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The multi-threaded implementation presented in the previous column (July/August, 2003) 
sets the stage for the distributed processing implementation to be presented in this 
column. 

Please see the previous two columns for the details regarding the TSP best-first 
branch and bound algorithm that forms the basis for the work that shall be described in 
this column. 

Class Node is unchanged from the single and multi-threaded implementation 
presented in Part 2 of this series.   

Before the mechanics (RMI in this case) of distributed processing can be deployed 
the algorithm must be setup to support parallel computation. This was accomplished 
during the multi-threaded design and implementation presented in the previous column.  
Recall that threads were spawned from an instance of class TSP after all the nodes at 
level 2 were generated. These nodes represent partial tours of size 2 (e.g. [1, 2], [1, 3], [1, 
4], …, [1, n]. The nodes were inserted into a priority queue implemented using Java’s 
standard collection class TreeSet. These nodes are prioritized in the TreeSet according to 
the value of their computed lower bound (ties being resolved by the sum of the cities in 
the tour – see the previous column for details). 

Instead of spawning threads and handing each thread one of the level 2 nodes, we 
define class TSP as the server and allow clients, defined by the revised class 
ProcessNodes (previously the thread class) to request nodes from the server. These nodes 
are handed off to the requesting clients until no more nodes are left. 

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_11/column5
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1 DESIGN CONSIDERATIONS 

It is well known that communication between processes across a network is expensive. It 
is therefore imperative that measures be taken in the design of the distributed application 
to minimize such inter-process communication. 

A natural (but not efficient) design approach would be to allow each client to play 
the dual role of a server in order to allow the server class (class TSP) that doles out nodes 
to each process when it becomes available to communicate with the client. The need for 
the server to communicate with each client occurs whenever a client finds a tour whose 
cost is less than the current best tour. Each of the other client processes needs to have this 
information available. 

Before ceding to the temptation to make each client available to the server (and thus 
act like a local server as well), an attempt was made to allow only one way 
communication – from each client to the real server. This in principal should simplify the 
design and avoid excess inter-process communication. The attempt succeeded after 
making a few compromises in the design. This design is described below. 

When the server starts it generates the root node and then all the level 2 child nodes 
that must be processed in order to complete the computation. It inserts these nodes into its 
priority queue (TreeSet). 

When each client process running on an independent computer is started, it sends a 
request to the server for the first available (highest priority) node in the priority queue of 
nodes residing on the server. It also queries the server for the current best tour value. 
After a pre-determined number of nodes have been generated (specified by a constant in 
client class ProcessNodes -50,000 in this case), the server is queried for the best tour. 
Each time a client finds a tour that is better than the best tour value that it knows about, it 
sends the server a message with this new best tour value (and the node that represents the 
tour with this best tour value). The server updates its best tour value if the new best tour 
sent by the client is actually smaller than its currently recorded value of the best tour. The 
other clients become informed of this new best tour value after they have generated their 
requisite 50,000 nodes. So the compromise being designed here is that client processes 
may have slightly stale values for the current best tour. Only the server is up-to-date. 
Given how relatively infrequently new best tours are found, particularly after the initial 
state of computation has passed, this compromise is deemed to be a reasonable one. It 
allows for a great simplification of the design.  The server does not need to know about 
the existence of any of the clients.  New client machines may be added to the mix at any 
time, even after the computation is underway. 

As clients complete the processing of their nodes and request a new node from the 
server, the pool of available nodes eventually becomes depleted in the server. When this 
server node pool becomes empty the application stops after each client has completed the 
processing of its final node. This can lead to inefficiency if one or more of the client 
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machines is (are) significantly slower than the other machines (this very situation exists 
in the author’s network of five machines). Then the slowest machine may continue to 
process its final node long after the fastest machines have completed their work. This 
performance penalty may in fact offset the benefit obtained by having the slow machine 
participate in the distributed processing. 

