
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 6, November-December 2003

Cite this article as follows: Gerardo Rossel, Andrea Manna: “E-MOBI Smart Object Model and
Implementation”, in Journal of Object Technology, vol. 2, no. 6, November-December 2003, pp.
103-115. http://www.jot.fm/issues/issue_2003_11/article3

E-MOBI Smart Object Model and
Implementation

Gerardo Rossel and Andrea Manna, Department of Computer Science,
University of Buenos Aires, Argentina

Abstract
MOBI (Object Intelligent Model) is a multi-paradigm model for the incorporation of rule-
based processing and knowledge to object-oriented languages. MOBI approach is a
generic software architecture capable of being implemented in object-oriented
languages. The nature of this architecture allows to add knowledge to instances and
classify the knowledge in the class hierarchy, achieving the definition of a concept of
knowledge inheritance. The purpose of this paper is to show the MOBI’s Eiffel
implementation named E-MOBI. This implementation supports multiple knowledge
inheritance and the main features of MOBI’s architecture. We will show that E-MOBI is
one proper tool for the creation of intelligent agents for Internet. At end, a case study is
presented to show the flexibility for the implementation of intelligent agents.

1 MOBI OBJECT INTELLIGENT MODEL

MOBI (Modelo de OBjetos Inteligentes in Spanish) [Man 01] is a multi-paradigm generic
architecture that permits to incorporate facilities of programming in logic to an Object
Oriented language. MOBI is founded in three basic premises:

• Do not incorporate new syntactical structures to language
• Provide an extension as part of the class libraries
• Build towards class-based object-oriented languages

With these points we tried to obtain a model which emphasizes simplicity and portability.
Without incorporating syntactical structures to the language the needs of a precompiler or
a modified compiler is avoided. If the extension is standard enough, it is able to operate
with only a few modifications thru different language implementations. The model is
quite wide to be adapted to any class-based object-oriented language. The instance-based
languages (eg. Self [Ung 87].) require a special consideration and are not still
contemplated in MOBI.

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_11/article3

E-MOBI SMART OBJECT MODEL AND IMPLEMENTATION

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

MOBI encloses the following characteristics:

1. The classes have a common Knowledge Base for all their instances.
2. It is not necessary that every class in the domain problem has a Knowledge Base
3. The classes having a Knowledge Base must include a common interface to access

the Base.
4. The objects (instances) can have a private and dynamic Knowledge Base that can

be different for objects belonging to the same class.
5. Behavior:

a. The methods, which are defined in classes, can consult the knowledge
base of the regarding class.

b. The methods can be programmed in a completely imperative form or
can, in the method body, consult their Knowledge Base and act
accordingly.

6. The internal state of an object in a determined execution point of a program, is
defined by the values contained in their instance variables (or structural attributes)
and the knowledge that it has.

7. The knowledge is inherited through the inheritance hierarchy.
8. The objects can transfer their private knowledge to the class they belong to share

it with the remaining instances of the class.

These previous items define the computational model of MOBI. The main components of
a MOBI application are: Knowledge Base, Support Algorithms and Domain’s Classes.
Their relation are shown in Fig. 1.

Domain's Class

MobiKnowledge
Base

Fig. 1 Main Components

MOBI OBJECT INTELLIGENT MODEL

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 105

The interaction with the Knowledge Base and the association between a class and its
Knowledge Base only takes place by means of the support algorithms. The support
algorithms allow a class to access its Knowledge Base and to make inferences from it.
The inference algorithm proposed by MOBI is SLD-Resolution. The SLD-Resolution is a
refinement strategy of Robinson’s resolution principle [Ron 65], applied only to defined
clauses. The utilization of SLD-Resolution obeys to the settle of a correct and complete
inference mechanism [Llo 87]. It provides a foundation for a logically sound operational
semantic of defined programs.The support algorithms are implemented in a library of
classes and, in addition, allow to define the necessary interface for the classes that
support knowledge. MOBI has a class with the same name that defines the interface of
the classes that support knowledge and the operations for the manipulation of the
Knowledge Base. It is necessary to make compatible interfaces, which requires a design
solution. In MOBI, is suggested the use of the structural Design Pattern Adapter or
Wrapper [Gam 95], whose purpose is to turn the interface from a class to other that the
clients hope. For both models, Object Adapter and Class Adapter, each MOBI
implementation can choose the most recommended for the language. For example, Class
Adapter can be used taking advantage of the Eiffel language multiple inheritance. Fig. 2
outlines the way to use Class Adapter in MOBI.

