
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 5, September/October 2003

Cite this article as follows: Liping Zhao and James Coplien: “Understanding Symmetry in Object-
Oriented Languages”, in Journal of Object Technology, vol. 2, no. 5, September-October 2003,
pp. 123-134. http://www.jot.fm/issues/issue_2003_09/article3

Understanding Symmetry in Object-
Oriented Languages

Liping Zhao, UMIST, U.K.
James O. Coplien, North Central College, U.S.A.

Abstract
The success of symmetry applications in many scientific disciplines has motivated us to
explore symmetry in software. Our exploration is based on an informal notion that
symmetry is the possibility of making a change together with some aspect that is
immune to this change. In this view, symmetry has a duality of change and constancy
whereby some aspect of an object can be changed while leaving other key aspects
invariant. This view of symmetry is a fundamental concept underpinning many
symmetry principles in the physical sciences. We have found that we can explain some
object-oriented language constructs using this notion of symmetry. This article explores
symmetry in object-oriented languages and also provides other examples of symmetry
outside of object-oriented programming to show that symmetry considerations broaden
beyond object orientation to other areas of software design.

1 INTRODUCTION

The success of symmetry applications in many scientific disciplines has motivated us to
explore symmetry in software [7][8][31]. Our exploration is based on an informal notion
that symmetry is the possibility of making a change while some aspect remains immune
to this change. In this view, symmetry has a duality of change and constancy whereby
some aspect of an object can be changed while leaving other key aspects invariant. This
view of symmetry has underpinned many principles in the physical sciences. For
example, one of the most important conservation laws is that of mass-energy. This law
derives from the symmetry principle that physical laws are invariant with respect to time;
that is, the amount of energy present before any physical interaction must equal the
amount available after the interaction. We have found that this notion of symmetry also
underpins some object-oriented language constructs.

This article presents our understanding of symmetry and its role in object-oriented
languages. We believe a proper understanding of symmetry is important not only to
software design, but also to software maintenance, testing and debugging, as recent

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_09/article3

UNDERSTANDING SYMMETRY IN OBJECT-ORIENTED LANGUAGES

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

research shows [9]. We shall also provide other examples of symmetry besides object-
oriented programming to show that symmetry considerations broaden beyond object
orientation to other areas of software design.

The formal notion of symmetry is beyond the scope of this article, but for the
completeness, we briefly introduce it here. In mathematics, symmetry is studied under
geometry and algebra. Geometric symmetry is a familiar concept in everyday life. It is
based on rigid motion that leaves distances between points unchanged under some
transformation. Such transformation includes reflection, rotation, translation, and their
various combinations. In algebra [15], symmetry is characterised as a group of
transformations that are closed, associative and invertible under a given law of
composition. An object possesses symmetry if it remains unchanged under a group of
transformations. The basic idea of symmetry is thus invariant change, i.e., change yet the
same [21][22][28]. The informal notion of symmetry described above derives from this
basic idea.

2 SYMMETRY IN OBJECT-ORIENTED LANGUAGES

In this section, we first give an overview of basic object-oriented notions and then discuss
how these notions are related to symmetry and what benefits can be obtained from
understanding this link.

Basic Object-Oriented Notions

Class is said to be the basic notion of object-oriented programming from which
everything else derives [17]. A class is used to describe the structure and behaviour of all
the objects generated from the class. Inheritance and subclassing are fundamental
relations between pairs of class (and by extension, the transitive closure of these
relations). A subclass describes additions (but not deletions) to its direct superclass; it is a
convenient mechanism to avoid rewriting definitions that already appear in the
superclass. Alternatively, inheritance is the sharing of properties between a class and its
subclasses.

Subclasses and inheritance are the basis of subtyping [1][5]. Subtyping is a relation
on object types; an object type with more methods is a subtype of one with fewer
methods. Consider two objects that share methods m1, m2, and m3, and one of the objects
further has method m4. The type of the second object is a subtype of the one with fewer
methods. A subtype provides all the behaviour of its supertype and may have extra
behaviour. The subtyping relation is reflexive and transitive. Reflexive means that a type
is a subtype of itself, whereas transitive means that if type C is a subtype of type B and B
is a subtype of type A, then C is also a subtype of A. Subtyping has a subsumption rule,
which states that if b is an object of B and B is a subtype of A, b is also an object of A.

