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Abstract 
The success of symmetry applications in many scientific disciplines has motivated us to 
explore symmetry in software. Our exploration is based on an informal notion that 
symmetry is the possibility of making a change together with some aspect that is 
immune to this change. In this view, symmetry has a duality of change and constancy 
whereby some aspect of an object can be changed while leaving other key aspects 
invariant. This view of symmetry is a fundamental concept underpinning many 
symmetry principles in the physical sciences. We have found that we can explain some 
object-oriented language constructs using this notion of symmetry. This article explores 
symmetry in object-oriented languages and also provides other examples of symmetry 
outside of object-oriented programming to show that symmetry considerations broaden 
beyond object orientation to other areas of software design. 

1 INTRODUCTION 

The success of symmetry applications in many scientific disciplines has motivated us to 
explore symmetry in software [7][8][31]. Our exploration is based on an informal notion 
that symmetry is the possibility of making a change while some aspect remains immune 
to this change. In this view, symmetry has a duality of change and constancy whereby 
some aspect of an object can be changed while leaving other key aspects invariant. This 
view of symmetry has underpinned many principles in the physical sciences. For 
example, one of the most important conservation laws is that of mass-energy. This law 
derives from the symmetry principle that physical laws are invariant with respect to time; 
that is, the amount of energy present before any physical interaction must equal the 
amount available after the interaction. We have found that this notion of symmetry also 
underpins some object-oriented language constructs.  

This article presents our understanding of symmetry and its role in object-oriented 
languages. We believe a proper understanding of symmetry is important not only to 
software design, but also to software maintenance, testing and debugging, as recent 
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research shows [9]. We shall also provide other examples of symmetry besides object-
oriented programming to show that symmetry considerations broaden beyond object 
orientation to other areas of software design. 

The formal notion of symmetry is beyond the scope of this article, but for the 
completeness, we briefly introduce it here. In mathematics, symmetry is studied under 
geometry and algebra. Geometric symmetry is a familiar concept in everyday life. It is 
based on rigid motion that leaves distances between points unchanged under some 
transformation. Such transformation includes reflection, rotation, translation, and their 
various combinations. In algebra [15], symmetry is characterised as a group of 
transformations that are closed, associative and invertible under a given law of 
composition. An object possesses symmetry if it remains unchanged under a group of 
transformations. The basic idea of symmetry is thus invariant change, i.e., change yet the 
same [21][22][28]. The informal notion of symmetry described above derives from this 
basic idea. 

2 SYMMETRY IN OBJECT-ORIENTED LANGUAGES 

In this section, we first give an overview of basic object-oriented notions and then discuss 
how these notions are related to symmetry and what benefits can be obtained from 
understanding this link. 

Basic Object-Oriented Notions 

Class is said to be the basic notion of object-oriented programming from which 
everything else derives [17]. A class is used to describe the structure and behaviour of all 
the objects generated from the class. Inheritance and subclassing are fundamental 
relations between pairs of class (and by extension, the transitive closure of these 
relations). A subclass describes additions (but not deletions) to its direct superclass; it is a 
convenient mechanism to avoid rewriting definitions that already appear in the 
superclass. Alternatively, inheritance is the sharing of properties between a class and its 
subclasses.  

Subclasses and inheritance are the basis of subtyping [1][5]. Subtyping is a relation 
on object types; an object type with more methods is a subtype of one with fewer 
methods. Consider two objects that share methods m1, m2, and m3, and one of the objects 
further has method m4. The type of the second object is a subtype of the one with fewer 
methods. A subtype provides all the behaviour of its supertype and may have extra 
behaviour. The subtyping relation is reflexive and transitive. Reflexive means that a type 
is a subtype of itself, whereas transitive means that if type C is a subtype of type B and B 
is a subtype of type A, then C is also a subtype of A. Subtyping has a subsumption rule, 
which states that if b is an object of B and B is a subtype of A, b is also an object of A. 
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The subsumption rule has a practical importance in object-oriented programming and is 
known as the Liskov substitution principle (LSP) [14]: 

If for each object o1 of type S there is an object o2 of type T such that for all 
programs P defined in terms of T, the behaviour of P is unchanged when o1 is 
substituted for o2, them S is a subtype of T. 

Classification View of Classes 

The class concept itself is interesting in its own right for its close ties to the theory of 
classification. Several researchers have explored this connection. For example, Wegner 
[27] presents a classification paradigm for object-oriented programming. He proposes to 
use equivalence relations as first-order classification mechanisms for classifying elements 
of a set into independent and disjoint classes. He defines three kinds of equivalence 
relations as the basis of type soundness and completeness, from which mathematical 
models of types can be developed. 

