
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

November-December 2003

Cite this article as follows: Ashley McNeile and Nicholas Simons: “State Machines as Mixins”, in
Journal of Object Technology, vol. 2, no. 6, November-December 2003, pp. 85-101.
http://www.jot.fm/issues/issue_2003_11/article2

State Machines as Mixins
Ashley McNeile and Nicholas Simons, Metamaxim Ltd., London, U.K.

Abstract
Mainstream object modelling techniques use Statechart Diagrams as a means of
modelling object behaviour. Research into how statecharts can be used in the context of
class generalization hierarchies has focused on applying the Liskov Substitution
Principle (LSP) to statecharts. This approach is problematic, and we describe three
reservations.
We propose an alternative approach based on mixin-style composition of state
transition diagrams. This avoids the problems we note in the LSP based approach; and
is also a basis for separating descriptions of behaviour inherent to the modelled domain
from behaviour that is not inherent, but a requirement of the system.

1 INTRODUCTION

This paper is about the formalisms used to model object behaviour at the domain1 and
analysis modelling stage of systems development, and is motivated by the need to create
and manage re-usable behavioural abstractions when building domain and analysis
models. It is informed by investigation into the possibilities of creating executable
behavioural models that can be used to explore and validate system requirements at a
very early stage in the development lifecycle.

The central point of the paper is that, for domain and analysis modelling, an
approach based on a mixin-like style of composition and re-use of state machines
(represented as state transition diagrams) is superior to the more conventional approach
based on statecharts and generalization hierarchies, in two respects:

• It is simpler, because it avoids the need for model authors to adhere to rules
governing how a sub-type should conform to its super-types.

• It is more expressive, because it supports the separation of descriptions
concerning domain behaviour from descriptions concerning systems
requirements.

1 Domain modelling is sometimes referred to as “Conceptual” or “Essential” modelling.

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_11/article2

STATE MACHINES AS MIXINS

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

2 STRUCTURE OF THIS PAPER

This paper is structured as four main parts:
• Sections 3 – 5 provide some background on statecharts and generalization

hierarchies, why they are important, and the approach that has generally been
adopted to synthesizing them into a coherent overall modelling framework based
on the Liskov Substitution Principle.

• Section 6 describes our reservations with this Liskov based approach to synthesis.
• Sections 7 – 12 describe in outline our proposal for an alternative approach based

on mixin-style composition of state transition diagrams, and shows how this
avoids the difficulties described in Section 6.

• Section 13 shows how our proposed approach allows the separation of domain
behaviour descriptions from required behaviour descriptions.

3 GENERALIZATION HIERARCHIES AND STATE MACHINES

Two paradigms, with different origins and histories, have become parts of the current
modelling vernacular: Generalization Hierarchies and State Machines.

Generalization Hierarchies

The concept of a Generalization Hierarchy derives most significantly from the inheritance
concepts of Object Oriented Programming (OOP), first introduced in the SIMULA-67
programming language. Successive generations of OOPs have successfully exploited the
idea that software can be built by defining general components, with general capabilities,
that can be sub-typed to make more specialized components. By supporting the
inheritance of capabilities (attributes and methods) in a type hierarchy, these languages
allow re-use and (properly used) promote economy of expression and ease of
maintenance.

In all mainstream OO approaches, the Generalization Hierarchy has been adopted as
a central construct for both OOA (Analysis) and OOD (Design) modelling. The idea is
that, when analysing a domain to create an OOA model, a hierarchical taxonomy is made
of domain concepts or objects, and that this is then mapped directly into a software class
inheritance hierarchy in the OOD model.

State Machines

A State Transition Diagram (STD) is a notation that describes states (normally
represented by ovals) and transitions (normally represented by arrows). The diagram
represents the behaviour of a conceptual machine (a Finite State Machine) that engages in
events that fire transitions and cause the machine to move from one state to another.

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 87

STDs have a long and respectable service record as a means of describing the
behaviour of event driven software. An extended form of STD notation based on Harel’s
“Statechart”2 notation [Hare 87] is incorporated in the UML. The statechart features
adopted by the UML from Harel’s notation include:

• Guards: Boolean conditions on transitions specifying when the transition may
occur.