SYMMETRY IN OBJECT-ORIENTED LANGUAGES

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 125

The subsumption rule has a practical importance in object-oriented programming and is
known as the Liskov substitution principle (LSP) [14]:

If for each object o1 of type S there is an object o2 of type T such that for all
programs P defined in terms of T, the behaviour of P is unchanged when o1 is
substituted for o2, them S is a subtype of T.

Classification View of Classes

The class concept itself is interesting in its own right for its close ties to the theory of
classification. Several researchers have explored this connection. For example, Wegner
[27] presents a classification paradigm for object-oriented programming. He proposes to
use equivalence relations as first-order classification mechanisms for classifying elements
of a set into independent and disjoint classes. He defines three kinds of equivalence
relations as the basis of type soundness and completeness, from which mathematical
models of types can be developed.

Motschnig-Pitrik and Mylopoulos [18] study classes and instances from a cognitive
science viewpoint. They share Hofstadter's [10] view that our thinking is grounded in our
ability to classify, and that classification establishes relationships between classes and
instances. They state that classification underlies cognition and serves as an
organisational structure for human memory. Cardelli [5] states that classification is what
makes object-oriented programming different from other programming paradigms.
Object-oriented programming languages generally support two levels of classification,
which organises objects into classes and classes into class hierarchies. Simons [23]
believes that all the object-oriented concepts can be united in a single theoretical model
and explained under a theory of classification. He demonstrates that the notion of class is
a first-class mathematical concept. Rayside and Campbell [20] note many interesting
similarities between the notion of class in object-oriented programming and the notion of
species in Aristotelian logic. They suggest a new way of understanding object-oriented
programming, from the viewpoint of biology and taxonomy.

In the following, we take the classification view of classes a step further by studying
its link to the general idea of symmetry – the principle of invariance. We shall also
explore symmetry in classification with subtyping.

Symmetry in Classes

As just mentioned, a class is a classification of objects. Such classification establishes the
class-member invariance such that the description of the class is true for all the objects of
the class. This view of class can be explained as symmetry [11]: A class enables the
change of the objects, but the change must respect the structure and behaviour stipulated
by the class. The structure and behaviour of a class can be enhanced through class
invariants, preconditions and postconditions [17]. The benefit of symmetry in classes is

UNDERSTANDING SYMMETRY IN OBJECT-ORIENTED LANGUAGES

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

thus that it constrains the change of objects and enforces the correctness of classes. From
the compiler’s viewpoint, symmetry improves the compilation optimisation. For example,
in C++, since all the objects of a class are of the same size and the offsets of all members
are the same, they can help the compiler to generate efficient code for member access,
method lookup, and memory allocation.

This notion of class can be valuable to component-based software development.
Components can be grouped into classes according to certain commonality, such as
interface compatibility or behaviour compatibility. A class can then be used to generate
all the components that have the same commonality and accommodate individual
variations. The components of the same class thus provide the flexibility for change.
When a requirement is changed in an application, a new component can be used to
replace the old one so long the new component respects the defined commonality in the
component class. Such substitutability is an important feature in component-based
software development. It is also important to software maintenance and evolution where
the replacement of old or erroneous components is a major concern.

More importantly, the link between symmetry and classification provides a basis for
theoretic study of object-oriented software design. By applying symmetry principles, the
aim of software design is to identify and preserve the maximum design invariants and
support variations. This aim underlies design reuse. We can envisage such a design
method that provides a collection of design templates. Design templates describe
invariants and possible variations. Design is then about instantiation of these templates,
composition of the instances and substitution of the instances. The general notions of
classes and objects can be extended to design templates.

