Smalltalk [7] is an interesting language to evaluate against these rules, since it is 
considered by some to be an untyped language. From a schema-based perspective (the 
first column in figure 1), everything is implemented as a uniform object type. Further 
than this, the static types of variables are not given, so they cannot be checked at all. 
However, it is reasonable to think of objects at runtime as having a type, corresponding to 
their class identifier. This type is used implicitly during method lookup to select from 
method dispatch tables. Type checking is dynamic, in the sense that type errors only 
appear as "message not understood" exceptions at runtime, after a search for a given 
method in the class hierarchy has failed. Smalltalk is therefore usually considered to be 
weakly type checked, since it cannot detect incorrect invocations at compile time. 

Fundamentally, Smalltalk expects a subclass to add to the methods of its 
superclass, which follows the extension rule, and method overriding is supported, on a 
name-equivalence basis. A weakness is where a replacement method sometimes derails 
the operation of the original version: for example, though all Collections may add: 
elements, a FixedSizeCollection may not, so it redefines the add: method to raise an 
exception. This is tantamount to removing a method in a subclass, which violates the 
extension rule. Smalltalk's method overriding rule is slightly stronger than it first appears, 
due to the syntactic checking that is carried out upon the distinctive infix message syntax. 
For example, in the Smalltalk expression: 

myArray at: 3 put: 42. 
 

the at:put: message requires exactly two arguments, one inserted after each colon, though 
the precise types of these arguments cannot be specified. If this method were overridden, 
the replacement method would have exactly the same name and so it would expect 
exactly the same number of arguments. This allows us to assert that Smalltalk has a 
rudimentary interface check in its method overriding. However, we cannot say that the 
arity of methods is statically checked against invocations, since a message with fewer 
arguments would simply be considered a different method instead. 

Objective C [8] allows the programmer to mix plain C code, which is statically 
checked according to the rules of C, with dynamically checked object message 
expressions, written in the same style as Smalltalk. By default, all objects have the static 
type id, the base type of all object references. A variation on this is where the 
programmer may assert that an object is of a more specific object type than id. This does 
not affect the dynamic binding of methods, but does allow a compiler to check whether a 
method of a given name exists for that type. Given the contrasting declarations: 
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id squareOne; 
Shape * squareTwo; 
 

messages sent to squareOne will not be statically checked, but messages sent to 
squareTwo can be checked to see if they are defined for objects of at least the type 
Shape* (pointer to Shape). A further feature of Objective C is the ability to attach type 
protocols (an early foreshadowing of Java interfaces) to any class, independent of its 
position in the class hierarchy. Variables bearing a protocol-type may be checked in a 
similar fashion. Smalltalk and Objective C ultimately have weak syntactic type checking. 
It is possible in either language to write expressions which compile, but fail at runtime 
due to type-related errors. 

4 C++ AND JAVA 

Two languages which come closer to following the syntactic rules of subtyping are C++ 
[9] and Java [10]. Variables are strongly typed in both languages, such that all 
expressions may be checked against the declared types of methods. By default, C++ 
binds methods statically unless you request dynamic binding (with the virtual keyword). 
Java's methods are dynamically bound, unless marked final, in which case compilers may 
choose to bind them statically, since they will never be overridden. 

Like Smalltalk, these languages expect a subclass to add to the methods of a 
superclass. Although it is still possible to derail methods in C++ and Java, the temptation 
to do this is much reduced. Smalltalk's dependence on derailment arises from having only 
a single classification hierarchy in which to factor out all behaviours. As a result, some 
generic methods are declared which do not strictly apply to every subclass. By contrast, it 
is possible to apply multiple and overlapping classification schemes in C++ using 
multiple inheritance; and in Java using interfaces. In any case, the C++ programming 
culture tends to avoid large, monolithic class hierarchies. 

A different threat to C++ comes through public, protected and private modes of 
inheritance. Only in the public form of inheritance does a subclass inherit the method 
interface of its superclass unchanged; in the other two forms, inherited methods become 
secrets of the subclass. This is equivalent to withdrawing a method in a subclass; 
however, the C++ compiler recognises that this violates subtyping and correctly disallows 
aliasing through superclass variables. Friend-declarations in C++ are a different matter, 
which we consider alongside selective exports in Eiffel, below. 

The method overriding rule in C++ and Java expects a replacement method to 
have exactly the same type signature as the original. This is actually more restrictive than 
the function subtyping rule requires - more general argument types and more specific 
result types are allowed in a subtype method, even if accepting more general arguments 
has limited practical application [3]. Another reason lies behind the choice of this 
simpler, but stricter rule. 
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In both languages, method names are not unique within a class, but overloaded 
versions may exist, so long as they can be distinguished by the types of their arguments: 

void setDate(int, int, int); // set using day, month, year 
void setDate(String);  // set using "dd/mm/yy" string 
 

A compiler must be able to resolve the most specific type of an expression to select a 
unique overload. In C++, this requires a complex series of type conversions. It is difficult 
to combine this with a mechanism for inferring which of several overloaded versions 
should be replaced by a more specialised method type (the same replacement might 
apparently override more than one original version). So, for this pragmatic reason, 
overriding is restricted to methods having exactly the same type. Some recent C++ 
compilers allow the returned self-type (the type of this, the current object) to be 
specialised during method overriding, since overloading is resolved using argument types 
alone. 

