
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 3, May-June 2003

Cite this article as follows: George Fernandez, Liping Zhao and Inji Wijiegunaratne: “Design
Patterns for a Federation Architecture”, in Journal of Object Technology, vol. 2, no. 3, May-June
2003, pp. 135-149. http://www.jot.fm/issues/issue_2003_05/article4

Patterns for Federated Architecture

George Fernandez, Royal Melbourne Institute of Technology, Australia
Liping Zhao, UMIST, U.K.
Inji Wijegunaratne, Medibank Private, Australia

Abstract
An enterprise federated architecture intends to mirror the structure of the organisation,
aiming to provide better support for both new and legacy applications within a
distributed environment and facilitating data exchange between applications to support
information integration. Under this architectural form, the organisation’s information
systems are separated out into autonomous co-operating application clusters, each
connected to a message-oriented federal highway acting as the vehicle for inter-domain
communication. The federated approach intends to avoid unnecessary coupling (in the
distributed computing sense) by grouping highly interdependent modules and
applications into domains, whilst minimising the strength of inter-domain connections.
This article presents how to design a distributed federated architectural form using three
architectural patterns, and shows how these three patterns are to be connected to
comply with the specification of the the federated form.

1 MOTIVATION

Let us consider this example: SafetyNet Insurance started as a small Australian company
selling house and car insurance, but it expanded very quickly by merging with another
company specialised in life insurance. The merger was to take advantage of the synergies
between the different insurance products by offering their customers discounts and other
advantages if they were loyal to the company by conducting all their business with
SafetyNet. Based on the success of their sales force, the organisation expanded with
branches in other capital cities in Australia. It was considered crucial that salespeople
maintained at least the same level of satisfaction with their jobs, so new incentive
schemes were introduced to reward the high selling branches, salespersons, etc.

The inital attempts to provide the necessary information for the new way of doing
business were paper or file based. Lists of customers, sales, policy information, and other
data were exchanged on paper or via files by Head Office and the different branches and
groups within their branches, such as General insurance, Life Insurance, Human
Resources, Finance, Actuarial Services, and Management Information Systems. Very
soon a stream of problems started to emerge:

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_05/article4

DESIGN PATTERNS FOR A FEDERATION ARCHITECTURE

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

1. The processing of an agent's commission is slow and unreliable. The processing
of an agent's commission is housed at Head Office on a central computer that also
runs another mission-critical legacy application. Each time a new insurance policy
is issued by a branch, the sale information is manually loaded into a local client
application, and a transaction with the central system is fired to update the
commission of the employee. However, the central computer is slow, and many
times the transaction is left hanging with the branch waiting for the system to
respond. Often, the transaction times out, and it is necessary to kill the process
and start over, frustrating the branches who get bogged down with the agent's
commission, which is not even their problem. Adding to their frustration, staff
members at Head Office are not very responsive when transaction logs are
required back at branch level, it takes up to a week to get them, and branch staff
are always under pressure to finish their reports on time. The solution of replacing
the central computer is perceived as too expensive and risky by management, but
they are considering it because they would like to furnish their sales force with
mobile computers to do the data entry only once, and issue invoices directly when
they are in the field.

2. Identifying spending patterns to reward good customers proved to be more
difficult than expected. In the first instance, some of the applications were already
interconnected by the use of files, so the same strategy was used to connect the
remaining ones. Nightly processes performed the updates. However, this not only
has increased significantly the number of required files, but since these files
represent point-to-point connections, their format is dependent on the
requirements of the two intervening applications. This situation quickly
degenerated in a maintenance nightmare, and something had to be done before
integrating the new systems.

3. The IT staff members are unhappy about the complexity of the systems. The
impact of a change is always extensive, and this affects their capacity to respond
rapidly to user requests. Furthermore, because of real-time interactions between
functions of different modules, the system cannot function without all its
components, so whenever a problem occurs, the department is under big pressure
to fix the problem immediately. If a problem occurs with the invoicing system,
this often means that invoicing needs to be off-line for half a working day, and
this can cause a major problem in the company since the absence of a working
invoicing module also affects policy data entry. This will be even more significant
to SafetyNet’s operations when they want to start issuing invoices in the field
since this type of problems occurs quite often and they feel they will be powerless
to take remedial action.