MOBI

eval()

Adapter

Client Target

Fig. 2 Class Adapter in MOBI

In MOBI the internal state of an object is determined by its structural attributes and the
knowledge acquired throughout its life. The operations to manipulate the Knowledge
Base are those that allow the variation of the object Knowledge Base and the class
Knowledge Base. On the other hand, MOBI has two ways to use the Knowledge Base:

• External: Another object makes a question sending a message or invocation like:

target.evaluate(goal) which launches the evaluation algorithm on the private and
common Knowledge Base.

E-MOBI SMART OBJECT MODEL AND IMPLEMENTATION

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

• Internal: An object can, in some method code, invoke an evaluation to act
accordingly.

The private Knowledge Base influences so much the internal state as the behavior, while
the common Knowledge Base influences only the behavior, since it is shared for all the
instances and does not mark the internal state of an individual instance. When the private
knowledge is transformed into common knowledge, cease to determine the internal state
of the object that generated the knowledge and becomes a common characteristic for all
the instances.

2 E-MOBI

E-mobi is an implementation of MOBI made in Eiffel language [Mey 92]. The language
was chosen because of several capabilities that justify its selection, that is to say:

• Pure Object Oriented.
• Strong typing.
• Support of Multiple Inheritance.
• Great amount of class libraries.
• Support of Design by Contract.
• There are no remarkable antecedents for the incorporation of inference

mechanisms.

Clearly the last point tube a decisive weight in the selection. The implementation tries to
respect the essence of the model, that is to say:

• Knowledge based on rules.
• Private knowledge for the instances.
• Knowledge Inheritance.
• Possibility of defining on him the operations of update of knowledge bases.

One alternative for E-MOBI was to use an external inference machine, but we decided
not to use this option in favor of a pure implementation within the own language. We also
tried to obtain a flexible design in such a form that the support algorithms (unification
and evaluation) could be optimized without affecting the model. In addition we
determined to implement the knowledge base using the native Eiffel tools for persistence,
instead of some other viable option, for example the use of a database (relational or
object-oriented). This last decision had the purpose to avoid jeopardizing the
implementation with external tools to the language choice.

E-MOBI

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 107

As a design decision we solved to create a cluster named MOBI including all the
classes implementing the model and present this cluster under the form of a precompiled
library. The objective of this decision was to build a reusable tool for any project, where
it is only necessary to import the cluster MOBI to be able to generate Knowledge Base
classes and intelligent objects.

Clusters are groups of classes logically related. The only constraint is that two
classes in a cluster cannot have the same name. Informally the following guides should be
followed [Mey 92]:

• Classes in a cluster should be conceptually related.
• The amount of classes in cluster is due to limit depending on the connection

between the classes.
• The cycles in the client relation usually involve classes belonging to the same

cluster.

In Eiffel the short form (also named contract form) is one of the ways to document
clusters and classes, and consist in the description of the class interface and its
corresponding assertions. We will use this form when describing E-Mobi main classes.

Figure 3 shows a UML diagram with the main relations and classes of the cluster
MOBI.