• Composite States: Allowing hierarchical nesting of states.
• Concurrent Regions: Allowing a single statechart to include separate,

independently pursued, threads of states and transitions.
In domain and analysis modelling, the UML proposes statecharts as a tool for modelling
the life cycles of application objects in terms of the domain events that affect their state
and data (sometimes called “Protocol State Machines” [OMG 03 page 2-165]).

4 THE IMPORTANCE OF STATECHARTS

Although part of the UML armoury for behavioural specification, Statechart Diagrams
have not been widely used.3 Instead, it has been more usual to use Interaction Diagrams
(Sequence and Collaboration Diagrams) as the means of specifying the behaviour of
object based software.

Recently, as part of its MDA (Model Driven Architecture) initiative, the Object
Management Group has adopted executable semantics for the UML [OMG 03], which is
intended to provide the basis for the creation of executable software directly from
models. In particular, by automating the transformation from PIM (a Platform
Independent Analysis Model) to PSM (a Platform Specific Design Model), model based
code generation tools aim to reduce or even eliminate the dependencies between how a
software application is defined and the platform on which it runs.

The UML execution semantics focus on the statechart as the basis for defining
behaviour [OMG 03, Mell 02]. This is because the other forms of behavioural
specification included in the UML, Interaction Diagrams, are essentially case-based
descriptions of behaviour: a means of describing graphically the message trace of a single
instance of execution, or at most a set of related executions. As such, they are unsuitable
as a basis for model execution, either by code generation or metadata interpretation.

In so far as model execution and model based code generation are objectives of the
modelling process, and we believe they should be, the statechart must be the central
medium for behavioural specification.

2 Throughout this paper we use the term State Transition Diagram (STD) to mean a simple form with states

and transitions (no composite states, no concurrent regions and no guard conditions) and Statechart to mean
the extended form including these features.

3 Statecharts are more frequently used in real-time/embedded software development. Our interest, however, is
in information systems.

STATE MACHINES AS MIXINS

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

5 THE PROBLEM OF SYNTHESIS

The synthesis of statecharts and generalization hierarchies is problematic because the
normal mechanisms of inheritance, as applied to attributes and operations (methods), do
not apply in any obvious way. Attributes and operations take the form of a list or
collection of individual items, and these lists can be merged and extended and items
selectively refined or overridden. But a statechart is a single entity, and there is no
obvious simple way of merging multiple statecharts, or of extending or refining all or part
of a single statechart.

Researchers have therefore resorted to first principles to inform thinking on how
statecharts should be handled in generalization hierarchies. A key idea is that a child,
although a more specific version of its parent, is “substitutable” for the parent – in the
sense that any context where the parent can operate, the child could too. Substitutability
is commonly taken as a principle of sub-typing and is known as the Liskov Substitution
Principle (the LSP) after Barbara Liskov [Lisk 88]. The UML has adopted substitutability
as a key characteristic of generalization hierarchies [Booc 97 page 141].

Mainstream researchers into the synthesis of statecharts and generalization
hierarchies have taken this as their basis [Hare 99, Schr 00, Eber 94, Cook 94, Simo 02].
As noted by all of these sources, the implication of applying the LSP to behaviour (as
specified by a statechart) is that any sequence (trace) of event driven transitions that a
parent handles, its child must handle too – otherwise the child could not successfully
substitute for the parent. In other words, the set of transition traces of the child must be a
superset of that of the parent.

6 THREE RESERVATIONS

We have three reservations about applying the LSP to behaviour in this way, on the
grounds of usefulness, practicability and necessity.

We should emphasize that this is not a general criticism of the LSP, only of its
application to state transition behaviour in domain and analysis modelling.

Reservation on Grounds of Usefulness

Our first reservation is on the grounds of usefulness. If the child’s transition trace set is as
wide or wider than that of its parent, as the LSP requires, then the child’s behaviour is
more general than that of the parent. This is the inverse of the normal, intuitive, idea of a
generalization hierarchy, where you expect the parent to be more general than the child.

Although cases can be constructed where the behaviour of a specialized object is
more general than that of its parent, our contention is that common case is the other way
round, and that trying to use the LSP requires artificial decisions. This cannot be proved
in any formal way, but the following example illustrates the point.

