
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 4, July-August 2003

Cite this column as follows: Richard Wiener: “Branch and Bound Implementations for the
Traveling Salesperson Problem – Part 3”, in Journal of Object Technology, vol. 2, no. 4, July-
August 2003, pp. 90-100. http://www.jot.fm/issues/issue_2003_07/column8

Branch and Bound Implementations for
the Traveling Salesperson Problem -
Part 3: Multi-threaded solution with many inexpensive nodes

Richard Wiener, Editor-in-Chief, JOT, Associate Professor, Department of
Computer Science, University of Colorado at Colorado Springs

The multi-threaded implementation presented in this column sets the stage for the
distributed processing implementation to be presented in the next column.

In the previous column a best-first branch and bound algorithm was introduced and
implemented. This algorithm forms the basis for the current work (please review the
details of that algorithm before continuing with this paper).

Class Node is unchanged from the single-threaded implementation presented in the
previous column. A new thread class ProcessNodes is introduced and is presented in
Listing 1.

Listing 1 – Thread class ProcessNodes

import java.util.*;

public class ProcessNodes extends Thread {

 // Fields
 private TreeSet queue;
 public int numRows;
 private int numCols;
 private Node bestNode;
 public Cost c;
 private long totalNodeCount = 0L;
 private boolean stop = false;
 private TSP tsp;
 private int threadNumber;

 // Constructor
 public ProcessNodes (int threadNumber, TreeSet queue, int numRows,
 Cost c, long totalNodeCount, TSP tsp) {
 this.threadNumber = threadNumber;

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_07/column8

BRANCH AND BOUND IMPLEMENTATION FOR THE TRAVELING SALESPERSON

PROBLEM – PART 3

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

 this.queue = queue;
 this.numRows = numRows;
 this.c = c;
 this.tsp = tsp;
 }

 // Commands
 public void remove (Node node) {
 queue.remove(node);
 }

 public void setQueue (TreeSet queue) {
 this.queue = queue;
 }

 public void setStop () {
 stop = true;
 }

 public void run () {
 while (!stop && queue.size() > 0) {
 Node next = (Node) queue.first();
 if (next.size() == TSP.numRows - 1 && next.lowerBound() <
 TSP.bestTour) {
 tsp.output2(next, threadNumber, queue, totalNodeCount);
 }
 synchronized (queue) {
 queue.remove(next);
 }
 if (next.lowerBound() < TSP.bestTour) {
 int newLevel = next.level() + 1;
 byte[] nextCities = next.cities();
 int size = next.size();

 for (int city = 2; !stop && city <= TSP.numRows;
 city++) {
 if (!present((byte) city, nextCities)) {
 byte[] newTour = new byte[size + 2];
 for (int index = 1; index <= size; index++) {
 newTour[index] = nextCities[index];
 }
 newTour[size + 1] = (byte) city;
 Node newNode = new Node(newTour, size + 1);
 newNode.setLevel(newLevel);
 totalNodeCount++;
 if (totalNodeCount % 100000 == 0) {
 System.out.print(".");
 }
 if (totalNodeCount % 1000000 == 0) {
 tsp.output1(threadNumber, queue,
 totalNodeCount);
 }
 newNode.computeLowerBound();

BRANCH AND BOUND IMPLEMENTATION FOR THE TRAVELING SALESPERSON
PROBLEM – PART 3

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 91

 int lowerBound = newNode.lowerBound();
 if (lowerBound < TSP.bestTour) {
 synchronized (queue) {
 queue.add(newNode);
 }
 }
 else {
 newNode = null;
 }
 }
 }
 }
 else {
 next = null;
 }
 }
 if (!stop) {
 tsp.stop(false, threadNumber);
 }
 }

 public TreeSet queue () {
 return queue;
 }

 public long totalNodeCount () {
 return totalNodeCount;
 }

 private boolean present (byte city, byte [] cities) {
 for (int i = 1; i <= cities.length - 1; i++) {
 if (cities[i] == city) {
 return true;
 }
 }
 return false;
 }
}

Thread instances are spawned by the revised class TSP presented in Listing 2. When a
ProcessNode thread is spawned, the constructor takes as input a thread number (assigned
by a TSP object), a priority queue (a single node at level 2 in the tree structure – there are
n – 1 such nodes where n is the number of cities in the TSP problem), the number of
cities, the cost matrix, the total node count to-date for the thread and an instance of class
TSP (so the thread can communicate with the tsp object).