4. There are also important autonomy and privacy considerations troubling
SafetyNet. Because of the rewards structure, each branch is required to provide
insurance information to Head Office, where it is aggregated, analysed and made
public. This requirement is the same for all regardless of the type of insurance, but
Life Insurance groups are very concerned about this because of restrictive
confidentiality clauses. Also, since the different groups are in direct competition

MOTIVATION

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 137

with each other for the rewards, they would like to have complete control of the
information they are making available to the rest of the organisation, and group
managers have complained about this to top management.

5. Branch members are frustrated by the lack of autonomy. Branch members have
experienced that even when the computer system is working properly, when they
require a central service their operations are severely slowed down, often grinding
to a halt. More often than not they do not see the need to involve central systems
on essentially local operations. They want to keep a degree of autonomy, with
their own operations supported by local computer-based resources, which they
believe they can manage.

Although SafetyNet is a hypothetical company, their problems are certainly not
hypothetical. Although information technology was supposed to boost information flow
within an organisation, in many cases mostly this vision has not been realised. After
studying more than twenty-five companies over 2 years, Davenport et al [5] concluded:
“Many of their efforts to create information-based organisations—or even to implement
significant information management initiatives—have failed or are in the path to failure.”
They asserted that one of the main reasons for these failures was that information politics
had not been taken into account when implementing the information infrastructure. They
analysed different information models commonly found in organisations and proposed
federalism as one of the most promising models in today's business environments,
because it recognises the importance of organisational politics, and favours the use of
negotiation to bring together disparate or non-cooperating parties.

2 THE FEDERATION ARCHITECTURE

Motivated by the idea of federalism, Wijegunaratne and Fernandez [12][13] proposed an
event-driven distributed federated architectural form to enable organisation-wide
distributed computing. The federated architecture intends to mirror the structure of an
organisation by clustering highly interdependent modules and applications into mostly
independent domains. This clustering tends to reflect the work pattern of autonomous
groups in an organisation, where each domain is, in terms of administration and
processing, isolated from other domains, possessing all the necessary capabilities to
support its own applications. Processing and administrative isolation of domains helps
reduce the complexity of the inter-domain connections. Sitting on the boundary of each
domain, a software module plays the role of domain interface or facilitator, to manage
and co-ordinate the information traffic of the domain with the rest of the federation. Via
this interface, each application domain is connected to a message-oriented federal
highway, to act as the vehicle for inter-domain communication and guarantee the delivery
of messages (see Figure 1).

DESIGN PATTERNS FOR A FEDERATION ARCHITECTURE

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

Fig.1: A federated architecture

In this federated architecture, interdomain communication is event-driven, based on a
publish-subscribe mechanism. The federated architecture reflects the way in which
organisational departments or units interact with each other: tightly integrated software
domains reflect tightly coupled people and business activities within a unit, each unit
cooperating with other groups mainly to exchange information. Thus, application systems
become the counterpart of the organisation, their architecture in context (of the
organisation) [8] reflecting organisational boundaries. Such an architecture enables
information exchange, and better supports distributed computing for both new and legacy
applications, thus providing an infrastructure for the organisation’s information
integration [6].

We have identified three patterns for designing the federated architecture. These
patterns characterise the structure of the federated architecture, and descibe how the
architecture reflects the structure of enterprise systems. In the following sections, we
present these federation patterns and describe how they are connected into a federated
architecture.

3 PATTERNS FOR A FEDERATED ARCHITECTURE

The three patterns we have identified are: THE FEDERATION, DEPENDENCY SEPARATION
and INTERFACE CONNECTION. THE FEDERATION describes the overall structure of the
federated architecture. Process dependencies are handled by DEPENDENCY SEPARATION.
Information exchanged between application domains is facilitated by INTERFACE
CONNECTION.