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 89

A generic bank Account has a basic behaviour based on the events Open, Deposit,
Withdraw, Close. The generic account supports both positive (credit) and negative
(overdrawn) balances, and a variety of access mechanisms, including teller and ATM.

A Savings Account has the above behaviour, but because it is a savings vehicle, does
not support going overdrawn. Also, it only supports withdrawal by transfer to another
account, and not cash via teller or ATM.

It seems natural to model the Savings Account as a sub-type of Account: it is, after all, a
“kind of” Account. However, the behaviour of a Savings Account is more restricted than
that of its parent type, so could not substitute successfully for it – in violation of the LSP.

To conform to the LSP, the definition of the parent type can include only those
behaviours that are also common to all its children. So including behaviour “x” in
Account means that every type of sub-typed account must also include “x”. This is
possible in principle, but will not result in a stable model. How do we know what new
type of account the product development department of the bank might want to introduce
next year, and what kinds of behaviour that product might include or not include? What if
it doesn’t include “x”? The answer might be to remove “x” from the parent – with
possible repercussions on other sub-types that may rely on it.

In situations like this, the LSP is forcing decisions at modelling time that cannot be
properly made and, if made arbitrarily, may be unstable.

Reservation on Grounds of Practicability

Our second reservation is on the grounds of the practicability. This is concerned with the
following question: Suppose that we wish to sub-type STDs in a way that conforms to the
LSP, what are the rules for ensuring conformance and are these rules simple and well
understood enough to be used in practice? For this we look at some of the work that has
been done to elucidate these rules [OMG 03 page 2-168, Schr 00, Eber 94, Cook 94 page
206, Simo 02].

Generally, all these sources agree on a basic set of techniques and rules that can be
used to create an LSP consistent child statechart from parent statecharts (of which there
may be more than one because of multiple inheritance). These rules and techniques,
summarized in informal language, are:

a) Keep all transitions and states of the parent statechart(s)4.
b) Extend the child statechart by adding new transitions and states, not in any parent

statechart5.
c) Refine inherited states by decomposing into sub-statecharts.
d) Refine inherited transitions by adjusting their source and/or target states to use

substates of the inherited parent states, and possibly refine guards, subject to

4 In the case of multiple inheritance, the statechart of the child is the orthogonal composition of the statecharts

of its parents. See UML Semantics [OMG 03 page 2-169].
5 Generally, this is done by orthogonal composition of a new concurrent state containing the new behaviour.

STATE MACHINES AS MIXINS

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

ensuring pre-conditions (transition source states and guards6) are not
strengthened.

In their recent paper [Simo 02], Simons et al. state that rule (b) (extending) is unsafe and
that extending should not be allowed.

It is not our purpose to critique the different formulation of these rules. Rather, we
want to make the following observation. There are no other areas of OO modelling
notation where the rules governing how to construct a well-formed model have anything
like this complexity. As modelling (particularly during the early, domain modelling and
analysis phases) is a highly iterative and dynamic activity, and a model is typically
subject to frequent (and sometimes radical) re-factoring, we do not believe that
observance of these rules is a practical proposition.

The difficulty of achieving substitutability is apparent to Simons et al. who open the
concluding section of their paper [Simo 02]:

“The basic premise of component substitution is ‘no surprises’, yet (our) examples
show how difficult it can be to avoid unexpected behaviour or even failure”.

In fact, the situation is actually more complex than these authors have allowed. All the
sources we have examined assume that either:

a) The child inherits from a single parent; or
b) When there are multiple parents, the parents are disjoint: they have no states or

transitions in common.
We do not think that this is a reasonable assumption when domain and analysis
modelling. Consider the example of a car rental company. The object Rental Car might
be sub-typed from both Financial Asset (concerned with the asset value, depreciation,
etc.) and Managed Asset (concerned with the organizational responsibility for the asset,
e.g. to arrange servicing and repairs). The event Change of Ownership (e.g. the vehicle is
sold) is likely to be present as a transition in the statecharts of both super-types, as it has
both financial and management implications. The rules give no information on how such
an event should be handled.