BRANCH AND BOUND IMPLEMENTATION FOR THE TRAVELING SALESPERSON

PROBLEM – PART 3

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

Listing 2 – Class TSP

/**
 * TSP Branch and Bound
*/
import java.awt.*;
import java.util.*;
import java.io.*;

public class TSP implements Serializable {

 // Fields
 public static int numRows;
 public static int bestTour = Integer.MAX_VALUE / 4;
 public static Node bestNode;
 public static Cost c;
 public static TimeInterval t = new TimeInterval();

 private TSPUI gui;
 private TreeSet queue = new TreeSet();
 private long totalNodeCount = 0L;
 private boolean stop = false;
 private double elapsedTime = 0.0;
 private static int numberThreads = 6;
 private ProcessNodes [] threads = new ProcessNodes[numberThreads];
 private int numberStopped = 0;
 private double accumulatedTime = 0.0;

 public TSP (int [][] costMatrix, int size, int bestTour,
 TSPUI gui) {
 this.gui = gui;
 this.bestTour = bestTour;
 numRows = size;
 c = new Cost(numRows, numRows);
 for (int row = 1; row <= size; row++)
 for (int col = 1; col <= size; col++)
 c.assignCost(costMatrix[row][col], row, col);
 }

 public void write (ObjectOutputStream stream) {
 try {
 // Save queue
 stream.writeInt(queue.size());
 Object [] nodes = queue.toArray();
 for (int i = 0; i < nodes.length; i++) {
 stream.writeObject(nodes[i]);
 }
 stream.writeDouble(t.getElapsedTime() + accumulatedTime);
 stream.writeInt(numberThreads);
 stream.writeInt(numRows);
 stream.writeLong(totalNodeCount);
 stream.writeInt(bestTour);
 stream.writeObject(bestNode);

BRANCH AND BOUND IMPLEMENTATION FOR THE TRAVELING SALESPERSON
PROBLEM – PART 3

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 93

 for (int threadNumber = 0; threadNumber < numberThreads;
 threadNumber++) {
 stream.writeInt(threads[threadNumber].queue().size());
 nodes = threads[threadNumber].queue().toArray();
 for (int i = 0; i < nodes.length; i++) {
 stream.writeObject(nodes[i]);
 }
 }
 } catch (Exception ex) {
 System.out.println(ex);
 }
 }

 public void read(ObjectInputStream stream) {
 try {
 int queueSize = stream.readInt();
 Node [] nodes = new Node[queueSize];
 TreeSet queue = new TreeSet();
 for (int i = 0; i < queueSize; i++) {
 nodes[i] = (Node) stream.readObject();
 queue.add(nodes[i]);
 }
 accumulatedTime = stream.readDouble();
 numberThreads = stream.readInt();
 threads = new ProcessNodes[numberThreads];
 numRows = stream.readInt();
 totalNodeCount = stream.readLong();
 bestTour = stream.readInt();
 bestNode = (Node) stream.readObject();
 TreeSet [] queues = new TreeSet[numberThreads];
 for (int threadNumber = 0; threadNumber < numberThreads;
 threadNumber++) {
 queueSize = stream.readInt();
 nodes = new Node[queueSize];
 queue = new TreeSet();
 for (int i = 0; i < queueSize; i++) {
 nodes[i] = (Node) stream.readObject();
 queue.add(nodes[i]);
 }
 threads[threadNumber] =
 new ProcessNodes(threadNumber + 1,
 queues[threadNumber] = new TreeSet(queue),
 numRows, c, 0, this);
 }
 } catch (Exception ex) {
 System.out.println(ex);
 }
 }

 public synchronized void output1 (int threadNumber,
 TreeSet queue,
 long totalNodeCount) {

BRANCH AND BOUND IMPLEMENTATION FOR THE TRAVELING SALESPERSON

PROBLEM – PART 3

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

 System.out.println();
 System.out.println("Thread number: " + threadNumber);
 TSP.t.endTiming();
 double time = TSP.t.getElapsedTime();
 int hours = (int) (time / 3600.0);
 time -= hours * 3600;
 int minutes = (int) (time / 60.0);
 time -= minutes * 60;
 int seconds = (int) time;

 System.out.println("Elapsed time: " +
 TSP.t.getElapsedTime() + " seconds. <" +
 hours + " hours " + minutes + " minutes " +
 seconds + " seconds>");

 System.out.println("Nodes generated: " +
 totalNodeCount / 1000000 +
 " million nodes.");
 System.out.println("queue.size(): " +
 queue.size());
 if (TSP.bestTour != Integer.MAX_VALUE / 4) {
 System.out.println("Best tour cost: " +
 TSP.bestTour);
 System.out.println("Best tour: " + TSP.bestNode);
 System.out.println();
 }
 }

 public synchronized void output2 (Node next,
 int threadNumber,
 TreeSet queue,
 long totalNodeCount) {
 int bestTour = next.lowerBound();
 bestNode = next;
 if (bestTour < this.bestTour) {
 setBestTour(bestTour);
 setBestNode(bestNode);
 System.out.println();
 System.out.println("\nThread number: " + threadNumber +
 " improves best score.");
 t.endTiming();
 double time = t.getElapsedTime();
 int hours = (int) (time / 3600.0);
 time -= hours * 3600;
 int minutes = (int) (time / 60.0);
 time -= minutes * 60;
 int seconds = (int) time;
 System.out.println(
 "Elapsed time: " + TSP.t.getElapsedTime() +
 " seconds. <" + hours + " hours " +
 minutes +
 " minutes " + seconds + " seconds>");

