
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 3, May-June 2003

Cite this article as follows: G. and I. Alkadi: “Application of a Revised DIT Metric to Redesgin an
OO Design”, in Journal of Object Technology, vol. 2, no. 3, May-June 2003, pp. 127-134.
http://www.jot.fm/issues/issue_2003_05/article3

Application of a Revised DIT Metric to
Redesign an OO Design

Ghassan Alkadi, Southeastern Louisiana University, USA.
Ihssan Alkadi, University of Louisiana at Lafayette, USA.

Abstract
In this paper, we continue a series of papers that discuss specific design metrics [Alkadi
1999] [Alkadi 2000] [Alkadi 2001] [Alkadi 1998]. The design metric discussed in this
paper is the Depth of Inheritance [DIT] metric. Design evaluation is a recurring step that
should be performed and checked multiple times before committing to the final design
implementation. Metrics are utilized to evaluate inheritance and reuse in order to take
into account the greater number of abstraction levels inherent in object-oriented
systems. Furthermore, they facilitate the designers to address cost estimation and
product quality across all life-cycle stages of developing the final product.

1 INTRODUCTION

Inheritance is a relationship among classes wherein one class shares the structure or
behavior defined in one (single inheritance) or more (multiple inheritance) classes
[Booch, 1991]. Single inheritance occurs when a subclass inherits behavior of some
superclass. A subclass may change the behavior or structure of some superclass. Multiple
inheritance occurs when a subclass inherits from multiple superclasses. Inheritance
reduces redundancy in the code and thereby increases its efficiency. DIT is the number of
ancestor classes that can affect a class. The deeper a class is in the hierarchy, the higher
the degree of methods inheritance, making it more complex to predict its behavior.
[Chidamber, S., Kemerer 1991] [Chidamber, S., Kemerer 1994] introduced a metrics
suite for object-oriented designs. [Chidamber, S., Kemerer 1991] Chidamber, S., Kemerer
1994] formally evaluated the metrics against a widely accepted list of software metric
evaluation criteria. They claimed that such measures applied in a software system could
be used to aid management in:

• Estimating the cost and schedule of future projects,
• Evaluating the productivity impacts of new tools and techniques,
• Establishing productivity trends over time,

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_05/article3

 APPLICATION OF A REVISED DIT METRIC TO REDESIGN AN OO DESIGN

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

• Improving software quality,
• Forecasting future staffing needs, and
• Anticipating and reducing future maintenance requirements.

The inheritance hierarchy has a root and leaves. The depth of inheritance of a leaf is
always greater than that of the root [Chidamber, S., Kemerer 1991]. The DIT(C) is the
distance from class C to the root. If multiple inheritance exists, then the DIT is the
longest path for the distance. It is a system-level metric that indicates how many levels of
inheritance have to be investigated for evaluating the whole class hierarchy. The deeper
the class, the greater the number of methods to inherit, thus making it difficult to
maintain. Increased difficulty in maintenance is likely because of the introduction of
more public and protected methods. In addition, the introduction of more public and
private methods increases the chances of extensions and overrides, which in return
increases the difficulty of testing [Lorenz, M., Kidd 1994]. [Basili, V., Briand, L., Melo
1996] introduced a hypothesis ‘H-DIT’ for the DIT metric. They suggested that well-
designed object-oriented systems are those structured as forests of classes, rather than as
one very large lattice. [Basili, V., Briand, L., Melo 1996] also suggested that a class
located deeper in a class lattice is more fault-prone because the class inherits a large
number of definitions from its ancestors. Moreover, deep hierarchies imply problems of
conceptual integrity, i.e.; it becomes unclear which class to specialize from in order to
include a subclass in the inheritance hierarchy [Daly, J., Brooks, A., Miller, J., Roper, J.,
Wood 1996].

2 REDESIGN USING DIT METRIC

We now define the methods to use the DIT metric as a part of the redesign process. A
class hierarchy in a structure tree has a base called the root. A low number of levels in a
hierarchy suggests difficulties in finding the abstractions and specializations to optimize
reuse through inheritance. On the other hand, a large number of levels suggests no
subclassing by specialization (is-a) [Lorenz, M., Kidd 1994].