Our notion of pattern is in line with that of Alexander [1]. We believe that patterns
are connected. The connection of patterns and the sequence in which patterns are applied
give rise to pattern languages. Although there are only three patterns in our design, they
are connected into a pattern language which is used to describe and design the federated
architecture.

Domain 1

Domain 2

Domain 3

Federal Highway

Messages

Federation

Interface

Interface

Interface

PATTERNS FOR A FEDERATED ARCHITECTURE

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 139

Since the federated architecture intends to reflect the structure of many
organisations, patterns in this language are naturally connected to some of the Coplien
organisational patterns [3]. These patterns attempt to parallel the human and computer
system aspects of the organisation. As it happens in organisations, we argue that our
patterns can be connected to other patterns in a web of patterns.

In describing our patterns, we have used the Alexander pattern form ([1], pp.x-xi),
which has the following components:

First, there is a picture, which shows an archetypal example of the pattern. (Our
note: This has been omitted for brevity)

Second, after the picture, each pattern has an introductory paragraph, which
sets the context for the pattern, by explaining how it helps to complete certain
larger patterns.

Then there are three diamonds to mark the beginning of the problem.

After the diamonds there is a headline, in bold type. This headline gives the
essence of the problem in one or two sentences.

After the headline comes the body of the problem. This is the longest section …

Then, again in bold type, like the headline, is the solution -- the heart of the
pattern -- … This solution is always stated in the form of an instruction -- so
that you know exactly what you need to do, to build the pattern.

Then, after the solution, there is a diagram, which shows the solution in the
form of a diagram…

After the diagram, another three diamonds, to show that the main body of the
pattern is finished.

And finally, after the diamonds there is a paragraph which ties the pattern to all
those smaller patterns in the language, which are needed to complete this
pattern, to embellish it, to fill it out.

In addition, at the end of each pattern, we have used function notes to discuss other
similar patterns. The function notes are similar to the Known Uses or Related Patterns
in [7].

DESIGN PATTERNS FOR A FEDERATION ARCHITECTURE

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

4 PATTERN 1: THE FEDERATION

To function better, an organisation wants to make possible information sharing and
integration by developing organisation-wide distributed computing.

Information sharing and integration within an organisation is facilitated by a
systems architecture that supports consistent and reliable information flow between
different application systems.

To build such architecture, it is necessary to understand how information is
produced, who owns it, and how computer applications are placed to support
organisational work. It is typical of an organisation to be divided into groups with
considerable autonomy and decision-making power such as departments, divisions or cost
centres. These groups usually have their own computer systems, autonomous and
independent of systems of another group, to support their daily work. Information sharing
and integration require that these groups and their systems expose their information for
sharing.

However, sharing of computer information can be problematic, since it implies the
creation of inter-application connections. As a result, as demonstrated by the SafetyNet
example, the number and diversity of application to application connections becomes
unmanageable, and the autonomy and independence of applications can be compromised.
Sharing also entails a security problem, as it can be a threat to data privacy and integrity.

The aim should be to preserve applications independence and data integrity in an
organisation, and at the same time enabling them to gain access to each other’s
information in a controlled manner [12]. As seen in the SafetyNet example, serious
problems arise when interconnections do not reflect organisational structures: the
systems' scope of authority, command, and control do not reflect the groups' authority,
command, and control.

More than three decades ago, Melvin Conway [2] suggested that the structure of the
system should mirror the structure of the organisation that designed it. This has since
become known as Conway’s Law, and has been supported by many empirical studies
[3][10].

Coplien [4] explained why the homomorphism between the organisation and system
architecture is important:

Architecture is not so much about the software, but about the people who write
the software. The core principles of architecture, such as coupling and
cohesion, aren’t about the code. The code doesn’t care about how cohesive or
decoupled it is; if anything, tightly coupled software lacks some of the
performance snags found in more modular systems. But people do care about

PATTERN 1: THE FEDERATION

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 141

their coupling to other team members. The structure of the organization that
builds the software is homomorphic to the structure of the software; it’s not
always clear which is cause and which is the effect, so we’d better get both
right.