Motschnig-Pitrik and Mylopoulos [18] study classes and instances from a cognitive 
science viewpoint. They share Hofstadter's [10] view that our thinking is grounded in our 
ability to classify, and that classification establishes relationships between classes and 
instances. They state that classification underlies cognition and serves as an 
organisational structure for human memory. Cardelli [5] states that classification is what 
makes object-oriented programming different from other programming paradigms. 
Object-oriented programming languages generally support two levels of classification, 
which organises objects into classes and classes into class hierarchies. Simons [23] 
believes that all the object-oriented concepts can be united in a single theoretical model 
and explained under a theory of classification. He demonstrates that the notion of class is 
a first-class mathematical concept. Rayside and Campbell [20] note many interesting 
similarities between the notion of class in object-oriented programming and the notion of 
species in Aristotelian logic. They suggest a new way of understanding object-oriented 
programming, from the viewpoint of biology and taxonomy. 

In the following, we take the classification view of classes a step further by studying 
its link to the general idea of symmetry – the principle of invariance. We shall also 
explore symmetry in classification with subtyping.  

Symmetry in Classes 

As just mentioned, a class is a classification of objects. Such classification establishes the 
class-member invariance such that the description of the class is true for all the objects of 
the class. This view of class can be explained as symmetry [11]: A class enables the 
change of the objects, but the change must respect the structure and behaviour stipulated 
by the class. The structure and behaviour of a class can be enhanced through class 
invariants, preconditions and postconditions [17]. The benefit of symmetry in classes is 
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thus that it constrains the change of objects and enforces the correctness of classes. From 
the compiler’s viewpoint, symmetry improves the compilation optimisation. For example, 
in C++, since all the objects of a class are of the same size and the offsets of all members 
are the same, they can help the compiler to generate efficient code for member access, 
method lookup, and memory allocation. 

This notion of class can be valuable to component-based software development. 
Components can be grouped into classes according to certain commonality, such as 
interface compatibility or behaviour compatibility. A class can then be used to generate 
all the components that have the same commonality and accommodate individual 
variations. The components of the same class thus provide the flexibility for change. 
When a requirement is changed in an application, a new component can be used to 
replace the old one so long the new component respects the defined commonality in the 
component class. Such substitutability is an important feature in component-based 
software development. It is also important to software maintenance and evolution where 
the replacement of old or erroneous components is a major concern. 

More importantly, the link between symmetry and classification provides a basis for 
theoretic study of object-oriented software design. By applying symmetry principles, the 
aim of software design is to identify and preserve the maximum design invariants and 
support variations. This aim underlies design reuse. We can envisage such a design 
method that provides a collection of design templates. Design templates describe 
invariants and possible variations. Design is then about instantiation of these templates, 
composition of the instances and substitution of the instances. The general notions of 
classes and objects can be extended to design templates. 

Symmetry in Subtyping  

Inheritance has been largely related to generalisation or specialisation in the object-
oriented programming [26]; only a few researchers relate it to classification [5][23][27]. 
In knowledge representation, Winograd [29] perceives inheritance hierarchy as a system 
of classification where each node in inheritance represents a class of objects, and an is-a-
kind of link connects a class to some superclass that properly contains it. Winograd states 
that applying classification is one of the basic modes of reasoning and classification, by 
its very nature, is hierarchical. 

In object-oriented programming, the role of inheritance in classification is not as 
clear as that of classes. The lack of the clarity owes to the flexibility of the inheritance 
mechanism. Inheritance can be used to extend a class, restrict a class, or otherwise 
modify a class. This means that a subclass may not be properly contained within its 
superclass and the description of a superclass may not be true to all its subclasses. Hence 
inheritance does not always classify classes. However, when inheritance is used as 
subtyping, as described above, it can be viewed as classification of classes, in that it 
establishes the behaviour invariance between a subclass and its direct superclass such that 
the subclass behaves the same as its superclass. We wish to make clear that in practice, 
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subtyping is only one of the many roles inheritance plays. Therefore, it is only under the 
subtyping relation that inheritance classifies classes. 

Subtyping is related to symmetry: all the classes of a subtyping path may vary, but 
they must preserve and conform to a common behaviour. All the classes of a path through 
a subtyping structure can be said to conform to the same type. 