Symmetry in Subtyping

Inheritance has been largely related to generalisation or specialisation in the object-
oriented programming [26]; only a few researchers relate it to classification [5][23][27].
In knowledge representation, Winograd [29] perceives inheritance hierarchy as a system
of classification where each node in inheritance represents a class of objects, and an is-a-
kind of link connects a class to some superclass that properly contains it. Winograd states
that applying classification is one of the basic modes of reasoning and classification, by
its very nature, is hierarchical.

In object-oriented programming, the role of inheritance in classification is not as
clear as that of classes. The lack of the clarity owes to the flexibility of the inheritance
mechanism. Inheritance can be used to extend a class, restrict a class, or otherwise
modify a class. This means that a subclass may not be properly contained within its
superclass and the description of a superclass may not be true to all its subclasses. Hence
inheritance does not always classify classes. However, when inheritance is used as
subtyping, as described above, it can be viewed as classification of classes, in that it
establishes the behaviour invariance between a subclass and its direct superclass such that
the subclass behaves the same as its superclass. We wish to make clear that in practice,

SYMMETRY IN OBJECT-ORIENTED LANGUAGES

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 127

subtyping is only one of the many roles inheritance plays. Therefore, it is only under the
subtyping relation that inheritance classifies classes.

Subtyping is related to symmetry: all the classes of a subtyping path may vary, but
they must preserve and conform to a common behaviour. All the classes of a path through
a subtyping structure can be said to conform to the same type.

The benefits of understanding subtyping in terms of symmetry are similar to those of
classes. First, the subtyping invariants can act as type constraints on inheritance to impose
(for example, at compile time) a uniform typing behaviour for all classes in an inheritance
path. Subcontracting rules [17] are a way of specifying subtyping invariants. Second, the
notion of subtyping can be applied to component-based software development to achieve
the desired substitutability among the components. Finally, classes and subtyping are
basic design mechanisms that support the change through the substitution and maintain
the stability through the invariants.

Symmetry in Operator Overloading

One of the reasons for providing the operator-overloading feature in the C++
programming language at the time was that it “looked neat” ([25], p.78). Another reason
was to prevent some operators from being member functions with full access to the class
private members. There were also symmetry considerations for overloading operators
[13]. For example, by overloading an operator, one can treat it as an arithmetic operator
and supplies the left and right operands to this operator. However, strictly speaking,
overloaded operators do not provide symmetry of left and right; they only create an
illusion of it, because overloaded operators such as “+” and “*” are not commutative and
do not therefore possess reflection symmetry. In addition, the invocation of the
overloaded operator at run time has little or no symmetry because in simple object-
oriented programming, the language chooses (at run time) from among implementations
of a polymorphic operations based on the (dynamic) type of one of the objects involved
in the operation. It is only statically that the overloaded operator looks symmetric with
respect to its left and right operands.

However, we can imagine a historical symmetry exists that preserves the structure
and uniformity of the arithmetic operators, familiar from common algebra. Hence the
importance of the operator-overloading feature is that it provides symmetry between
built-in data types and user-defined types.

Symmetry in Double Dispatch

Double dispatch is a mechanism that associates a method with two objects and
implements multiple methods. Double dispatch can happen at compile time (static
dispatch) or runtime (dynamic dispatch). Double dispatch is a way of supporting
polymorphic method lookup that goes beyond the simple dynamic single-object type

UNDERSTANDING SYMMETRY IN OBJECT-ORIENTED LANGUAGES

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

lookup of Smalltalk, Java or C++, but which recalls the more powerful but statically
bound polymorphism of arithmetic operators in, say, FORTRAN.

Overloading is a simple form of polymorphism, a simple double dispatch. In the
previous section, we showed its relation to symmetry.

Whereas opinions divide on whether or not double dispatch should be used in object-
oriented programming, the recent development shows the importance of symmetry in
double dispatch [2]. When two arguments of the multimethods have the same type or
conform to the same type as in subtyping, a symmetric multimethod can be added to
make the order of the two arguments insensitive. An obvious benefit of symmetric
dispatch is that the client code does not need to remember the order of arguments. Such
feature simplifies the use of multimethods.