SUSTITUTIONANSWER

VALIDATOR PREDICATVALIDATOR RULE

VALIDATOR

PREDICATE

ARGUMENT
KNOWLEDGE BASE

RULE

MOBI

Fig.3 Cluster MOBI

The core of E-mobi implementation is the class named MOBI, which counts on the
structure definitions and the necessary programming algorithms for using E-mobi. This

E-MOBI SMART OBJECT MODEL AND IMPLEMENTATION

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

class implements the main algorithms of the model (eg. evaluation algorithm, unification
algorithm). Next is the contract format of class MOBI:

class interface MOBI

inherit

 RTS_SERVER
 export {NONE} all
 end

feature -- Operations

 eval (sgoal: STRING): ANSWER
 -- Main call to evaluate a predicate on the KB
 require
 ((sgoal) /= (void)) and then (isPredicate (sgoal))

 all_answers (sgoal: STRING): ARRAY [ANSWER]
 --call to obtain all the possible true answers
-- if there is no answer the Array is empty
 require
 ((sgoal) /= (void)) and then (is_predicate (sgoal))

 re_eval: ANSWER
 -- like to semicolon in Prolog,
 -- it requests another answer

 is_predicate(p: STRING): BOOLEAN
-- it returns true if p conforms to the syntax established for
-- predicates

 name_kb: STRING
 --file’s name of Knowledge Base

 true_answer : ANSWER
 --Routine ONCE that returns a answer with the value in True

 false_answer: ANSWER

--Routine ONCE that returns a answer with the
--value in False

feature -- Operations with Knowledge Base

 save_kb

 expand (r: RULE)
 -- To expand the Knowledge Base with the rule
 -- r is added to the Knowledge Base

E-MOBI

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 109

 contract (r: RULE)
 -- To contract the Knowledge Base with rule r
 -- r takes off of the Knowledge Base

 consolidate
 -- It adds to the Class Knowledge Base the

-- instance knowledge

invariant
 knowledgeprivate_necesary: (kb_private) /= (Void)
end interface -- class MOBI

The main routines provided by MOBI are: eval, all_answers and re_eval. The

first receives a goal and returns an answer, evaluated to true or false, and, if it is
appropriate, the list of substitutions found.

The routine is_predicate, permits to verify that a given string has the syntax of a
predicate. According to the design by contract ([Mey 97], [Jez 99], [Mit 02]), the client is
responsible to check that the goal to evaluate be really a predicate. It is used by
precondition of eval routine.

An invocation to eval returns the first answer that the evaluation algorithm finds. It
is possible another answer be needed, whether to know if there is more than one, or
because the answer obtained is not acceptable for the context in which was requested. To
achieve this, it was implemented the feature re_eval that works like the semicolon in
Prolog. Finally, to get all the possible answers of a question, it was implemented the
feature all_answers, that returns an ARRAY[ANSWER] which would be empty in case
there were no answers.

The operations upon the Knowledge Base are given by the features: expand,
contract and consolidate. The first two, expand and contract, receive a
parameter of type RULE and permit to remove or to add it dynamically to the
Knowledge Base. The last one, consolidate, is the responsible for adding the private
knowledge of the instance to the class’s Knowledge Base, so that any new generated
instance have the additional knowledge. Two features of general purpose are provided,
answer_true and answer_false, both once, that is to say that the routine only will
be executed once. Other invocations will return the same result that the first one,
achieving to have an alone instance of each one with the value placed in true or false
respectively.

The class KNOWLEDGE_BASE is implemented like an array of rules and handles its
persistence by means of the class PERSISTENT_ARRAY. Each class will store in this array
their own rules, but at runtime, the array will be extended to incorporate the ancestor
rules, creating a greater knowledge base. For doing this, they will be added together with
the own instances rules representing the private knowledge of each object and that has

E-MOBI SMART OBJECT MODEL AND IMPLEMENTATION

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

only existence at runtime. The only way that an object can make its knowledge persistent
is adding it to the base class.

The main support classes to MOBI are: PREDICATE, RULE, ANSWER,
SUBSTITUTION and ARGUMENT. The class PREDICATE implements the concept of
predicate and provides the mechanism to transform a string with the adequate syntax to
an instance of it. The class RULE represents a Horn clause. The class ARGUMENT
represents the predicate’s arguments. The arguments can be variables, constant string or
numerical.

The knowledge base will be created by a set of rules written like Horn clauses, so
they will have at most one positive literal. The syntax is similar to Prolog: capital letters
represent variables, numbers and strings are constant.