Architecture, like any system discipline, is about relationships between system
parts, and according to Conway, between people.

Davenport et al. [5] observed that a model that recognises organisational politics and
admits conflict would better reflect reality than a model of unstinting cooperation and
unfettered exchange of information. Thus, they suggested federalism as a preferred
archetype, where potentially competing or non-cooperating parties are brought together
by negotiation.

Therefore,
Identify closely related (people and suporting systems) activities in an organisation,
along geographical, process, or functional lines. Divide thus the organisation into
clusters (domains) with their own administrative and control mechanisms, and
supporting systems. The internals of a domain are to be opaque to other domains.
Let domains communicate exclusively via messages to be placed on a federal
organisation-wide information highway guaranteeing message delivery. Data flow is
only by a domain publishing, and other domains subscribing to, specified agreed
upon information. A domain itself can consist of a federation; therefore, in this
sense, this federation pattern is recursive.

Inter-domain process dependencies must be resolved correctly to ensure effective
information flow. THE FEDERATION needs the support from DEPENDENCY
SEPARATION.

Function notes:

Alexander observed the importance of the congruence between physical spaces and social
spaces. He proposed to make the physical structure of a building conform to the structure
of social spaces – STRUCTURE FOLLOWS SOCIAL SPACES ([1], pp. 940-945). THE
FEDERATION intends to reflect the information ‘working space’ of organisations.

THE FEDERATION architectural style is a popular approach for agent systems [9].
In a multi-agent system, agents communicate with each other to exchange information
and services. This can include direct communication, in which agents handle their own
co-ordination; assisted co-ordination, in which agents rely on special co-ordination
systems; and federated systems, in which agents communicate directly to their local
facilitators, which in turn communicate with agents on different locations. The structure
of an agent-based federated system is illustrated in Figure 2, where agents are located in

DESIGN PATTERNS FOR A FEDERATION ARCHITECTURE

142 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

three different computers, A, B, and C. Each computer has a local facilitator as a contact
point for the agents within the computer, and for other facilitators in other computers.

Fig. 2: A federated agent communication system (after [9])

5 PATTERN 2: DEPENDENCY SEPARATION

This pattern enables THE FEDERATION by resolving dependencies between
applications within domains.

Grouping applications into clusters or domains reduces the number of required
connections between applications; domains exchange information only in terms of
messages. Within a domain, all inter-application dependencies and connections are
allowed.

Wijegunaratne and Fernandez [12] noted that dependencies between applications
stemmed from the way people activities were conducted by an organisation.
Dependencies in software ought to reflect an organisation’s form of business activities,
they should be the result of the way the organisation chooses to work and, therefore, the
nature of the dependencies must be made explicit in the architecture. They have identified
the following types of software dependency stemming from people's activities:

1. Processing Dependency. An application module requires some work to be carried
out remotely by other application modules in order to complete its own
processing. Processing dependency may fall into two categories:
− Simple Processing Dependency where an application module needs another

(probably remote) application module to perform some task before it can
proceed or complete processing. This is a simple dependency.

A B

C

Facilitator

AgentAgent Agent

Agent

Facilitator

AgentAgent Agent

Facilitator

PATTERN 2: DEPENDENCY SEPARATION

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 143

− Transactional Dependency where an application module requires several
application modules on different, probably remote, sites to carry out some task
before it can progress. The operations must be carried out in an 'all or nothing'
fashion, such as in a banking transaction.

2. Informational Dependency. An application module needs to convey some
information to one or more remote application modules as a consequence of some
event within its jurisdiction.

