
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 3, May-June 2003

Cite this column as follows: Dave Thomas: “Computational Diversity, Practice and a Passion for
Applications”, in Journal of Object Technology, vol. 2, no. 3, May-June 2003, pp. 7-12.
http://www.jot.fm/issues/issue_2003_05/column1

7

Computational Diversity, Practice and a
Passion for Applications
Thoughts On Software Education

Dave Thomas,
Bedarra Corp., Carleton University and University of Queensland

THOUGHTS ON SOFTWARE EDUCATION

During the past few years I’ve had the privilege to speak on an industrial perspective on
academic education. It has been most encouraging to meet numerous academics who are
concerned with effective teaching of applied computer science, software engineering, and
information technology. In particular I applaud the work of Joseph Bergin and Jutta
Eckstein, Pedagogical Patterns Project [1], and those who each year organize the
OOPSLA, ECOOP, CSE, PLOP and Agile/XP Educator workshops. Similar groups exist
in other communities outside OO, in SIGSOFT, ICFP, etc.

I was surprised that many educators commented that my views were too academic
and out of line with real industry. However, several educators resonated with one or more
of my remarks. What saddened me is that these educators expressed great dismay that
they too were being forced to conform to a false perception of what real industry needs!

This column is dedicated to those who believe that programming and computation is
an intellectually significant and challenging career that demands a wide spectrum
education combined with practice. I want to acknowledge numerous discussions with
many colleagues from the OO community as well as the influence of Dick Gabriel’s
thought provoking Feyerabend Project [2] and his Master of Fine Arts in Software[3].
Finally the arguments of Peter Denning on IT education [4] seem to parallel our concern
for development of competency through practice. I believe the concerns addressed by this
column, although my own opinion; do merit serious consideration and broader discussion
in our community.

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_05/column1

COMPUTATIONAL DIVERSITY, PRACTICE AND A PASSION FOR APPLICATIONS

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

THE FALLACY OF THE “RIGHT” THING

The myopic industrial context that is being imposed on many of our best educators and
their students is distressing. There is a misleading assumption that software engineering is
simply a matter of knowing how to use the latest “right” technology. Thus many
university courses are indistinguishable from short term training programs provided by
the instant job training marketi.

Even more disturbing, the use of the “right” technology is increasingly mandated by
funding agencies or university research and development executives who often act as
misinformed representatives of the needs of industry. The moment we start believing that
there is only one right language, operating system, modeling language, or computational
metaphor we are in serious trouble.

It is indeed unfortunate that important ‘languages’ such as Java, UML and XML,
have, through their commercial success, accidentally become ”weed languages” that
choke out other interesting language varieties that are perceived as less industrially
relevant or worse, without utility. Instead of only focusing on the use of the latest “right”
technology, a complete education in computer science should include some basic
principles which will allow the student to contribute in a future work environment.

PROMOTING COMPUTATIONAL DIVERSITY – OBJECTS ARE
NOT EVERYTHING

Students need to see beyond OO and a particular OO technology. Computer Science is
not just about objects, just as science is not just about chemistry and business is not just
about accounting. Object zealots often have a desire to find overly complex solutions to
simple problems. For example, complicated objects and frameworks are used as solutions
instead of simpler database and scripting.

Students need an appreciation and understanding of computational diversity.
Different tools, techniques, and metaphors are not concepts that should only be offered in
optional courses or limited to graduate students. It is not sufficient to make passing
reference to this a survey course. Students need to do as many practical exercises as
possible. While it is impossible to thoroughly expose students to every concept, their
computational journey should include: Table Driven Programming – decision tables, state
machines; Symbolic and Functional Programming – Lisp, Scheme, ML, Haskell,
O’Caml; Vector Programming – APL, J; String and Tag Languages – ICON, Perl,
Omnimark; Rule, Constraint and Logic Programming – Prolog; 4GLs – SQL; Meta
Circular Interpreters; AI Programming techniques. In addition to the above, it is
important that students understand real machines – registers, caches, instruction sets,
interrupts, buses and low level programming. Bread boarding a PIC is a fun and
educational way to get ready for the new pervasive computing with sensors and real-time

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 9

data handling. Finally, far too many students lack practical database design experiences
including ER/OMT, transactions, triggers and non-trivial SQL programming.

COMPETENCE THROUGH PRACTICE

Competence is too often the causalty of curriculum coverage. Students are bombarded
with too many concepts and courses. The need to provide breadth, frequently
compromises depth in any areas. There is simply insufficient practice to develop mastery.
They don’t read or write enough programs, and they don’t rewrite the ones they have
written nearly enough times. Many students have no idea that virtually all good programs
have been rewritten 3 or more times. Most programs need more than refactoring, they
need to be tossed and substantially rewritten! Programs should get smaller from version
to version. Educators should be able to say, look we are just not going to be able to cover
the next topic, because most of the students really need to redo the last assignment to
demonstrate they actually know what they are doing.

COOPERATIVE EDUCATION CONSIDERED ESSENTIAL

Students need to learn how to work with designs, specifications, and implementations
produced by other people. Testing, releasing and refactoring all need to be complete
before work is actually “done”. Students need an appreciation for domain and technical
experience. Effective communication and the ability to listen to others is a requirement. It
isn’t only the programs that need to get rewritten; students need to polish their written
and verbal communication skills.