In order to build the Knowledge Base for a class it is necessary to have a rule editor
to write the rules, validate its syntax and save them to disk. Therefore a tool named
RuleTool was created. This tool allows to chose the name of the class for which it is
desired to create or modify the Knowledge Base; after this it is possible to add, modify or
eliminate rules, and finally gives the option to save the knowledge to disk. Fig. 4 shows
the main screen of RuleTool.

Fig.4 RuleTool

3 CASE STUDY

The case study represents the problem of going from a place to another. For this, a class
EXPLORER inheriting from MOBI is defined, in such way that its instances can be moved
for different positions in the (virtual) world, to arrive at the asked place to go. In this case
the explorer can perceive. Being in a position it is possible to realize if the nearby

CASE STUDY

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 111

positions are or not passable. This information is not in the knowledge base, since to
know if a position is passable the explorer must arrive at a contiguous position and watch
(to perceive). The perception can be given by external sensors. In the sample we
simulated it with one feature perceive that contains the perceptions in each position in
order to obtain a realistic simulation.

Our explorer learns, by means of his experience, the paths he would not have to take
again if he wants to arrive to the same objective. During the exploration made searching
the destination, he is learning which positions are impassable and which do not lead to
the destination wished from the source (or possibly from some of the positions already
taken).

The implementation sample for this case tries to go through the world outlined in the
graph of figure 5, where the nodes are the possible positions or states and the arcs
indicate the path among them. The darkest nodes indicate the impassable positions (that
the explorer does not know until arriving at a contiguous place).

a b

e

m

c

j
r

d

h

z

l

y
w

f
t

Fig.5 World to Explorer

According to the graph, knowledge bases of the explorer would be:

canGo(X,Y) :- adjacent(X,Y).
canGo (X,Y):- adjacent(Y,X).
adjacent(a,b).
adjacent(b,e).

E-MOBI SMART OBJECT MODEL AND IMPLEMENTATION

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

adjacent(b,c).
adjacent(b,j).
adjacent(e,f).
adjacent(e,c).
adjacent(j,c).
adjacent(j,d).
adjacent(c,d).
adjacent(d,h).
adjacent(h,t).
adjacent(d,z).
adjacent(h,l).
adjacent(f,m).
adjacent(j,y).
adjacent(j,w).
adjacent(r,w).
adjacent(c,r).

The contract form of the EXPLORER class is the following:

class interface EXPLORER

inherit MOBI end

creation
 make

feature

 make

 go (source, destiny: STRING): PATH
 -- the agent tries to arrive at the destiny from the
 -- source and return a path between source and destiny.

 steps: INTEGER

 perceive (position: STRING): ARRAY [STRING]
--it simulates an outer perception and it returns an Array of
--impassable places. If all places are passable, then the
--Array is empty

 next_state (path_act: PATH): STRING
 require
 there_is_element: (path_act.length) > (0)

 can_go (pos: STRING): BOOLEAN

CASE STUDY

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 113

end interface -- class EXPLORER

It is possible to appreciate that the interface of the explorer is very simple, basically
indicates go(source, destiny) and the explorer is responsible to made it; perceive
and next_state are explained by themselves. The first is the simulation of the
perception and the second one is responsible to give back the next valid position from the
actual place, discarding impassable (perceived as not passable) and closed ways. Thus,
the explorer learns from his experience, in the future the amount of steps to go to the
same destiny is going to be smaller. If he consolidates his knowledge other agents will
not have to prove impassable ways.

A call to an explorer is of the following form:

!!explorer.make.
 path := explorer.go("a","z").

He produces the following path: “a”-> “b”->”e” ->”c” ->”d” ->”z” with a total of 10
(ten) steps. If the same route is requested to him again, it will give back the same way but
with only 6(six) steps, since he learned not to turn aside himself by ways without exit. In
addition, if now he is requested to go from b to z, it takes 5 (five) steps. The private
knowledge base (of the instance) after the first invocation is:

impassable (f).
impassable (t).
noWay(l,a,z).
noWay (l,b,z).
noWay(l,e,z).
noWay(l,c,z).
noWay(l,d,z).
noWay(l,h,z).
noWay(h,a,z).
noWay(h,b,z).
noWay(h,c,z).
noWay(h,e,z).
noWay(h,d,z).