Symmetry also appears in the equal method of the Java programming language.
The contract of the equal method requires that any implementation of equal should be
symmetric, so that a.equal(b) should always produce the same result as b.equal(a).
The importance of this symmetry requirement is to simplify the coding and to constrain
the behaviour of the code.

3 OTHER SYMMETRY EXAMPLES

The above section serves to illustrate symmetry in object-oriented languages. In this
section, we give more examples of symmetry. Although some of the examples are
tenuous visual or geometric symmetries, a good understanding of them is just as
important.

Symmetry in Program Format

The simplest form of geometric symmetry in software is the format of programs. A well-
formatted or indented program can be understood more easily than a poorly formatted or
indented one. While there is no agreement on what a good formatting should be (e.g.,
there are endless arguments about whether open curly braces should be on a line by
themselves or at the end of the line preceding the block), there is a basic symmetry
pattern that underlies formatting. In [6], Coplien provides examples of different
formatting styles and shows that reflection symmetry of up and down gives a “good
shape” to programs. Two such examples are given in Figure 1. Although it may sound
like a superficial or even trite finding, there is anecdotal evidence from projects in Bell
Laboratories that consistent indentation style is a good indicator for low bug density in
code.

int gilligan(int j) {
 for (int i = 1; i < j; i++) {
 if (i % 2 == 0) {
 count << i;

OTHER SYMMETRY EXAMPLES

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 129

 }
 }
}

procedure playBallGame()
 begin
 char key;
 integer ballsLeft;
 procedure playABall()
 begin
 integer count;
 procedure checkPosition();
 begin
 integer x, y;
 y := ball.yposition;

 end

 end
 end

Figure 1: Up-down Reflectional Symmetry in Code

Symmetry in Software Development Life Cycles

Raccoon [19] presents a chaos model for the life cycles of software development. The
chaos model uses fractals to represent different phases of a life cycle such that the
complete life cycle can be interpreted in terms of each phase, or conversely, each phase
can be interpreted in terms of a complete life cycle. Fractals are a special kind of
symmetry – the symmetry of self-similarities [16]. The purpose of using the principles of
fractals as a metaphor in describing software development phases is, according to
Raccoon, to bridge the gap in our understanding between one line of code and the entire
project, because the software development processes are recursive, similar and scalable.
Figure 2 shows the chaos model that combines a linear problem-solving loop with fractals
to describe the complexity of software development. Raccoon explains that fractals imply
a very specific scaling relationship in the recursion. The same expansion applies to each
level. All levels of software development have the same value to the project as a whole.
Each level is composed of all the levels below it and so each level repeats the structure of
the next level down. Raccoon demonstrates that the chaos model has unified many facets
of software development and can lead to a better understanding of software development.
We find similar symmetry in more widespread life-cycle models such as Boehm's spiral
model [4].

UNDERSTANDING SYMMETRY IN OBJECT-ORIENTED LANGUAGES

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

Figure 2: Fractal symmetry in Software Development Processes (after [19]).

Symmetries arise in many design problems. In the design of public transport systems
[30], we note that the driver duty components are symmetric to their builders. A driver
duty can be seen as a translation of its builder. Like the chaos model, the role of
symmetry in here is also to preserve the similarity of the structure.

Symmetry in Search Algorithms

Symmetry has found to be most successful in assisting the search of solutions for
combinatorial design problems in constraint programming [24]. Combinatorial problems
are in general NP-complete. They are typically solved as constraint satisfaction problems
by assignment search algorithms. Symmetries in these problems can lead to redundant
search, where many symmetrically equivalent blind alleys are explored wastefully.
Symmetries divide the set of possible assignments into equivalence classes. Each class
contains either only solutions or no solutions. According to this feature, search algorithms
can adopt various strategies to handle the symmetries. For example, if a search algorithm
has found that an assignment will not lead to a solution, it will abandon search for the
symmetric assignments to the assignment already considered. If, on the other hand, the
search algorithm has found a solution from an assignment, it will also abandon search for
the symmetric solutions. Smith [24] describes a symmetry breaking strategy that reduces
symmetries by adding constraints during the search to ensure that any assignment
symmetric to one already considered will not be explored.