In terms of the syntactic rules of subtyping, Java and C++ are fairly secure. The 
weakness in C++ comes from the ease with which a programmer can override the type 
system and convert one type into another, even when this is not suitable. C++ allows both 
explicit and implicit type coercions between its numeric, character and boolean types, 
often losing information in the process (eg a long int converted up to a float). The most 
potentially damaging use of typecasting is where the type information attached to a 
pointer is thrown away ("casting to void*") or the pointer is converted arbitrarily into 
another pointer type. For example: 

Square* mySquare = (Square*) myShape; 
 

is only safe if myShape holds an object pointer of at least the type Square*, but in 
practice it could hold any type of pointer. The typecast (Square*) is not checked in C++, 
such that a program could continue to run with an unsuitable value in mySquare, leading 
to a system crash. In Java, this kind of type conversion is checked at runtime, rasing an 
exception if myShape does not refer to an object of at least the Square type. Modern C++ 
has tried to address this problem by advising programmers to use the similarly-checked 
type-conversion operators static_cast, dynamic_cast and const_cast, instead of simply 
retyping variables. 

C++ promotes the use of both value and reference types (here, we mean pointers), 
which has extra implications for the implementation schema. Exact typing (box 1 in 
figure 1) allows the compiler to reserve the exact amount of storage required for an 
object, or a pointer. Subtyping (box 2 in figure 1) is subject to different physical 
constraints for values and pointers. A pointer can be coerced to a supertype without 
difficulty and the primary data is preserved via one level of indirection, though access is 
limited to those fields declared in the supertype. A value can be coerced to a supertype, 
but any additional subclass fields are truncated, since storage is allocated in the variable 
itself, rather than via one level of indirection. For this reason, no dynamic binding can be 
applied to value-types. 
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C++ also has a parametric type mechanism, known as templates. Our theory does 
not yet include a treatment of parametric types. However, C++ does not check template 
class definitions; instead, the compiler only checks fully instantiated templates, which are 
no different from regular classes. Our existing rules may handle these. 

5 EIFFEL AND TRELLIS 

Eiffel [6] is one language that can be evaluated against both the syntactic and semantic 
subtyping rules, since it supports object and method specification using executable 
assertions. Checking Eiffel's syntactic type system is still a challenge, as it offers three 
different type mechanisms, known as conformance, constrained genericity and type 
anchoring: 

• conformance is the regular class-subclass type compatibility relationship; 
• constrained genericity is a parametric typing mechanism with class constraints; 
• type anchoring is an entirely novel mechanism linking the types of variables. 

We only have space to consider the first of these mechanisms in the current article; the 
other two mechanisms are based on insights that will form the basis for a complete re-
appraisal of the formal notion of class and classification in a later article. 

Like other languages, Eiffel expects a subclass to add to the methods of its 
superclasses and possibly redefine some. Early versions of the language ran into 
problems over selective inheritance, whereby a subclass could withdraw a method that 
was exported (ie declared public) in a superclass. From version 3.0 this was fixed and the 
default behaviour is to inherit all export declarations unchanged. However, selective 
inheritance crept in via the back door with the undefinition mechanism, whereby a 
method's effective implementation could be suspended in a subclass, turning it back into 
a deferred (ie abstract) method. While this appears to obey the letter of the law (the 
method remains in the subclass's public interface), it breaks the spirit of the law (it is 
illegal to invoke non-implemented methods) and we cite method derailment as a 
precedent! 

Eiffel's overriding rules are ambitious. Not only can you replace methods with 
retyped versions, but you can also redefine attribute types in a subclass. Unfortunately, 
Eiffel's overriding rules are faulty from the viewpoint of subtyping. This was the 
infamous "Eiffel type failure" headline in 1989 [3]. Eiffel assumes that everything may be 
uniformly specialised in a subclass: attributes, method arguments and method results. 

This rubs up against strict subtyping in two places. Firstly, it is incorrect to 
specialise method arguments in an overriding method. This violates the contravariant 
requirement for argument-types, which asserts that these can only be more general in a 
subtype method [1]. Secondly, the specialisation of attributes only works for attribute 
access. At some point, an attribute must also be initialised by assignment. The assignment 
operation may formally be considered to have the type signature: assign : τ → void, 
where τ is the type of the value being assigned to the attribute. It is clear that 
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contravariance is violated if a more specialised value of type σ is assigned: assign : σ → 
void. Figure 2 shows how breaking contravariance may potentially lead to a runtime 
crash (this example uses Eiffel 5.0 syntax): 