An example of subclassing by type is shown in Figure 1. There are some car models
produced by GM corporation that have similar specifications and looks but different
names, for instance the Chevy Tahoe and the GMC Yukon. The Tahoe is a subclass under
Chevy trucks whereas the Yukon is a subclass under GMC trucks. GMC trucks are at the
same level of the Chevy object and one level above the Yukon. If we merge the Yukon
truck with the Chevy Tahoe, we reduce testing and reuse code more efficiently. The new
tree is depicted in Figure 2. [9] introduced a Hypothesis-DIT ‘H-DIT’ for the DIT metric.
They suggested that well-designed object-oriented systems are those structured as forests
of classes, rather than as one very large lattice.

REDESIGN USING DIT METRIC

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 129

Fig. 1 Subclassing by type

Fig. 2 Subclassing by type after using code reuse

We define a Depth of Inheritance Tree (DIT) algorithm to determine whether we need to
extend the number of levels in a class hierarchy. We then introduce examples to show
how the algorithm works. The algorithm is given in Figure 3. In the DIT algorithm, we
use thresholds where the minimum level of a tree is 2 and the maximum is 6 levels. These
thresholds are based on the recommendations of [Henderson-Sellers 1996], [Lorenz, M.,
Kidd 1994] and [Basili, V., Briand, L., Melo 1996].

The DIT algorithm determines if we need to extend the number of levels in a
hierarchy by checking the degree of similar methods “inherited” and instance variables
used among the objects in one level. After we find the objects that are most similar in the
use of inherited methods; we then rank them by using the ranking factor, Pi. After we sort
the percentages, we then make the second highest ranked object obtained from the sorting
procedure the child of the highest ranked object. This process results in adding one level

 APPLICATION OF A REVISED DIT METRIC TO REDESIGN AN OO DESIGN

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

to the hierarchy. We show an example of a hierarchy tree that is depicted in Figure 4
where the number of levels is greater than 6. Let us assume that the number of levels is 7.
So, the two levels to be affected by this algorithm are only the sixth and seventh levels.
Classes C2 and C3 are merged with class C1 without affecting any of the levels preceding
level 6 in the class hierarchy.

Fig. 3 DIT Algorithm

We show another example where the number of levels is less than 2, and more than one
object exists in the child’s level. Figure 5 shows the class hierarchy for the example.

DIT Algorithm
Let Tlmin be the minimum number of levels in a class hierarchy, where Tlmin ≥ 2.
Let Tlmax be the maximum number of levels in a class hierarchy, where Tlmax ≤ 6.
Let Poj be the percentage of inherited methods in object oj.

Max n
∀

 =

objects in a class hierarchy
measure path from the root

depth of the tree =

Algorithm_DIT(n);
Begin
If (n < Tlmin) and number of subclasses < 2 Then
 Delete_object() /* Check if it should exist at all in the hierarchy*/
Else
If (n < Tlmin) Then
 Rank objects at level n by similarity, using percentages of inherited methods
 PIM Pi as a ranking factor;
 Rank_objects(n);
 Make the second highest ranked object the child of the highest ranked object
 (Thus adding one level to the hierarchy tree);
Else
If (n > Tlmax) Then
 Merge all objects at level n with parent at level n-1;
 Call Algorithm_DIT(n-1);
Else
 No action required;
Endif;
Return;

Rank_Objects(n);
Begin
 A = array [1..Nn];
 for each object oj, j=1.. Nn

 , where Nn = total number of objects at level n
 A[j] = Poj; /* Percentage of inherited methods in object oj */
 Sort(A); /* A[1] = highest ranking */
 Return A;
End Rank_Objects;
End Algorithm_DIT;

REDESIGN USING DIT METRIC

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 131

After we apply the DIT algorithm, we make object class C4 the child of C2 based on the
percentage of inherited methods in each class. The class hierarchy changes in depth,
which utilizes the inheritance property and recommends a depth of at least two levels.

Fig. 4 Hierarchy of Depth 1

Fig. 5 Hierarchy of Depth of 1 and with more than 1 child

 APPLICATION OF A REVISED DIT METRIC TO REDESIGN AN OO DESIGN

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

Fig. 6 Hierarchy of Depth 2 after applying DIT algorithm

Also, it should be noted that the change made is minimal and did not affect the original
design. The new class hierarchy is shown in Figure 6. The hierarchy in Figure 6 shows
that the inheritance characteristic is more efficiently utilized than the hierarchy in Figure
7. Moreover, rather than deleting the hierarchy in Figure 7 since it had an inheritance
depth of 1, we extended the hierarchy by 1 level and therefore, justified its existence.
Since half of the methods existing in class object C4 are inherited methods, this situation
will not affect the structure or the behavior of this because C4 is still inheriting those
methods from the root. The overridden and the pure methods in C4 will remain the same
without the need for changing their structure. The DIT algorithm also works in the same
manner for a hierarchy that has depth larger than 6 levels.