To cope with this problem of uneven load balancing during the end game (the 
processing of the final nodes by each processor), a dynamic load-balancing strategy is 
designed into the system. Each client process is started by specifying two parameters on 
the command line. The first is the name of the computer running the process. This allows 
the server to provide periodic updates on the status of each client, by name. The second 
command line parameter is the value “true” or “false”. This specifies whether the 
processor is considered fast (true) or slow (false). Whenever a client processor that has 
been deemed slow generates 50,000 nodes, in addition to requesting the server to update 
the best tour value, it queries the server to see whether the server’s node pool is empty 
and whether there exists a fast client processor that is idle (one that has completed the 
processing of its final node). If the server responds in the affirmative to these two queries, 
the slow client transfers its priority queue (load) to the server. Each idle fast client pings 
the server every second for a handoff of a load (priority queue) that may have been 
transferred to the server from a slow client. The effect is to transfer the remaining load 
from each slow client to an available fast client with a small delay time because of the 
requirement that 50,000 nodes has been generated before the slow client hands off its 
load to the server (a matter of a second or two in worst case). This end-game dynamic 
load balancing led to much faster overall execution times compared to the simpler 
(earlier) design that did not include such end-game load balancing. 

All of the details of the design outlined above are in the revised class TSP (the server 
class) and revised class ProcessNodes (the client class) presented later. 

2 LOGISTICS 

Setting up an RMI server and clients is a tedious but straight-forward process. The best 
documentation that this author has found is in the Sun tutorial on RMI that is freely 
available to all members of the Java Developer Connection (membership is free after 
registering). A simple HTTP server specifically designed to serve the required classes and 
stubs needed in the RMI system was also downloaded (free of charge) from Sun’s 
website. A link to this server is provided in the RMI tutorial referenced above. This 
server is a light-weight http server that allows the user to specify a port and class path 
from which to serve the needed classes and stubs when the server is launched.  This http 
server was used on each of the client machines as well as the server. As will be evident 
from the source code provided below, the IP address of the server is needed by each 
client. In principal, the distributed processing designed in this system could utilize clients 
available on the internet as long as they could “talk” to the server (without a typical 
firewall interfering). The IP address could be exchanged for a domain-name URL. This 
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has not been attempted by the author. The distributed processing was done only on a local 
area network. 

Each client process communicates with the server through a stub class that is 
compiled on the server using the rmic compiler that is part of the standard Java software 
development kit.  This stub class must be available to each client. The details of how this 
is done is provided in the RMI tutorial. It took this author several hours to master all the 
details required to get each client to handshake with the server.  The server machine must 
also run an rmiregistry server (details again provided in the RMI tutorial). No attempt 
shall be made in this column to explain these networking details since they would vary 
from one network setup to another. 

The author’s LAN that provides the basis for the distributed process implementation 
consists of a slow Pentium 3 running Windows NT, a relatively slow Powerbook running 
Mac OS 10.2.3 and JDK 1.3.1, a fast Pentium 4 running Windows 2000 and JDK 1.4, a 
fast Pentium 3 running Windows 2000 and JDK 1.4 and a fast Powermac running Mac 
OS 10.2.3 and a beta version of JDK 1.4. So three operating systems are represented, two 
Java virtual machines are represented and three processor architectures are represented in 
this LAN. 

3 THE IMPLEMENTATION DETAILS 

Class ProcessNodes in Listing 1 presents the details of each client process. 
 
Listing 1 – Client class ProcessNodes 
 
import java.util.*; 
import java.rmi.*; 
 
public class ProcessNodes { 
    // Constants 
    static int nodesPerDotAndQuery = 50000; 
    static int nodesPerOutputToServer = 1000000; 
 
    // Fields 
    private TreeSet queue; 
    public int numRows; 
    private int numCols; 
    private Node bestNode; 
    public Cost c; 
    private long totalNodeCount = 0L; 
    private TSPInterface tsp; 
    private int bestTour; 
    private String computerName; // User supplied name of computer 
    private boolean fastMachine; 
 