class POINT 
create make   -- declare initialiser-method for a point 
feature {ANY}   -- public read-only access to attributes and methods 
 x, y : INTEGER; -- coordinates of a point, initially 0 by default 
 make(nx, ny : INTEGER) is do x := nx; y := ny end; 
 equal(other : POINT) : BOOLEAN is 
  do Result := (x = other.x and y = other.y) end 
end -- POINT 

class HOTPOINT inherit POINT 
 redefine equal  -- with unsafe covariant argument specialisation 
feature {ANY} 
 on : BOOLEAN; -- currently selected, initially false by default 
 toggle is do on := not on end; 
 equal(other : HOTPOINT) : BOOLEAN is 
  do Result  := (x = other.x and y = other.y and on = other.on) end 
end -- HOTPOINT 

genpt, point : POINT;  -- declarations 
hotpt : HOTPOINT; 
same : BOOLEAN; 

create point.make(3, 5);  -- create standard point at (3, 5) 
create hotpt.make(3, 5);  -- create hotpt at (3, 5) with on = false by default 
genpt := hotpt;   -- alias hotpt through genpt variable 
same := genpt.equal(point); -- invoke hotpt's equal, with only a point arg!! 

Figure 2: Eiffel Covariant Type Failure Example 

The salient issue is that equal : POINT → BOOLEAN is replaced by equal : HOTPOINT 
→ BOOLEAN, incorrectly specialising the argument type. When the replacement method 
is invoked through the general variable genpt : POINT, statically it appears to be safe to 
supply point : POINT as its argument. However, when HOTPOINT's equal method 
executes by dynamic binding, it tries to access the non-existent on attribute of this plain 
POINT argument. If unchecked, this will cause a memory segmentation fault. 

Eiffel's designer eventually decided to fix both of these problems in a non-
standard way [11]. Rather than change the type rules to obey strict subtyping, covariant 
argument-type redefinitions are flagged, such that unsafe combinations of aliasing and 
polymorphic invocation are detected immediately. The same technique is used to trap the 
polymorphic invocation of methods which have been suspended in descendent classes 
(both are known as polymorphic CAT-calls, standing for change in availability or type). 
Technically, this solution works, although mathematically it does not address the basic 
soundess issue. 
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By contrast, Eiffel's semantic redefintion rules follow exactly the semantic 
subtyping requirements as stated in section 2 above. This means there is an inconsistency 
between Eiffel's syntactic and semantic redefinition rules: the conflict is over redefined 
method arguments, between the precondition weakening rule and the (incorrect) 
argument specialisation rule. One accepts more, the other less. Paradoxically, the correct 
semantic rules were derived by thinking about contracts between client and supplier 
objects. The language Trellis [4] applies the same thinking to its syntactic type rules, in 
which redefined method arguments may only become more general. Trellis is the only 
language in our survey whose syntactic type rules follow exactly the subtyping 
requirements in section 2. 

A different type-related issue is raised by Eiffel's selective export mechanism. A 
class may export separate lists of features to ANY (public visibility), to NONE (protected 
visibility) or to an arbitrary set of client classes. This has the curious consequence that the 
public interface of a class may appear to change, depending on who its client is! Types 
are no longer fixed, but are chameleon-like interfaces that change colour according to 
context. C++ raises similar issues with its friend declarations. Arbitrary functions, or 
whole classes, may be declared a friend of another class, in which case the friends have 
total freedom of access. So, the public interface of a class may appear different to its 
friends than to other clients. Friendship declarations are not inherited. So, aliasing an 
object through a superclass variable offering extra friendship privileges may break its 
intended encapsulation. Eiffel's selective exports are inherited unchanged, which is better. 

6 CONCLUSION 

The subtyping inquisition has bared the type systems of several popular object-oriented 
languages and found most of them guilty of violating subtyping in one way or another. 
Syntactically sound subtyping is exhibited by Trellis and Java, although Java is less 
flexible in its redefinition rule. C++ would be as good as Java, were it not for unchecked 
typecasting. Eiffel is retrospectively type-safe, due to the polymorphic CAT-call rule, 
even though it strictly violates soundness. None of the surveyed languages apart from 
Eiffel seriously promote verifying the behaviour of a class. Where full use is made of 
Eiffel's assertion mechanism, then a subclass may be shown to conform to the behaviour 
of its parent class. However, in all these languages, it is still possible to redefine methods 
to execute in arbitrary ways, resulting in unpredictable behaviour in substitutable 
components. 

The fact that these faults do not give rise to system crashes more often than they 
do is explained mostly by the fact that programmers strive to write code in a consistent 
way, adopting style guidelines over and above what the type systems are capable of 
checking. It typically takes more than one unusual circumstance to trigger a type-related 
fault - for example, the Eiffel type-failure examples [3] were manufactured 
retrospectively by theoreticians, working backwards from the formal rules of subtyping. 
Up until that point, no system failures had been reported as being due to this particular 
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fault. In practice, you are less likely to want to compare a HOTPOINT with a more 
general POINT than you are with another object of the same type. So, how is it that 
subtyping cannot express this? Such will be the focus of the next article in the series. 
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