We conclude, as do the authors of the UML Semantics Specification [OMG 03 page
2-166] about the whole area of statechart refinement:

“…readers are reminded that this topic is still the subject of research, and that it is
likely that other approaches may be defined either now or in the future”.

Reservation on Grounds of Necessity

Our final reservation is concerned with the premise that behavioural substitutability, of
the form described by these authors, is necessary.

The basic assumption behind behavioural substitutability is that the statechart, as a
specification of the event sequences that an object is able to handle, is public and relied

6 Not all the authors consider guards.

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 91

on by other objects. Consequently, if an object’s statechart changes, so an event trace
previously allowed is no longer allowed, or if the object is substituted by another object
that does not allow the trace, the model will fail in some way.

However, it is not necessary for an object to make its statechart public. Another
possibility is that:

• Statecharts are private to (hidden by) an object.
• Every object supports a run-time method that returns the set of events that it is

currently able to handle7 based on its current state (essentially, a list of all the
outgoing arrows from the statechart box corresponding to its current state).

• All other objects use this method to determine how to interact with the object, and
make no assumption about the event sequencing that it may or may not support.

This scheme does not require behavioural conformance in order to achieve
substitutability.

In our experience, there are good reasons, quite apart from the simplification of the
model formation rules, for taking this approach. The exposure of the event sequence
behaviour, meaning that one object knows about and may rely upon the sequencing of
events permitted by another, is a source of coupling, making models hard to change.
Minimizing coupling is particularly important if you are interested, as we are, in
executing models as a means of validation during their development, when they are
subject to frequent change.

7 BACK TO THE DRAWING BOARD

Developers exploiting the executable UML semantics to produce model execution tools
have already pondered these difficulties. For instance, Mellor and Balcer [Mell 02 page
227] give the following advice on combining statecharts and type hierarchies
(specifically: defining statecharts at both super and sub-type levels): Don’t do it.

We are not content with this. Specializing and re-using behaviour is a central
requirement of a complete and useful object-modelling paradigm. We believe that new
thinking is required.

As a basis, we refer to Ebert and Engels [Eber 94], who make a distinction between
Invocational Consistency (essentially, LSP style substitutability) and Observational
Consistency. Observational Consistency requires that (in informal language):

If the trace of a child is censored so that only events present in the parent are visible,
the trace is a valid trace of the parent.

This does not guarantee substitutability, as the possible (censored) traces of the child
need only be a subset of the possible traces of the parent – not a superset as
substitutability demands. But it does capture the notion that the child is a variant or

7 This requires “reflection” capabilities – i.e. that an object has run-time access to its own metadata.

STATE MACHINES AS MIXINS

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

specialization of the parent. In particular it avoids the instability problem described in
Section 6 under Usefulness as the sub-types of Account do not need to support all the
behaviours of the parent Account.

Our proposal is that Observational Consistency is used, and we now describe a
mechanism for achieving it based on parallel composition of simple STDs.

8 COMPOSITION OF STDS

For simplicity, let us start with simple, flat, STDs:
• No composite states.
• No concurrent regions (alternatively called concurrent substates).
• No guard conditions.

(Readers unfamiliar with these features of statecharts may want to refer to [Booc 97
Chapter 21].)

We allow the behaviour of an object to be defined as the parallel composition of one
or more STDs. The semantics of the composition is:

• For a single STD, an event is allowed provided that there is an outgoing transition
for the event for the current state (as usual).

• For the composite object (specified using two or more composed STDs) an event
is allowed by the object provided that it is allowed by each diagram in which it
appears.

This follows the semantics of parallel composition8 proposed by Hoare in CSP [Hoar 85].
As an example, consider Figure 1.

Figure 1: Example of STD Composition

An object whose behaviour is defined by the parallel composition of these two STDs
(S1||S2) only allows the event b when the left hand STD is in state s11 and the right hand
is in state s21. So the valid (complete) traces for S1||S2 are:

• a,c,b
• c,a,b

The semantics of the composition is based on consideration of events alone. The states
are private to each STD, so each STD has its own state space. Renaming states (e.g.

8 The parallel composition operator (P||Q), not the interleaving operator (P|||Q).

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 93

changing s11 to t11) has no effect on the behaviour specified by the composition (i.e.
the event traces it allows).