4 CONCLUSION

The essence of symmetry is invariant change. This article explores this understanding of
symmetry in object-oriented languages and the benefits of symmetry. In general,
symmetry in software can be viewed as an invariant change that aims to preserve a
specific property of a system, which is summarised as follows:

1. Structure. An example of structural preservation is the notion of class. A class
stipulates a uniform structure for all the objects of the class.

CONCLUSION

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 131

2. Behaviour. An example of behavioural preservation is the notion of subtyping.
Subtyping stipulates a uniform behaviour for all the classes along an inheritance
path.

3. Regularity. Symmetry considerations in operator overloading and double dispatch
have the effect of preserving certain regularity. It is also true to say that structural
and behavioural preservation is also about protecting regularity.

4. Similarity. Similarity is a comparison between two things. When the two things
are similar, their similarity is captured as something regular. The chaos design
model exhibits such regularity.

5. Familiarity. When something is familiar, it has the similarity of something else.
Preserving familiarity can be called historical symmetry, symmetry of the past and
the present, primitive types and user defined types.

6. Uniformity. This is just a different way of seeing regularity.
In this article, we have illustrated these properties with the examples of classes,
subtyping, program formatting, operator overloading, double dispatch and chaos design
model. These properties are related – they are just different manifestations and effects of
symmetry. They can be explained from one single viewpoint: they simplify the design
and preserve the regularity. It is worth noting that this view of symmetry is consistent
with those of gestalt psychology [12] and information theories [3] and has the importance
in general human understanding, far beyond the software arena. We shall leave this
further exploration of symmetry to another paper.

This paper has also used a search algorithm example to illustrate that the presence of
symmetry is not always a good thing, as symmetry provides redundant information that
can lead to redundant search. However, knowing such side effect is also to our advantage
for we can reduce the search space by breaking symmetry. We have discussed symmetry
breaking in software design elsewhere [7][8][31]. For now we conclude that symmetry is
a powerful concept that can produce good effects on programming and software.
However, good symmetry effects can only be obtained based on a good understanding of
symmetry, for which we need a conscious effort.

5 ACKNOWLEDGEMENTS

Darius Zakrzewski has provided detailed and insightful comments on the paper. We are
grateful to his continous support and encouragement to our symmetry work.

UNDERSTANDING SYMMETRY IN OBJECT-ORIENTED LANGUAGES

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

REFERENCES

[1] Abadi, M. and Cardelli, L. A Theory of Objects. Springer, 1996.

[2] Alexandrescu, A. Modern C++ Design. Addison-Wesley, 2001.

[3] Attneave, F. “Symmetry, Information, and Memory for Pattern”. The American
Journal of Psychology 68(2): 209-22, 1955.

[4] Boehm, B. Software Engineering Economics. Prentice-Hall, 1981.

[5] Cardelli, L. “A Semantics of Multiple Inheritance”. In Semantics of Data Types,
LNCS 173: 51-68. Springer-Verlag, 1984.

[6] Coplien, J. “Space: The Final Frontier”. C++ Report 10(3). New York: SIGS
Publications, March 1998, 11-17.

[7] Coplien, J. “The Future of Language: Symmetry or Broken Symmetry?” In
Proceedings of VS Live 2001, San Francisco, California, January 2001.

[8] Coplien, J.O. and Zhao, L. “Symmetry Breaking in Software Patterns”. In Lecture
Notes in Computer Science Series, LNCS 2177, Springer, October 2001.

[9] Godefroid, P. and Prasad, S. “Symmetry and Reduced Symmetry” in Model
Checking. Proceedings of CAV'2001 (13th Conference on Computer Aided
Verification), Paris, July 2001.

[10] Hofstadter, D.R. Godel, Escher, and Bach: An Eternal Golden Braid. Penguin
Books, 1979.

[11] Jensen, W.B. “Classification, symmetry and the periodic table”. In Symmetry:
Unifying Human Understanding. I. Hargittai (ed), Pergamon Press, Oxford, 1986.
ISBN 0-08-033986-7.