The benefits of understanding subtyping in terms of symmetry are similar to those of 
classes. First, the subtyping invariants can act as type constraints on inheritance to impose 
(for example, at compile time) a uniform typing behaviour for all classes in an inheritance 
path. Subcontracting rules [17] are a way of specifying subtyping invariants. Second, the 
notion of subtyping can be applied to component-based software development to achieve 
the desired substitutability among the components. Finally, classes and subtyping are 
basic design mechanisms that support the change through the substitution and maintain 
the stability through the invariants. 

Symmetry in Operator Overloading 

One of the reasons for providing the operator-overloading feature in the C++ 
programming language at the time was that it “looked neat” ([25], p.78). Another reason 
was to prevent some operators from being member functions with full access to the class 
private members. There were also symmetry considerations for overloading operators 
[13]. For example, by overloading an operator, one can treat it as an arithmetic operator 
and supplies the left and right operands to this operator. However, strictly speaking, 
overloaded operators do not provide symmetry of left and right; they only create an 
illusion of it, because overloaded operators such as “+” and “*” are not commutative and 
do not therefore possess reflection symmetry. In addition, the invocation of the 
overloaded operator at run time has little or no symmetry because in simple object-
oriented programming, the language chooses (at run time) from among implementations 
of a polymorphic operations based on the (dynamic) type of one of the objects involved 
in the operation. It is only statically that the overloaded operator looks symmetric with 
respect to its left and right operands.  

However, we can imagine a historical symmetry exists that preserves the structure 
and uniformity of the arithmetic operators, familiar from common algebra. Hence the 
importance of the operator-overloading feature is that it provides symmetry between 
built-in data types and user-defined types. 

Symmetry in Double Dispatch 

Double dispatch is a mechanism that associates a method with two objects and 
implements multiple methods. Double dispatch can happen at compile time (static 
dispatch) or runtime (dynamic dispatch). Double dispatch is a way of supporting 
polymorphic method lookup that goes beyond the simple dynamic single-object type 
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lookup of Smalltalk, Java or C++, but which recalls the more powerful but statically 
bound polymorphism of arithmetic operators in, say, FORTRAN. 

Overloading is a simple form of polymorphism, a simple double dispatch. In the 
previous section, we showed its relation to symmetry. 

Whereas opinions divide on whether or not double dispatch should be used in object-
oriented programming, the recent development shows the importance of symmetry in 
double dispatch [2]. When two arguments of the multimethods have the same type or 
conform to the same type as in subtyping, a symmetric multimethod can be added to 
make the order of the two arguments insensitive. An obvious benefit of symmetric 
dispatch is that the client code does not need to remember the order of arguments. Such 
feature simplifies the use of multimethods. 

Symmetry also appears in the equal method of the Java programming language. 
The contract of the equal method requires that any implementation of equal should be 
symmetric, so that a.equal(b) should always produce the same result as b.equal(a). 
The importance of this symmetry requirement is to simplify the coding and to constrain 
the behaviour of the code. 

3 OTHER SYMMETRY EXAMPLES 

The above section serves to illustrate symmetry in object-oriented languages. In this 
section, we give more examples of symmetry. Although some of the examples are 
tenuous visual or geometric symmetries, a good understanding of them is just as 
important. 

Symmetry in Program Format 

The simplest form of geometric symmetry in software is the format of programs. A well-
formatted or indented program can be understood more easily than a poorly formatted or 
indented one. While there is no agreement on what a good formatting should be (e.g., 
there are endless arguments about whether open curly braces should be on a line by 
themselves or at the end of the line preceding the block), there is a basic symmetry 
pattern that underlies formatting. In [6], Coplien provides examples of different 
formatting styles and shows that reflection symmetry of up and down gives a “good 
shape” to programs. Two such examples are given in Figure 1. Although it may sound 
like a superficial or even trite finding, there is anecdotal evidence from projects in Bell 
Laboratories that consistent indentation style is a good indicator for low bug density in 
code. 

int gilligan(int j) { 
    for (int i = 1; i < j; i++)  { 
        if (i % 2 == 0)  { 
            count << i; 
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        } 
    } 
} 
 
procedure playBallGame() 
    begin 
    char key; 
    integer ballsLeft; 
    procedure playABall() 
        begin 
        integer count; 
        procedure checkPosition(); 
            begin 
            integer x, y; 
            y := ball.yposition; 
            . . . . 
            end 
        . . . .  
        end 
    end 
 