Note that the S1||S2 is Observationally Consistent with both S1 (valid trace: a,b)
and S2 (valid trace: c,b). This style of composition guarantees the Observational
Consistency of a composite whole with any single component STD, and with any parallel
composition of component STDs. This can be shown as follows:

Suppose C is a composition of STDs and that C’ is a composition of a subset of the STD
components of C. If C is not Observationally Consistent with C’ then there is some
valid trace, T, of C which has the property that:

 T|C’ is not a valid trace of C’

Where T|C’ means T censored to the event alphabet of C’.

In other words, if C’ is presented with the event sequence T|C’ it will, at some point,
refuse an event because some component of C’ does not allow it.

As the behaviour of C’ is completely unaffected by events not in its alphabet, this same
refusal would cause T to be an invalid trace of C. This is a contradiction, so T cannot
exist, and C must be Observationally Consistent with C’.

This means that the modeller is not required to follow any rules (such as those outlined in
Section 6 under Practicability) when authoring a model to achieve the desired degree of
behavioural consistency, as the composition semantics guarantee it.

This is the first advantage we claim for the proposed approach.

9 STDS AS MIXINS

Consider a Bank Account that has five “aspects” to its overall behaviour, characterized
by five state spaces as follows. The Account can be:

a) Pending open approval, open, or closed.
b) Available, or frozen.
c) In credit, or overdrawn.
d) Balance above the account overdraft limit, or below it.
e) Enabled for access from abroad, or disabled.

The behaviour of the Account can be modelled with five separate STDs, one for each of
the five aspects, composed as described in the previous section. Each diagram captures a
state space for one aspect, and the events that move it from state to state within that
space.

In a sense, the Account could be said to “inherit” these individual STDs. But what
status should the individual component STDs be given? Are they abstract super-types of
Account? This seems to be nonsense, as the state diagrams have no meaning outside of
their account context, and so do not seem to merit being identified as super-types.

STATE MACHINES AS MIXINS

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

There is another possible approach though, that conforms to current UML but does
not require super-types. The statechart formalism used by the UML allows separate
concurrent regions within a single diagram, having their own independently pursued
states and transitions. The five STDs for the Account could be modelled as separate
concurrent regions within the overall Account statechart. While this avoids the
introduction of meaningless super-types, it precludes selective re-use of the individual
components in the definition of other objects, as they are now bundled together. This is
undesirable if there are a number of different kinds of account, each using some selection
of the behavioural features these components represent, and we do not favour this
approach either.

A more radical solution, and the one that we propose, is a pure mixin based solution
[Brac 90]. In this approach, an STD is regarded as a stand-alone re-usable building block.
Objects are defined using one or more STDs in parallel, CSP style, composition. In this
approach there are no generalization hierarchies.

10 ANATOMY OF A MIXIN COMPONENT

Although we have concentrated on behaviour, as this is the basic motivation for the
approach, our concept is that a mixin component has all the paraphernalia to be an object
in its own right, namely:

• An STD.
• Attributes (both stored and derived).
• Actions that update attributes when events (transitions) take place.

When two mixins are composed, the STDs are composed as described in Section 8, and
the attributes and actions are merged. We assume that there are no merging conflicts –
which is easily arranged if the attribute sets of different components are disjoint and
actions in a component only update attributes belonging to the same component.

This does not necessarily mean that every mixin component can be instantiated by
itself – some can, but others cannot and are only used to build larger assemblies.

(There is a lot more that would need to be described to define exactly what such a
mixin component looks like. This is only intended to provide a sketch.)

11 ANALOGY WITH BILL OF MATERIAL STRUCTURES

With a mixin based approach, there is a close analogy with a Bill of Materials (BoM)
used in manufacturing. A BoM describes how a manufactured product is built up from
individual parts and sub-assemblies. The BoM structure is normally defined recursively:
an end product is made from a number of components, each component being either an
atomic part or a sub-assembly. Each sub-assembly is then the subject of its own BoM
structure.

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 95

The point of identifying sub-assemblies is that they are re-usable, non-atomic
components. A company that manufactures both dish and clothes washing machines may
manufacture and install the same kind of pump in both types of machine. The pump
would be identified as a sub-assembly incorporated in the BoM of both end products, and
would have its own BoM describing how it is composed. The company might also sell its
pumps, in which case the pump sub-assembly is also an end product.