[12] Koffka, K. Principles of Gestalt Psychology. London: Geo. Routledge & Son
Ltd., 1935.

[13] Lippman, S. B. and Lajoie, J. C++ Primer. 3rd Ed. Addison-Wesley, 1998.

[14] Liskov, B. “Data Abstraction and Hierarchy”. SIGPLAN Notices 23,5, May 1988.

[15] Mac Lane, S. and Birkhoff, G. Algebra. New York: Chelsea, 1988.

[16] Mandelbrot, B.B. The Fractal Geometry of Nature. W. H. Freeman and Company,
New York, 1983.

ACKNOWLEDGEMENTS

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 133

[17] Meyer, B. Object-Oriented Software Construction. 2nd Ed., NJ: Prentice-Hall,
1997.

[18] Motschnig-Pitrik, R. and Mylopoulos, J. “Classes and Instances”. International
Journal of Intelligent and Cooperative Information Systems, 1(1): 61-92, 1992.

[19] Raccoon, L.B.S. “The Chaos Model and the Chaos Life Cycle”. Software
Engineering Notes, 20(1): 55-66, January 1995.

[20] Rayside, D. and Campbell, G.T. “An Aristotelian Understanding of Object-
Oriented Programming”. OOPSLA ’00. 10/00 Minneapolis, MN, USA.

[21] Rosen, J. Symmetry in Science: An Introduction to the General Theory. New
York: Springer-Verlag, 1995.

[22] Rosen, J. “Symmetry at foundations of science”. In Symmetry 2: Unifying Human
Understanding. I. Hargittai (ed), Pergamon Press, Oxford, 1989. ISBN 0-08-
037237-6.

[23] Simons, A.J.H. A Language with Class: the Theory of Classification Examplifed
in an Object-Oriented Language, PhD Thesis, University of Sheffield, 1995.

[24] Smith, B.M. “Reducing Symmetry in a Combinatorial Design Problem”.
University of Leeds, School of Computing, Research Report Series, Report
2001.01, January 2001.

[25] Stroustrup, B. The Design and Evolution of C++. Addison Wesley, 1994. ISBN
0-201-54330-3.

[26] Taivalsaari, A. “On the Notion of Inheritance”. ACM Computing Surveys, 28(3):
438 – 479, September 1996.

[27] Wegner, P. “The Object-Oriented Classification Paradigm”. In Research
Directions in Object-Oriented Programming, Shriver, B. and Wegner, P. (eds),
The MIT Press, 1987.

[28] Weyl, H. Symmetry. Princeton University Press, © 1952.

[29] Winograd, T. “Frame Representations and The Declarative/Procedural
Controversy”. In Representation and Understanding: Studies in Cognitive
Science, 185-210, Bobrow, D.G. and Collins, A.M. (eds), New York: Academic
Press, 1975.

[30] Zhao, L. and Foster, T. “Driver Duty Constructor: A Pattern for Public Transport
Systems”. The Journal of Object-Oriented Programming 12(2), May 1999, 45-
51;77.

UNDERSTANDING SYMMETRY IN OBJECT-ORIENTED LANGUAGES

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

[31] Zhao, L. and Coplien, J.O. “Symmetry in Class and Type Hierarchy”. In James
Noble and John Potter, eds., Conferences in Research and Practice in Information
Technology, 10. Australian Computer Society, January 2002, pp. 181-190.

About the authors

Liping Zhao is a lecturer at the Department of Computation, UMIST, U.K. Her research
interests include object-oriented design, software patterns and symmetry. She can be
reached at liping@co.umist.ac.uk.

James O. Coplien is an associate professor at the Department of Computer Science,
North Central College in Naperville, Illinois, a visiting professor at UMIST, and is the
current Vloebergh Professor of Computer Science at Vrije Universiteit Brussel. He is a
well-known author of books and articles about object-oriented programming and patterns.
He can be reached at JOCoplien@cs.com.

mailto:liping@co.umist.ac.uk
mailto:JOCoplien@cs.com