    // Commands 
    public void remove (Node node) { 
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        queue.remove(node); 
    } 
 
    public void setQueue (TreeSet queue) { 
        this.queue = queue; 
    } 
 
    public void processNodes () { 
        try { 
            bestTour = tsp.bestTour(); 
            while (queue.size() > 0) { 
                Node next = (Node) queue.first(); 
                if (next.size() == numRows - 1 && 
                        next.lowerBound() < bestTour) { 
                    bestTour = next.lowerBound(); 
                    tsp.output2(computerName, next, totalNodeCount); 
                } 
                synchronized(queue) { 
                    queue.remove(next); 
                } 
                if (next.lowerBound() < bestTour) { 
                    int newLevel = next.level() + 1; 
                    byte [] nextCities = next.cities(); 
                    int size = next.size(); 
 
                    for (int city = 2; city <= numRows; city++) { 
                        if (!present((byte) city, nextCities)) { 
                            byte [] newTour = new byte[size + 2]; 
                            for (int index = 1; index <= size; index++) 
{ 
                                newTour[index] = nextCities[index]; 
                            } 
                            newTour[size + 1] = (byte) city; 
                            Node newNode = 
                                new Node(newTour, size + 
                                         1, numRows); 
                            newNode.setLevel(newLevel); 
                            totalNodeCount++; 
                            if (totalNodeCount % nodesPerDotAndQuery ==  
                                    0) { 
                                System.out.print("."); 
                                bestTour = tsp.bestTour(); 
                                if (!fastMachine) { 
                                    // Test to see whether there are  
                                    // any fast machines idle and  
                                    // server pool is empty 
                                    if (tsp.poolExpired() &&  
                                          tsp.fastMachinesIdle() > 0) { 
                                        tsp.transfer(computerName,  
                                                     queue); 
                                        System.out.println( 
                               "Transfering load to a fast machine"); 
                                        System.exit(0); 
                                    } 
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                                } 
                            } 
                            if (totalNodeCount % nodesPerOutputToServer  
                                    == 0) { 
                                tsp.output1(computerName,  
                                            totalNodeCount); 
                            } 
                            newNode.computeLowerBound(c); 
                            int lowerBound = newNode.lowerBound(); 
                            if (lowerBound < bestTour) { 
                                synchronized(queue) { 
                                    queue.add(newNode); 
                                } 
                            } else { 
                                newNode = null; 
                            } 
                        } 
                    } 
                } else { 
                    next = null; 
                } 
            } 
            if (!tsp.poolExpired()) { 
                queue = tsp.getQueue(computerName); 
                processNodes(); 
            } else { 
                tsp.registerNodeCount(totalNodeCount); 
                tsp.stop(computerName, false); 
                try { 
                    if (fastMachine) { 
                        tsp.incrementFastMachinesIdle(); 
                        new Thread() { 
                            public void run() { 
                                try { 
                                    int count = 0; 
                                    while (count < 5 &&  
                                           !tsp.stopped() &&  
                                           tsp.queueIsEmpty()) { 
                                        sleep(1000); 
                                        System.out.println("ping"); 
                                        count++; 
                                    } 
                                    if (count >= 5) { 
                                        System.exit(0); 
                                    } 
                                    if (!tsp.stopped() &&  
                                            !tsp.queueIsEmpty()) { 
                                       tsp.decrementFastMachinesIdle(); 
                                       queue =  
                                      tsp.getEntireQueue(computerName); 
                                      processNodes(); 
                                    } 
                                } 
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                                catch (InterruptedException ex) { 
                                    System.out.println(ex); 
                                } 
                                catch (RemoteException e) { 
                                    System.out.println(e); 
                                } 
                            } 
                        }.start(); 
                    } 
                } catch (RemoteException ex) { 
                    System.out.println(ex); 
                } 
            } 
 