The analogy between mixin based scheme and a BoM is close9, and is as follows:
• A mixin (an STD with associated attributes and actions) is an atomic part.
• A re-usable composition of mixins is a sub-assembly.
• An instantiatable object is an end product.

We have found it useful to arrange mixins in BoM style hierarchical structures for ease of
re-use. Note that these are not generalization hierarchies, although they bear a
relationship to conventional generalization hierarchies. (The nature of this relationship is
beyond the scope of this paper.)

Nor are they like traditional module calling structures. In a module calling structure,
the topology represents invocation relationships. In a mixin structure, the arrangement of
the individual mixins within the structure is immaterial to the behaviour of the object
being specified, and can be “re-factored” (e.g. to improve the re-use potential) without
altering the behaviour it specifies.

12 DERIVED STATES AND GUARDS

When defining objects using mixins, we have found it useful to distinguish between two
types of STD: Event Driven and Derived State:

• With an Event Driven STD, the state behaviour is defined by transitions of the
STD, without reference to anything else.

• With a Derived State STD, the states are defined by a function (of the attributes of
the object and perhaps other objects) that returns an enumerated type.

An Event Driven STD is the familiar, classical form of STD. An arrow emanating from a
state means that that associated event can happen when the machine is in that state. When
an event occurs, the associated transition fires and the machine is put into the state at
which the arrow terminates. These diagrams are topologically connected, in the sense that
every arrow must have both a starting and ending state.

A Derived State STD has a state that is calculated from other information (attributes)
available to the STD. Conceptually, a state function is invoked to return the state on-the-
fly, whenever required. (This is very similar to the familiar notion of a derived attribute.)

An arrow emanating from a state in a Derived State STD has the same meaning as in
the Event Driven diagram. An arrow terminating in a particular state means that the state

9 A difference is that a BoM can use a given component many times. At least in our current formulation, a

mixin can only be included once in the definition of a given object type.

STATE MACHINES AS MIXINS

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

is a necessary result of the transition.10 Derived State diagrams do not need to be
topologically connected. Every arrow must have either a starting or an ending state, but
does not need (and normally does not have) both.

The motivation for derived states is to maintain simplicity and transparency in
description. This can be demonstrated by considering the familiar example of a Bank
Account that can be in credit or overdrawn. The state function for an STD describing
these states is shown in Figure 2.

Figure 2: State Function for Account

This state function is simple and direct. To model these states in a state transition diagram
where the states are event driven is messy. It is only possible if you either:

• Distinguish two types of Withdraw event (greater than the balance, or less), and
similarly two types of Deposit, that then cause different transitions. See for
instance [OMG 03 page 2-166], or

• Generate extra events inside the model that are fed back to cause further
transitions. See for instance [Shla 92 page 71].

Both of these solutions are in our view unsatisfactory. They make the diagrams complex
and they do not allow a declarative definition of the state computation.

Using the mixin approach, the two types (event driven and derived state) of STD can
be composed as required to define an object. Figure 3 uses this to describe an Account
that cannot be closed when it is overdrawn.

Figure 3: An Account that can only be closed when in credit

10 WARNING: This is significantly different from the idea of a post-condition, and should not be confused with

it.

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 97

The first STD (ACCOUNT1) has an event driven state. The mixin with this STD
maintains the account balance. The second mixin (ACCOUNT2) has a derived state
(using the state function in Figure 2) and describes the constraint on closing. Note that
self in Figure 2 refers to the Account as a whole, i.e. the combination of the two mixins.

Readers may observe that the constraint specified by ACCOUNT2 would, in a UML
statechart, normally be handled as a guard on the close transition in ACCOUNT1,
specified by showing Close[in credit] against the arrow. While the use of mixins is
notationally less succinct than using a guard, the way it allows the guard to be separated
from the transition it affects is useful:

• It preserves the simplicity of the STD composition semantics.
• It allows guards to be re-used. ACCOUNT2 can be composed with any object

that has a Close event and a (numeric) balance attribute.
• It enables the separation of “indicative” and “optative” descriptions (as described

below in Section 13).
Guard conditions can be functions of event parameters as well as object attributes, which
derived states cannot. This might appear to make the derived state approach less powerful
than guards. However, we allow a transition in a derived state STD to be constrained by
its ending state as well as, or instead of, its starting state. The ending state is computed
from object attributes after they have been updated by the event parameters, so can take
into account their values. Figure 4 shows an account whose balance cannot be taken
below a predefined limit, in addition to the constraint on closing.