Wijegunaratne and Fernandez suggested that these dependencies should be ranked
according to the coupling (in the distributed computing sense [12][14]) they introduce in
the system. The highest coupling corresponds to transactional dependencies, followed by
simple processing dependencies, while informational dependencies represent the loosest
coupling between applications. Problems may arise when dependencies with lower
coupling (a requirement matter) are implemented as an interaction (a design issue) with
higher coupling, such as when an informational dependency is unnecessarily
implemented as a transaction, because they reduce application independence. This can be
seen in the SafetyNet systems (Problems 1, 3 and 5 above), when the agent's commission
(an informational dependency) is implemented as a transaction, because then local
system's autonomy is unnecessarily curtailed by central processing, and local
administrators resent their systems performance being degraded by slow and unreliable
remote processing.

Two modules linked by informational dependencies can be connected by messages
apprpriately triggered by local events. Further more, since there is no processing
dependency involved, the communication may be asynchronous—the recipient does not
even need to be available for the sender to hand the message over to the delivery
mechanism—thereby enhancing application independence. Processing dependencies
introduce tighter coupling than informational ones and, therefore, they impinge on
domain independence; this goes against the natural tendency to remain autonomous of the
groups that the domains represent. Wijegunaratne and Fernandez concluded that it would
be possible to achieve the domains’ required processing and administrative isolations if
only informational dependencies were allowed between domains.

This separation is not always possible. Sometimes, a processing (simple or
transactional) dependency exists between modules. If this is so, the modules must belong
to the same domain. However, if the domain boundaries have been determined following
natural orgnisational fissures, it is highly unlikely that a processing dependency cannot be
reformulated as an informational one. Therefore, domains must be demarcated such that
processing dependencies between domains are able to be restructured into informational
dependencies. Although within a domain processing and informational dependencies may
co-exist, it is also desirable to restructure dependencies the same way.

DESIGN PATTERNS FOR A FEDERATION ARCHITECTURE

144 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

Therefore,
Identify processing and informational dependencies according to the organisation’s
rules, policies and business activities. Treat the dependencies in the following order.

1. Translate processing (transactional and simple) dependencies into
informational dependencies to ensure that no processing dependencies exist
between applications belonging to different domains.

2. Within each domain, while both processing and informational dependencies
can co-exist, wherever possible: (a) translate processing dependencies into
informational dependencies and (b) translate transactional dependencies into
simple processing or informational dependencies.

Application dependencies within THE FEDERATION architecture have now been dealt
with by DEPENDENCY SEPARATION. It is the time to provide support for domains
information exchange – INTERFACE CONNECTION.

6 PATTERN 3: INTERFACE CONNECTION

THE FEDERATION and DEPENDENCY SEPARATION have resolved inter-domain
and inter-application dependencies. This pattern connects domains for organisation-wide
information exchange and integration.

Federal, organisation-wide information exchange requires interoperation between
the domains. To minimise individual domain effort, a domain-based communication
mechanism should be established to make possible information flow.

Given n applications there can be up to n*(n-1)/2 application-to-application
links, as shown in Figure 3. Point to point application interfaces proliferate rapidly as n
increases.

Fig.3: N applications with N(N-1)/2 inter-communication channels (After [11])

PATTERN 3: INTERFACE CONNECTION

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 145

Too many inter-application links threaten application integrity and make applications
difficult to maintain and adapt. An error, an abnormal condition, or a “hanging running
module” occurring at run-time in an application can propagate to a large number of
applications; a change to an application will also affect a larger number of other tightly
coupled applications. Meyer [11] proposed a solution called Few Interfaces to reduce the
number of communication channels, in which there is a centralised “boss” application
responsible for inter-application communication. With this solution, inter-application
links have been reduced to a minimum number of n-1.

Fig. 4: N applications with (N-1)/2 inter-communication channels (After [11])

But this solution simply redirects all the dependencies into one central module; it doesn’t
solve the problem of effective communication. It reduces the coupling, but it doesn’t
facilitate information flow.

Given that only informational dependencies exist between domains, a domain never
requires any processing from a remote application in another domain. Domains are
therefore only producers and consumers of corporate information. A producer domain is
only required to broadcast—“send and forget”, “tip over the wall”—the required
information, ignoring which (consumer) domains are interested in that piece of
information.