BRANCH AND BOUND IMPLEMENTATION FOR THE TRAVELING SALESPERSON
PROBLEM – PART 3

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 95

 System.out.println("Nodes generated: " + totalNodeCount);
 System.out.println("Best tour cost: " + bestTour);
 System.out.println("Best tour: " + bestNode);
 System.out.println("queue.size(): " + queue.size());
 System.out.println();
 }
 }

 public synchronized void stop (boolean forced, int threadNumber) {
 if (forced && stop) {
 return;
 }
 if (queue.size() == 0) {
 numberStopped++;
 } else if (!forced) {
 TreeSet t = new TreeSet();
 Node n = (Node) queue.first();
 t.add(n);
 long totalNodeCount =
 threads[threadNumber - 1].totalNodeCount();
 threads[threadNumber - 1] =
 new ProcessNodes(threadNumber, t, numRows, c,
 totalNodeCount, this);
 threads[threadNumber - 1].start();
 synchronized (queue) {
 queue.remove(n);
 }
 }
 if (numberStopped == numberThreads || forced) {
 stop = true;
 for (int i = 0; i < numberThreads; i++) {
 threads[i].setStop();
 }
 t.endTiming();
 // Count the total number of nodes generated from the
 // threads
 long nodesGenerated = 0;
 for (int i = 0; i < numberThreads; i++) {
 nodesGenerated += threads[i].totalNodeCount();
 }
 totalNodeCount += nodesGenerated;
 if (!forced) {
 System.out.println("Optimum solution obtained.");
 } else {
 System.out.println(
 "Solution forced to stop prematurely and may not be optimum.");
 }

BRANCH AND BOUND IMPLEMENTATION FOR THE TRAVELING SALESPERSON

PROBLEM – PART 3

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

 System.out.println(
 "The total number of nodes generated: " +
 totalNodeCount);
 System.out.println("Tour cost: " + bestTour);
 double time = TSP.t.getElapsedTime() + accumulatedTime;
 int hours = (int) (time / 3600.0);
 time -= hours * 3600;
 int minutes = (int) (time / 60.0);
 time -= minutes * 60;
 int seconds = (int) time;
 System.out.println(
 "Elapsed time: " + (TSP.t.getElapsedTime() +
 accumulatedTime) +
 " seconds. <" + hours + " hours " + minutes +
 " minutes " + seconds + " seconds>");
 gui.displayOutput();
 }
 }

 public void setBestTour (int bestTour) {
 if (bestTour < this.bestTour) {
 this.bestTour = bestTour;
 }
 }

 public void setBestNode (Node bestNode) {
 this.bestNode = bestNode;
 }

 public void generateSolution (boolean ongoing) {
 t.startTiming();
 if (!ongoing) {
 // Create root node
 byte[] cities = new byte[2];
 cities[1] = 1;
 Node root = new Node(cities, 1);
 root.setLevel(1);
 totalNodeCount++;
 root.computeLowerBound();
 System.out.println(
 "The lower bound for root node (no constraints): " +
 root.lowerBound());
 queue.add(root);
 Node next = (Node) queue.first();
 synchronized (queue) {
 queue.remove(next);
 }
 int newLevel = next.level() + 1;
 byte [] nextCities = next.cities();
 int size = next.size();

 for (int city = 2; !stop && city <= TSP.numRows; city++) {
 if (!present((byte) city, nextCities)) {

BRANCH AND BOUND IMPLEMENTATION FOR THE TRAVELING SALESPERSON
PROBLEM – PART 3

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 97

 byte[] newTour = new byte[size + 2];
 for (int index = 1; index <= size; index++) {
 newTour[index] = nextCities[index];
 }
 newTour[size + 1] = (byte) city;
 Node newNode = new Node(newTour, size + 1);
 newNode.setLevel(newLevel);
 totalNodeCount++;
 newNode.computeLowerBound();
 int lowerBound = newNode.lowerBound();
 queue.add(newNode);
 }
 }
 // Spawn the threads and start the process going
 for (int i = 0; i < numberThreads; i++) {
 TreeSet t = new TreeSet();
 Node n = (Node) queue.first();
 t.add(n);
 threads[i] = new ProcessNodes(i + 1, t, numRows, c,
 0L, this);

 synchronized (queue) {
 queue.remove(n);
 }
 }
 }
 for (int i = 0; i < numberThreads; i++) {
 threads[i].start();
 }
 }

 public Node bestNode () {
 return bestNode;
 }

 public int bestTour () {
 return bestTour;
 }

 public long nodesGenerated () {
 return totalNodeCount;
 }

 private boolean present (byte city, byte [] cities) {
 for (int i = 1; i <= cities.length - 1; i++) {
 if (cities[i] == city) {
 return true;
 }
 }
 return false;
 }
}