Figure 4: An Account with a post-state constraint on Withdrawals

It could be argued here that an extra mixin is not required: the state function for
ACCOUNT2 could have been redefined to differentiate three state values: in credit,
overdrawn but above limit, or below limit. However, using a separate mixin

STATE MACHINES AS MIXINS

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

transparently allows the limit to be positive, representing a minimum balance
requirement, as well as negative, representing an overdraft limit.

13 SEPARATION OF INDICATIVE AND OPTATIVE DESCRIPTIONS

When modelling, it is possible to distinguish between two types of description: those that
refer to the application domain independently of the existence of the system, and those
that pertain to the role of the system in its interaction with the domain. The motivation for
this distinction has been made in [JaZa 95, Parn 95] and we will follow Jackson and
Zave’s terminology, using the word indicative to refer to descriptions of the domain, and
optative to refer to descriptions pertaining to the role of the system.

In general, both kinds of description are necessary when developing a system. The
reason for making indicative descriptions is that a system tracks the states of an external
reality11, in the sense that a library system tracks the books and members, a stock control
system tracks stock levels, and an air traffic control system tracks aircraft. The system is
then able to provide its users with information about the reality:

• Who has borrowed the book “Pride and Prejudice”?
• How many widgets do we have?
• Where is flight XX123?

When designing a system it is necessary to understand what states are possible in the
domain because the system, in order to track the reality, must be able to mirror these
states. Indicative models describe these states.
But a system will also enforce, or help to enforce, user defined rules or policies:

• A book cannot be on loan for more than a month.
• The number of widgets must not fall below the safety stock level.
• Two aircraft must not approach within a minimum distance of each other.

These reflect requirements of the system, as they describe what we want to be true when
the domain and the system interact, and are the subject matter of optative descriptions.

STDs can be used to make both indicative and optative descriptions. Consider the
following examples about a Lending Library, both of which could be expressed on a
STD:

1. A book that is already out on loan to a member cannot be borrowed.
2. A book that has been classified as a reference book cannot be borrowed.

The first of these is indicative. It is a statement about the nature of books and lending,
reflecting the fact that a book cannot be lent to a new borrower until it has been returned
to the library by the previous one. This is true whether or not the library has a system for
recording what books are on loan and to whom. The second is optative, and reflects the
library’s policy that reference books should be used on the premises and not taken out.

11 Not all systems do this. This is not true for instance of purely transformational systems such as graphics

processing, or authoring systems such as word processing or CAD.

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 99

However, it is both meaningful and physically possible to take a reference book out of the
library, although it might be a requirement of a system to prevent or discourage this from
happening.

Jackson [Jack 95 page 127] proposes a Principle of Uniform Mood: “Never mix
indicative and optative moods in the same description”. We believe that this discipline
should be followed, in particular for the following reason: It is not safe to assume, when
constructing one part of a model, that optative constraints specified elsewhere in the
model will always be obeyed. It may be, for instance, that reference books are taken from
the library – albeit only occasionally and only at the discretion of the head librarian, who
has the authority to waive the normal rule. So the mechanisms for recording the fact of
"being on loan", issuing reminders when overdue, etc., should be part of the model of a
reference book just as they are for other books.

Distinguishing constraints that are indicative (and may be relied on), from those that
are optative (and may be broken), is therefore important – because the distinction
determines what behaviour possibilities must be allowed for, even if some of these
possibilities are only exercised in exceptional circumstances. Maintaining this distinction
clearly in the model is difficult if the two types of constraint are conflated in a single
description.