While software engineering courses make best efforts to provide this sort of
educational experience this isn’t something that can be done without the substantial
support of industry outside the classroom. In our experience the best way by far for
students to learn communication and teamwork is through the cooperative education
model. In this model, students take 5 years to complete a 4-year honors degree and
graduate with two years of work experience. Students alternate academic terms and credit
bearing work terms in industry. Many educators are increasingly spending work terms in
industry and report that it has had a significant impact on both their teaching and
research. Finally the use of cooperative experience in high schools is having a very
positive effect on student’s attitudes and career choices.

A PASSION FOR APPLICATIONS – COMPUTATION IN CONTEXT

Students need to see objects in context. Students should be provided with exercises based
on an actual application that can provide an opportunity to provide a concrete substrate
for abstract concepts. Applications by their very nature are open-ended and have
extraneous details. Assignments of this type challenge the student to synthesize

COMPUTATIONAL DIVERSITY, PRACTICE AND A PASSION FOR APPLICATIONS

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

knowledge and force interaction with other students, teaching assistants and instructors.
The assignment should be open-ended so that it can never be one hundred percent
complete. They provide an essential interesting context for learning, especially for non-
CS majors.

REQUISITE VARIETY IN CS FACULTY

In the early days of computer science the faculties contained a rich diversity of scientists,
engineers, philosophers, and even talented people without a PHD! Each of these brought
their external experience context to the department and to the students. Today computer
science departments are so pure that if they were a liquid the lighting through them would
not be refracted into the beautiful rainbow caused by the impurities. Recently, industry
demands for talent have all but removed most of the young faculty with a passion for
applications and experimental computer science. Frequently any such faculty are pressed
into service to feed the university grant machine or take care of curriculum matters all but
abandoned by their colleagues.

The good news is that demographics and economics of the industry that once robbed
it of the best applied people now promise to provide an outstanding pool of potential
faculty and lecturers who can enrich the educational experience. Even better for
administrators, this 50-something population are not seeking tenure nor in many cases
full-time employment. Clearly this should not be an excuse to deny new tenure track
positions; rather it should be jumped upon as a way to build a modern applied computing
education.

THE CHALLENGE OF BEING INDUSTRIALLY CURRENT

Many faculty have moved away from computation simply because they feel incapable of
keeping up with what is happening in the industry. Of course they see IT professionals
struggle to keep on top of the latest thing. Those of us associated with such innovations
need to find ways to keep our educational colleagues current, by helping them understand
the essence of each commercial wave without forcing them to crawl through the plethora
of quick to market books, tools and APIs. We need to make an effort to show how this is
similar but different from what came before, rather than the marketing departments
claims of our latest “New New Thing” being new and completely different.

SUMMARY

This is an appeal to those in both industry and academics to work together to refine the
practices of computer science education. Unfortunately the excellent IEEE and ACM
curriculum for computing education has recently reduced the importance of programming
languages, which is a matter of serious concern for educators such as myself. The

VOL. 2, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 11

challenge for educators is to provide the required breadth of coverage while still
providing sufficient depth and experience.

We need to ensure that students, the potential software industry leaders of the future,
are exposed to the concept of computational diversity. They need to critically assess ideas
and products that are commonly perceived as being “in”, while understanding the
potential relevance and utility of ideas and products that are “out”. A wide spectrum
education will give students the knowledge to make technical decisions based on what
solution best applies in a given situation.

Computing needs to be taught in an application context, rather than through idealized
problems isolated from the messy reality which makes them challenging and interesting.
Students need to experience the joy of applications. Finally, best practice needs to be
encouraged, even if that best practice means rework and in some cases even sacrificing
the breadth of coverage. Work experience programs, which are often called “cooperative
education” or “sandwich” programs, should be available at least as an option to all
students. Industry needs to help in this process by providing case studies, application
examples and real work experience for students and educators.

REFERENCES

[1] Joseph Bergin and Jutta Eckstein, Pedagogical Patterns Project,
http://www.pedagogicalpatterns.org/

[2] Richard P. Gabriel, The Feyerabend Project,
http://www.dreamsongs.com/Feyerabend/Feyerabend.html

[3] Richard P. Gabriel, Master of Fine Arts in Software,
http://www.dreamsongs.com/MFASoftware.html

[4] Peter J. Denning, CACM Columns on IT Profession,
http://cne.gmu.edu/pjd/PUBS/CACMcols/

About the author
Dave Thomas is CEO of Bedarra Corp., Adjunct Professor at Carleton
University, Canada and University of Queensland, Australia, founding
Director of AgileAlliance.com, and founder of Object Technology
International. Bedarra works with research labs and commercial partners
to transition innovations into products and practices.

http://www.pedagogicalpatterns.org/
http://www.dreamsongs.com/Feyerabend/Feyerabend.html
http://www.dreamsongs.com/MFASoftware.html
http://cne.gmu.edu/pjd/PUBS/CACMcols/

COMPUTATIONAL DIVERSITY, PRACTICE AND A PASSION FOR APPLICATIONS

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 3

i In my experience, it isn’t possible to consistently build high quality software without
well-grounded, bright software professionals. I don’t think that everyone who builds
applications or works in the industry needs to be a computer scientist, but I would expect
them to be as properly qualified in their professional or technical area. In particular I
acknowledge that the accidental complexity of many currently available products places
great need for and value on technical education - often referred to as xyz certified. My
concern is that the half-life of such product specific information is very short, and that IT
professionals who have only this information are quickly disenfranchised when
technology changes. This is a very important topic, but beyond the scope of this column
which is focused on academically educated software processionals.

I’m also NOT advocating professional certification, which is another topic on its
own.