        } catch (RemoteException ex) { 
            System.out.println(ex); 
        } 
    } 
 
    public TreeSet queue () { 
        return queue; 
    } 
 
    public long totalNodeCount () { 
        return totalNodeCount; 
    } 
 
    private boolean present (byte city, byte [] cities) { 
        for (int i = 1; i <= cities.length - 1; i++) { 
            if (cities[i] == city) { 
                return true; 
            } 
        } 
        return false; 
    } 
 
    public static void main (String [] args) { 
        if (args.length != 2) { 
            System.out.println("Usage: computerName true/false”); 
            System.exit(1); 
        } 
        if (System.getSecurityManager() == null) { 
            System.setSecurityManager(new RMISecurityManager()); 
        } 
        try { 
            ProcessNodes obj = new ProcessNodes(); 
            obj.fastMachine = args[1].equals("true"); 
            obj.computerName = args[0]; 
            System.out.println(obj.computerName + " starting client  
                                computational process."); 
            String name = "rmi://www.xxx.yyy.zzz//TSPObject"; 
          // Replace the www.xxx.yyy.zzz by the actual IP address 
            // or domain name of the server 
            obj.tsp = (TSPInterface) Naming.lookup(name); 
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            obj.queue = obj.tsp.getQueue(obj.computerName); 
            obj.numRows = obj.tsp.numRows(); 
            obj.c = obj.tsp.cost(); 
            obj.tsp.registerProcess(obj.computerName); 
            obj.processNodes(); 
        } catch (Exception ex) { 
            System.out.println(ex); 
        } 
    } 
} 
 

Listing 2 contains the needed TSPInterface class that contains the signature of all the 
public methods that each client can invoke on the server (through the stub class). 
 
Listing 2 – Class TSPInterface 
 
import java.rmi.Remote; 
import java.rmi.RemoteException; 
import java.util.*; 
 
public interface TSPInterface extends Remote { 
    public void stop (String computerName, boolean forced) throws  
        RemoteException; 
    public int numRows () throws RemoteException; 
    public int bestTour () throws RemoteException; 
    public Cost cost () throws RemoteException; 
    public TreeSet getQueue (String computerName) throws  
        RemoteException; 
    public int fastMachinesIdle() throws RemoteException; 
    public boolean stopped() throws RemoteException; 
    public boolean queueIsEmpty() throws RemoteException; 
    public boolean poolExpired() throws RemoteException; 
    public TreeSet getEntireQueue (String computerName) throws  
        RemoteException; 
    public void output1 (String computerName, long totalNodeCount)  
        throws RemoteException; 
    public void output2 (String computerName, Node next, long  
                         totalNodeCount) throws RemoteException; 
    public void registerProcess (String computerName) throws  
        RemoteException; 
    public void registerNodeCount (long count) throws RemoteException; 
    public void incrementFastMachinesIdle() throws RemoteException; 
    public void decrementFastMachinesIdle() throws RemoteException; 
    public void transfer (String computerName, TreeSet queue) throws  
        RemoteException; 
} 
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Listing 3 presents the details of the server class TSP. 
 
Listing 3 – Server class TSP 
 
/** 
  * TSP Branch and Bound Server Class 
*/ 
 
import java.awt.*; 
import java.util.*; 
import java.io.*; 
import java.rmi.*; 
import java.rmi.server.*; 
 
public class TSP extends UnicastRemoteObject 
        implements TSPInterface, Serializable { 
    // Fields 
    private int bestTour = Integer.MAX_VALUE / 4; 
    private Node bestNode; 
    private TreeSet queue = new TreeSet(); 
    private int numRows; 
    private Cost c; 
    private long totalNodeCount = 0L; 
    private double elapsedTime = 0.0; 
    private TimeInterval t = new TimeInterval(); 
    private int numberStopped = 0; 
    private double accumulatedTime = 0.0; 
    private int numberProcesses = 0; 
    private int fastMachinesIdle; 
    private TSPUI gui; 
    private boolean noMore = false; 
    private boolean poolExpired = false; 
 
    public TSP (int [][] costMatrix, int size, int bestTour, 
                TSPUI gui) throws RemoteException { 
        super(); 
        this.gui = gui; 
        this.bestTour = bestTour; 
        numRows = size; 
        c = new Cost(numRows, numRows); 
        for (int row = 1; row <= size; row++) { 
            for (int col = 1; col <= size; col++) { 
                c.assignCost(costMatrix[row][col], row, 
                             col); 
            } 
        } 
    } 
 
    public synchronized void incrementFastMachinesIdle() throws  
              RemoteException { 
        fastMachinesIdle++; 
    } 
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    public synchronized void decrementFastMachinesIdle() throws  
              RemoteException { 
        fastMachinesIdle--; 
    } 
 
    public synchronized int fastMachinesIdle() throws RemoteException { 
        return fastMachinesIdle; 
    } 
 
    public synchronized void transfer (String computerName, TreeSet q)  
            throws RemoteException { 
        System.out.println(computerName +  
                           " has transferred its load to the server."); 
        queue = new TreeSet(q); 
    } 
 