So far, we have made the tacit assumption that the STDs in our mixins describe
indicative constraints. Now suppose that the bank manager has the authority to allow a
customer to withdraw beyond his/her limit. ACCOUNT3 in Figure 3 needs to be
reclassified as optative rather than indicative (ACCOUNT1 and ACCOUNT2 are still
indicative). We are compliant with the Principle of Uniform Mood, because each mixin is
either wholly optative or wholly indicative. Had the limit constraint been specified as a
guard on the withdraw event in ACCOUNT1 this separation could not not have been
made.

Ability to make this separation is the second advantage we claim for the mixin-based
approach.

14 FURTHER WORK

As we say in the introduction to this paper our interest is in the use of executable
behavioural models for requirements validation, and our current work is in this area.
Further information about this can be found at http://www.metamaxim.com.

http://www.metamaxim.com

STATE MACHINES AS MIXINS

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

REFERENCES

[Hare 87] D. Harel, “Statecharts: A visual formalism for complex systems”, Science of
Computer Programming, 8, pages 231-274, 1987.

[OMG 03] OMG, Unified Modeling Language Specification version 1.5, March 2003,
http://www.omg.org. Document ref.: formal/03-03-01

[Lisk 88] B. Liskov, “Data Abstraction and Hierarchy”, SIGPLAN Notices vol. 23, issue
5, May 1988.

[Booc 97] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language
User Guide, Addison Wesley, 1997.

[Hare 99] D. Harel and O. Kupferman, “On the Inheritance of Statebased Object
Behaviour”, Technical Report MCS99-12, The Weizmann Institute of
Science, Israel, 1999.

[Schr 00] M. Schreft and M. Stumptner, “On the Design of Behavior Consistent
Specializations of Object Life Cycles in OBD and UML”, published in
Advances in Object-Oriented Data Modeling, The MIT Press, 2000.

[Eber 94] J. Ebert and G. Engels, “Dynamic Models and Behavioural Views”,
International Symposium on Object-Oriented Methodologies and Systems,
LNCS 858, Springer-Verlag, 1994.

[Cook 94] S. Cook and J. Daniels, Designing Object Systems – Object-Oriented
Modelling with Syntropy, Prentice Hall International, 1994.

[Simo 02] A. Simons, M. Stannett, K. Bogdanov and W. Holcombe, “Plug And Play
Safely: Rules For Behavioural Compatibility”, Proc. 6th IASTED Int. Conf.
Software Engineering and Applications, (Cambridge MA: IASTED, 2002).

[Mell 02] S. Mellor and M. Balcer, Executable UML: A Foundation for Model-Driven
Architecture, Addison Wesley, 2002.

[Hoar 85] C. Hoare, Communicating Sequential Processes, Prentice-Hall International,
1985.

[Brac 90] G. Bracha and W. Cook, “Mixin-based Inheritance”, Proc. of the ACM
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 1990.

[Shla 92] S. Shlaer and S. Mellor, Object Life Cycles - Modeling the World in States,
Yourdon Press/Prentice Hall, 1992.

[JaZa 95] M. Jackson and P. Zave, “Deriving Specifications from Requirements: An
Example”, ICSE17, vol. 1995, pages 15-24, 1995.

http://www.omg.org

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 101

[Parn 95] D. Parnas and J. Madey, “Functional Documentation for Computer Systems
Engineering”, Science of Computer Programming (Elsevier) 25(1), pages 41-
61, Oct. 1995

[Jack 95] M. Jackson, Software Requirements and Specifications: A Lexicon of
Practice, Principles and Prejudices, AddisonWesley, 1995

About the authors

Ashley McNeile is a practitioner with 25 years of experience in
systems development and IT related management consultancy. His
focus is research into requirements analysis techniques and model
execution, and in 2001 he founded Metamaxim Ltd. to pioneer new
techniques in this area. He has published and presented on object
oriented development methodology and systems architecture. He can
be reached at ashley.mcneile@metamaxim.com.

Nicholas Simons has been working with formal methods of system
specification since their introduction, and has over 20 years experience
in building tools for system design, code generation and reverse
engineering. In addition, he lectures on systems analysis and design,
Web programming and project planning. He is a co-founder and
director of Metamaxim Ltd., and can be reached at
nick.simons@metamaxim.com.

mailto:ashley.mcneile@metamaxim.com
mailto:nick.simons@metamaxim.com