Every application in a domain interacting with every other application in other
domains would create a high number of interconnections between applications, as
discussed in SafetyNet's file-based transfer. Such interconnections are inconsistent and
need to be handcrafted every time a new one or an update are required. In addition,
application-to-application communication would immensely increase the cost involved in
broadcasting information, since there is no standard format but only pair-wise
agreements. This situation is similar to the problem of communication between agents [9]
and software development teams [3].

In the agent community, this situation is dealt with by delegating communication
between agents to their facilitators [9]. Agents are grouped according to their locations
and functions, much the same way as domains in the federation. Each agent group has a
facilitator.

DESIGN PATTERNS FOR A FEDERATION ARCHITECTURE

146 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

In software development, each project team selects a public character as a gatekeeper
(see the GATEKEEPER pattern in [3]), whose responsibility is to disseminate
information from outside the project to project members and translating it into terms
relevant to the project. This gatekeeping mechanism should also be implemented for the
federation to channel all connections between domains. It services a domain by placing
messages on the highway for consumption, and picking up from the highway messages
intended for the domain to deliver them to the relevant applications.

Therefore,
A domain interface agent is in charge of picking up messages from, and placing
messages on, the federal communication infrastructure. This agent plays the
following roles for each domain in the federation.

1. Message delivery service. To guarantee the delivery of the requested
information to consumer applications within a domain.

2. Domain information repository management. to store, manage and use format,
security and other federal information.

3. Publish/subscribe directory service. To manage publisher/subscriber
information related to the domain.

Function notes:

The INTERFACE CONNECTION brings the independent domains together to work co-
operatively. In this respect it has the similar importance as CONNECTION TO THE
EARTH ([1], pp.786-788), which connects the building to the earth.

It is worth noting here the close correspondence between the three federation
patterns and the MEDIATOR pattern [7]. When the federation patterns are applied to
object-oriented programming, their collective effort is the MEDIATOR pattern (see
Figure 5). In effect, the MEDIATOR pattern contains the three federation patterns. THE
FEDERATION divides colleagues according to their behaviour; DEPENDENCY
SEPARATION is achieved by the colleague inheritance hierarchy. Finally, the mediator
inheritance hierarchy serves the purpose of INTERFACE CONNECTION.

Fig.5: The Mediator pattern (after [7])

Mediator

Concrete
Colleague1

Colleague

Concrete
Mediator Concrete

Colleague1

mediator
Mediator

Concrete
Colleague1

Colleague

Concrete
Mediator Concrete

Colleague1

mediator

CONCLUDING REMARKS

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 147

7 CONCLUDING REMARKS

The federation patterns presented above will have a significant impact on SafetyNet's
operations and can solve the problems presented in the Motivation section:

• Operations unnecessarily implemented as transactions, such as agents'
commissions at SafetyNet, introduce complexity not existing in the organisation
workflow since the only requirement is for the information to be reliably relied to
the target system. The commission can be updated by an appropriate message
when a new policy is issued, so decoupling the processing of branches and Head
Office (Addressing SafetyNet's Problem 1).

• A reliable delivery mechanism with agreed interfaces makes possible information
sharing but avoids point-to-point connections, reducing the number of structures
and formats required (Addressing Problem 2).

• Systems maintenance is simplified since there is no processing between domains,
and the scope of (processing) changes is contained within a domain. The
independence of domains ensures that poorly performing applications in one
domain don't impinge on the performance of applications in other domains. Since
modules in different domains don't even need to be simultaneously available,
bringing a domain module off-line has no impact on other domains. (Addressing
Problems 3 and 5).

• Each domain retains control of the information it publishes (Addressing Problem
4).

• An event such as invoices issued in the field can be sent as asynchronous
messages when convenient (even batched), since there is not need for
synchronisation with a receiving module, not even for it to be available
(Addressing Prolem 3).