3 SUMMARY

There are numerous advantages from using the metrics algorithms. The designer can see
the difference in the hierarchy structure instantly right after he/she applies the DIT
algorithm. The deeper the class, the greater the number of methods to inherit, making the
class difficult to maintain. Increased difficulty in maintenance is likely because of the
introduction of more public and protected methods. In addition, the introduction of more
public and private methods increases the chances of extensions and overrides, which in
return increases the difficulty of testing. There is greater potential reuse of inherited
methods if the depth is > 2 since reuse further specializes the superclass type of object.
However, we indicated that any depth > 6 is enough since more levels indicate the
possibility of not subclassing by specialization (is-a) but rather implementation
subclassing. Keeping this in mind, we defined the DIT algorithm that determines whether
we need to extend the number of levels in a class hierarchy or reduce it. The examples

SUMMARY

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 133

that we showed illustrated the importance of using the DIT metric. The class hierarchy
changed in depth, which utilized the inheritance property with minimum design changes

REFERENCES

[Alkadi1999] Alkadi, G. “Restructuring Object-Oriented Designs Using A Metric-
Driven Approach,” A Dissertation submitted to the computer science
department, May 1999.

[Alkadi2000] Alkadi, G., Alkadi, I. “Applying A Revised CBO Metric To Redesign
an OO Design,” Proceedings of the Southern Conference on
Computing, The University of Southern Mississippi, October 26-28,
2000.

[Alkadi2001] Alkadi, G., Alkadi, I. “Applying A Revised RFC Metric to Redesign
An OO Design,” IEEE Aerospace Conference, Big Sky, Montana,
March 2001.

[Alkadi1998] Alkadi, G., Carver, D. “Application of Metrics to Object-Oriented
Designs,” Proceedings of the 1998 IEEE Aerospace Conference, March
1998.

[Booch1991] Booch, G. Object Oriented Design with Applications,
(Benjamin/Cummings Publishing Co., Inc. 1991.)

[Chidamber1991]Chidamber, S., Kemerer, C. “Towards a Metric Suite for Object
Oriented Design,” Sloan School of Management, MIT, OOPSLA 91,
pp. 197-211.

[Chidamber1994]Chidamber, S., Kemerer, C. “A Metrics Suite For Object Oriented
Design,” IEEE Transactions on Software Engineering, Vol. 20, No. (6),
June 1994, pp. 476 - 493.

[Lorenz1994] Lorenz, M., Kidd, J. Object Oriented Software Metrics, (Prentice Hall,
1994).

[Basili1996] Basili, V., Briand, L., Melo, W. “A Validation of Object-Oriented
Design Metrics as Quality Indicators,” IEEE Transactions on Software
Engineering, Vol. 22, No. 10, October 1996, pp. 751 – 761.

[Daly1996] Daly, J., Brooks, A., Miller, J., Ropber, J., Wood, M. “The Effect of
Inheritance Depth on the Maintainability of Object-Oriented Software,”
Empirical Software Engineering: An International Journal, Vol. 1, no,
2, February 1996.

[Henderson1996] Henderson-Sellers, B. Object-Oriented Metrics, Measures of
Complexity, The Object Oriented Series, (Prentice Hall, 1996).

 APPLICATION OF A REVISED DIT METRIC TO REDESIGN AN OO DESIGN

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

About the authors
Ghassan Alkadi is on the faculty at Southeastern Louisiana University (SLU). He
received his B.S. Degree in Computer Science at SLU, May 1985. In December 1991 he
earned his MS. In Systems Science fromLouisiana State University (LSU). He earned his
Doctoral degree in Computer Science at LSU. His areas of expertise include software
engineering in general, testing in particular, Internet, HTML, and operating systems. His
research interests include testing in object oriented systems, systems Design, and
programming languages. Email: galkadi@selu.edu

Ihssan Alkadi is on the faculty at University of Louisiana at Lafayette
(ULL). He received his B.S. Degree in Computer Science at SLU, May
1985. In May 1992 he earned his MS. In Systems Science
fromLouisiana State University (LSU). He earned his Doctoral degree
in Computer Science at LSU. His areas of expertise include software
engineering in general, testing in particular, Internet, HTML, and

operating systems. His research interests include testing in object oriented systems,
systems validation, and system verification. Email: ialkadi@louisiana.edu

mailto:galkadi@selu.edu
mailto:ialkadi@louisiana.edu