Before each movement, the explorer perceives to incorporate the impassable places in the
knowledge base; if he enters in a way without exit he goes back and adds the knowledge
of the nodes because they do not lead to the destiny. In each movement finds out the
adjacent positions and as soon as is asked to go to a node, it consults the knowledge base
to see if it is impassable and does not lead to the objective.

The tests made with the simulator show that the first time to cross until z it makes
ten visits whereas for the second request it makes only six visits. Explorer learned, and
during the second route it took fewer steps to arrive at a known destination. In addition if

E-MOBI SMART OBJECT MODEL AND IMPLEMENTATION

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 6

the knowledge is consolidated, any new explorer trying to cross the same single way will
make six visits.

4 CONCLUSIONS

The implementation made shows the intelligent development of agents using a
multiparadigm model. In [Rus 96] agents are defined of the following form: “Agents are
entities who receive stimulus of environment through sensors and act in this environment
starting off of the stimulus”. In the presented case study the explorer instances act like
intelligent agents.

Agents can be implemented interacting with others or in a same space of directions
or network. Each agent maintains his knowledge base in a local form, but could make
inquiries to others agents located in remote equipments. It is possible that several
instances of a class interact, each one with different remote agents to consolidate the
common knowledge. Some of the future lines of work include the creation of a
framework for distributed processing in Internet using the advantages of E-mobi; and in
addition the extension of the evaluation algorithm to support diverse strategies and the
incorporation of uncertain knowledge.

REFERENCES

[Gam 95] Erich Gamma, Richard Hel, Ralph Johnson, John Vlissides. Design Patterns,
Elements of Reusable Object-Oriented Software, Addison Wesley. 1995.

[Jez 99] Jean-Marc Jézéquel, Michel Train, Christine Mingins. Design Patterns and
Contracts, Addison-Wesley, 1999.

[Llo 87] Lloyd J.W., Foundations of Logic Programming, Second Edition – N. York
1987

[Mey 92] Bertrand Meyer, Eiffel the language, Prentice Hall, 1992

[Mey 97] Bertrand Meyer, Object-Oriented Software Construction 2nd Edition,
Prentice Hall, 1997

[Mit 02] Mitchell Richard, McKim Jim, Design by Contract, by Example, Addison-
Wesley, 2002

[Man 01] Andrea Manna, Gerardo Rossel “MOBI Modelo de Objetos Inteligentes”.
Licenciate Thesis. Faculty of Exact and Natural Sciences. University of
Buenos Aires, 2001.

CONCLUSIONS

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 115

 [Rob 65] Robinson J.A. “A Machine Oriented Logic Based on the Resolution
Principle”, Journal of the ACM, 12, 1965.

[Rus 96] Stuart Russell, Peter Norving. Artificial intelligence a modern approach,
Prentice Hall - 1996

[Ung 87] David Ungar and Randall B. Smith. “Self: The Power of Simplicity”,
Proceedings OOPSLA ‘87

About the authors

Gerardo Rossel is professor at Open University Interamericana and
National University of Lanus, Argentina. He is researching in object-
oriented technology and web engineering for Ph.D thesis at Department
of Computer Science, University of Buenos Aires, Argentina. He is also
Chief Scientist at UpperSoft (http://www.uppersoft.com.ar). He can be
contacted at grossel@dc.uba.ar.

Andrea Manna is attending professor at the Department of Computer
Science of the University of Buenos Aires and adjunct professor at the
National University of Lanus, Argentina. She is also Chief Software
Architect at UpperSoft which provides consulting, training and
development in object technology and artificial intelligence. She is

working in object technology since 1993. She can be contacted at amanna@dc.uba.ar.

http://www.uppersoft.com.ar
mailto:grossel@dc.uba.ar
mailto:amanna@dc.uba.ar