• Domains retain complete control of local processing (Addressing Problem 5).
There is also another approach to federation patterns. This would describe the federation
from the point of view of the implementation rather than the requirement, and include
patterns such as “The Domain”, “The Message Interface Agent”, etc. This is a matter of
ongoing research.

ACKNOWLEDGEMENTS

This article is based on an early paper presented at KoalaPLoP’2000. We wish to thank
all the workshop participants for their valuable comments and suggetions. In particular,
we are indebit to our KoalaPLoP shepherd, Neil Harrison for his valuable help with the
early version of this paper.

DESIGN PATTERNS FOR A FEDERATION ARCHITECTURE

148 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

REFERENCES

[1] C. Alexander et al. A Pattern Language. Oxford University Press, New York,
1977.

[2] M. Conway. “How Do Committees Invent?” Datamation, Vol.14, No.4 Apr.
1968, pp.28-31.

[3] J. O. Coplien. “A Generative Development – Process Pattern Language.” In
Pattern Languages of Program Design. J .O. Coplien and D. C. Schmid (eds.),
Addison Wesley, 1996.

[4] J. O. Coplien. “Reevaluating the Architectural Metaphor: Toward Piecemeal
Growth.” Guest Editor’s Introduction. In IEEE Software, Sept/Oct, 1999,
Vol.16(5).

[5] T. H. Davenport, R. G. Eccles, and L. Prusak. “Information Politics.” Sloan
Management Review, Fall, 1992.

[6] G. Fernandez and I. Wijegunaratne. “A Cooperative Approach to Distributed
Applications Engineering.” Proc. Asian'96 WORKSHOP, Coordination
Technology for Collaborative Applications: Organisations, Processes and
Agents, Dec 5, 1996, pp 39-48.

[7] E. Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA: Addison-Wesley, ©1996.

[8] D. Garlan D., R. Allen, J. Ockerbloom (1995): “Architectural Mismatch: Why
Reuse Is So Hard”, IEEE Software, Nov 1995, pp 17-26.

[9] M. R. Genesereth and S. P. Ketchpel. ”Software Agents.” In Communications of
The ACM, 37(7), July, 1994.

[10] J. Herbsleb and R. E. Grinter. “Architectures, Coordination, and Distance:
Conway’s Law and Beyond.” In IEEE Software, Sept/Oct, 1999, Vol.16(5).

[11] B. Meyer. Object-Oriented Software Construction. Prentice Hall. New Jersey,
1988.

[12] I. Wijegunaratne and G. Fernandez. Distributed Applications Engineering.
Springer, London, 1998.

[13] I. Wijegunaratne, G. Fernandez and J. Valtoudis. “A Federated Architecture for
Enterprise Data Integration.” Proceedings of the Australian Software
Engineering Conference, Canberra, Australia, April 2000.

[14] E. Yourdon and L. Constantine. Structured Design. Prentice Hall. New Jersey,
1978.

CONCLUDING REMARKS

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 149

About the authors

George Fernandez is an Associate Professor (Information Systems) at the
School of Computer Science and Information Technology at RMIT.
George has more than 25 years of experience in Computing and
Information Systems, working in academia, private industry and
government organisations, both in Australia and Argentina. His research
interests include Federated Architectures for the Enterprise, Distributed

Computing and Data Integration, and Information Systems Security. George may be
contacted at gfernandez@rmit.edu.au.

Liping Zhao is a lecturer at the Department of Computation, UMIST, U.K. Her research
interests include object-oriented design and design patterns. She can be reached at
liping@co.umist.ac.uk

Inji Wijegunaratne received his PhD from London University. He has over 20 years
experience in the IT industry. Since the mid 90’s Inji has been working in the IT
architecture area, where he has implemented these patterns in real situations. He is
currently Manager, IT Architecture at Medibank Private in Australia. Inji may be
contacted at inji_wijegunaratne@medibank.com.au.

mailto:gfernandez@rmit.edu.au
mailto:liping@co.umist.ac.uk
mailto:inji_wijegunaratne@medibank.com.au