BRANCH AND BOUND IMPLEMENTATION FOR THE TRAVELING SALESPERSON

PROBLEM – PART 3

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

In method generateSolution, the root node and all its children (at level 2) are generated
before any threads are spawned. Then the following segment of code is used to create the
threads:

 // Spawn the threads and start the process going
 for (int i = 0; i < numberThreads; i++) {
 TreeSet t = new TreeSet();
 Node n = (Node) queue.first();
 t.add(n);
 threads[i] = new ProcessNodes(i + 1, t, numRows, c,
 0L, this);

 synchronized (queue) {
 queue.remove(n);
 }
 }

Each thread is handed a child node (partial tour consisting of node 1 as well as another
city). The child nodes at level 2 are prioritized based on their lower bound (the smallest
lower bound having the highest priority). The threads are held in an array of ProcessNode
(called threads). The thread[0] starts with a child node of smallest lower bound. The
thread[1] has the second lowest lower bound. There is of course no guarantee that the
solution exists under any of the initial level 2 nodes handed off to the various threads (6
are shown by default). When a thread completes the processing of the node that it was
handed (this will probably require the generation of millions of nodes), it sends the tsp
object a stop command. If the pool of available tsp nodes is depleted (queue size of size
0), the value of the field numberStopped is incremented by one (see method stop in class
TSP). Otherwise a new node from among the original level 2 nodes is handed off to a
fresh thread that is spawned (recall that once a thread is terminated it cannot be re-started)
and removed from the tsp queue. The application terminates when all the level 2 nodes in
the tsp object have been removed (and handed off to threads) and all the threads have
terminated (the value numberStopped is equal to the number of threads).

Empirical Results

We consider some results run on two computers: a single-processor Pentium 4 with a
1.7Ghz processor and a dual G4 processor Powermac running under Mac OS 10.2.3. It is
interesting to see how the Powermac with its dual processors is able to take advantage of
the multiple threads. JDK 1.4.1 is used on each of the machines (a beta release on the
Powermac).

The results are summarized in the table below.

BRANCH AND BOUND IMPLEMENTATION FOR THE TRAVELING SALESPERSON
PROBLEM – PART 3

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 99

Comparison of Single-Threaded vs. Mult-Threaded TSP Implementations on a
Single vs. Dual Processor Machines

Machine Number of Cities Execution Time (Single

Threaded Previous
Implementation)

Execution Time (Using
6 threads with current
implementation)

Pentium 4, 1.7 GHz 20 21.801 seconds 19.358 seconds

Powermac (Dual g4
processors)

20 30.597 seconds 16.486 seconds

Pentium 4, 1.7GHz 24 299.25 seconds 343.944 seconds

Powermac (Dual G4
processors)

24 410.984 seconds 276.729 seconds

Several conclusions may be gleaned from the results in the above table.

1. The Mac OS is able to take good advantage of multiple threads by efficiently
dispatching threads to each of its two processors. For both TSP problems the
Mac’s multi-threaded solution was significantly faster than the single-threaded
solution. In fact for both problems the Powermac’s multi-threaded solution was
the fastest among the two computers even allowing for the fact that the Pentium 4
machine has a clock speed that is 1.36 times faster than the Powermac’s clock
speed.

2. The execution time for the single-threaded implementation on the two computers
is close to the ratio of their respective clock speeds. This suggests that the
Powermac is not able to take advantage of its dual processors in the single-
threaded implementation.

3. The multi-threaded solution on the Pentium 4 machine was slightly faster for the
20 city problem and significantly slower for the 24 city problem. This clearly
suggests (as should be fairly obvious) that the problem instance itself affects the
ability of the multi-threaded solution to take advantage of the input data. This is
further reflected in the relative improvement that the multi-threaded solution on
the Powermac displayed for the 20 and 24 city problems. The degree of
improvement was smaller for the 24 city problem than the 20 city problem where
the execution time was almost cut in half.

BRANCH AND BOUND IMPLEMENTATION FOR THE TRAVELING SALESPERSON

PROBLEM – PART 3

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

About the author

Richard Wiener is Associate Professor of Computer Science at the
University of Colorado at Colorado Springs. He is also the Editor-in-
Chief of JOT and former Editor-in-Chief of the Journal of Object
Oriented Programming. In addition to University work, Dr. Wiener has
authored or co-authored 21 books and works actively as a consultant
and software contractor whenever the possibility arises.