Figure 1: Up-down Reflectional Symmetry in Code 

Symmetry in Software Development Life Cycles 

Raccoon [19] presents a chaos model for the life cycles of software development. The 
chaos model uses fractals to represent different phases of a life cycle such that the 
complete life cycle can be interpreted in terms of each phase, or conversely, each phase 
can be interpreted in terms of a complete life cycle. Fractals are a special kind of 
symmetry – the symmetry of self-similarities [16]. The purpose of using the principles of 
fractals as a metaphor in describing software development phases is, according to 
Raccoon, to bridge the gap in our understanding between one line of code and the entire 
project, because the software development processes are recursive, similar and scalable. 
Figure 2 shows the chaos model that combines a linear problem-solving loop with fractals 
to describe the complexity of software development. Raccoon explains that fractals imply 
a very specific scaling relationship in the recursion. The same expansion applies to each 
level. All levels of software development have the same value to the project as a whole. 
Each level is composed of all the levels below it and so each level repeats the structure of 
the next level down. Raccoon demonstrates that the chaos model has unified many facets 
of software development and can lead to a better understanding of software development. 
We find similar symmetry in more widespread life-cycle models such as Boehm's spiral 
model [4]. 
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Figure 2: Fractal symmetry in Software Development Processes (after [19]). 

 

Symmetries arise in many design problems. In the design of public transport systems 
[30], we note that the driver duty components are symmetric to their builders. A driver 
duty can be seen as a translation of its builder. Like the chaos model, the role of 
symmetry in here is also to preserve the similarity of the structure. 

Symmetry in Search Algorithms 

Symmetry has found to be most successful in assisting the search of solutions for 
combinatorial design problems in constraint programming [24]. Combinatorial problems 
are in general NP-complete. They are typically solved as constraint satisfaction problems 
by assignment search algorithms. Symmetries in these problems can lead to redundant 
search, where many symmetrically equivalent blind alleys are explored wastefully. 
Symmetries divide the set of possible assignments into equivalence classes. Each class 
contains either only solutions or no solutions. According to this feature, search algorithms 
can adopt various strategies to handle the symmetries. For example, if a search algorithm 
has found that an assignment will not lead to a solution, it will abandon search for the 
symmetric assignments to the assignment already considered. If, on the other hand, the 
search algorithm has found a solution from an assignment, it will also abandon search for 
the symmetric solutions. Smith [24] describes a symmetry breaking strategy that reduces 
symmetries by adding constraints during the search to ensure that any assignment 
symmetric to one already considered will not be explored. 

4 CONCLUSION 

The essence of symmetry is invariant change. This article explores this understanding of 
symmetry in object-oriented languages and the benefits of symmetry. In general, 
symmetry in software can be viewed as an invariant change that aims to preserve a 
specific property of a system, which is summarised as follows: 

1. Structure. An example of structural preservation is the notion of class. A class 
stipulates a uniform structure for all the objects of the class.  
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2. Behaviour. An example of behavioural preservation is the notion of subtyping. 
Subtyping stipulates a uniform behaviour for all the classes along an inheritance 
path.  

3. Regularity. Symmetry considerations in operator overloading and double dispatch 
have the effect of preserving certain regularity. It is also true to say that structural 
and behavioural preservation is also about protecting regularity. 

4. Similarity. Similarity is a comparison between two things. When the two things 
are similar, their similarity is captured as something regular. The chaos design 
model exhibits such regularity. 

5. Familiarity. When something is familiar, it has the similarity of something else. 
Preserving familiarity can be called historical symmetry, symmetry of the past and 
the present, primitive types and user defined types. 

6. Uniformity. This is just a different way of seeing regularity. 
In this article, we have illustrated these properties with the examples of classes, 
subtyping, program formatting, operator overloading, double dispatch and chaos design 
model. These properties are related – they are just different manifestations and effects of 
symmetry. They can be explained from one single viewpoint: they simplify the design 
and preserve the regularity. It is worth noting that this view of symmetry is consistent 
with those of gestalt psychology [12] and information theories [3] and has the importance 
in general human understanding, far beyond the software arena. We shall leave this 
further exploration of symmetry to another paper. 

This paper has also used a search algorithm example to illustrate that the presence of 
symmetry is not always a good thing, as symmetry provides redundant information that 
can lead to redundant search. However, knowing such side effect is also to our advantage 
for we can reduce the search space by breaking symmetry. We have discussed symmetry 
breaking in software design elsewhere [7][8][31]. For now we conclude that symmetry is 
a powerful concept that can produce good effects on programming and software. 
However, good symmetry effects can only be obtained based on a good understanding of 
symmetry, for which we need a conscious effort. 
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