    /* Returns true when the number of processes (clients) to send stop  
       equals the total number of processes */ 
    public synchronized boolean stopped () throws RemoteException { 
        return noMore; 
    } 
 
 
    /* Returns true when the queue is emptied the first time */ 
    public synchronized boolean poolExpired () throws RemoteException { 
        return poolExpired; 
    } 
 
    /* Returns true when the queue is empty.  It may be empty and then  
       re-filed because of transfer from a slow client */ 
    public synchronized boolean queueIsEmpty() throws RemoteException { 
        return queue.size() == 0; 
    } 
 
    public synchronized void registerProcess (String computerName)  
               throws RemoteException { 
        // Start the clock going as soon as the first client kicks in 
        if (numberProcesses == 0) { 
            t.startTiming(); 
        } 
        System.out.println(computerName + " has started processing."); 
        numberProcesses++; 
    } 
 
    public synchronized void output1 (String computerName, long  
                                      totalNodeCount)  
            throws RemoteException { 
        t.endTiming(); 
        double time = t.getElapsedTime(); 
        int hours = (int) (time / 3600.0); 
        time -= hours * 3600; 
        int minutes = (int) (time / 60.0); 



 
THE IMPLEMENTATION DETAILS 
 
 
 
 

VOL. 2, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 61 

        time -= minutes * 60; 
        int seconds = (int) time; 
        System.out.println(computerName); 
        System.out.println("Elapsed time: " + t.getElapsedTime() + 
             " seconds.      <" + hours + " hours " + minutes + 
             " minutes " + seconds + " seconds>"); 
        System.out.println("Nodes generated: " + totalNodeCount); 
        System.out.println("Size of server node pool: " +  
                            queue.size()); 
        System.out.println("Best tour cost: " + bestTour); 
        System.out.println("Best tour: " + bestNode); 
        System.out.println("\n"); 
    } 
 
    public synchronized void output2 (String computerName, Node next,  
                                      long totalNodeCount)  
                throws RemoteException { 
        if (noMore) { 
            return; 
        } 
        int bestTour = next.lowerBound(); 
        if (bestTour < this.bestTour) { 
            setBestTour(bestTour); 
            setBestNode(next); 
            t.endTiming(); 
            double time = t.getElapsedTime(); 
            int hours = (int) (time / 3600.0); 
            time -= hours * 3600; 
            int minutes = (int) (time / 60.0); 
            time -= minutes * 60; 
            int seconds = (int) time; 
            System.out.println(computerName); 
            System.out.println("Elapsed time: " + t.getElapsedTime() + 
                    " seconds.      <" + hours + " hours " + minutes + 
                    " minutes " + seconds + " seconds>"); 
            System.out.println("Nodes generated: " + totalNodeCount); 
            System.out.println("Best tour cost: " + bestTour); 
            System.out.println("Best tour: " + bestNode); 
            if (!poolExpired) { 
                System.out.println("Size of server node pool: " +  
                                   queue.size()); 
            } else { 
                System.out.println("Size of server node pool: " + 0); 
            } 
            System.out.println(); 
        } 
    } 
 
    public synchronized TreeSet getQueue (String computerName)  
                throws RemoteException { 
        if (noMore) { 
            return null; 
        } 
        System.out.println(computerName +  
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        " attempting to get node from the server's node pool of size "  
        + queue.size() + "."); 
        if (queue.size() == 0) { 
            return null; 
        } 
        TreeSet t = new TreeSet(); 
        Node n = (Node) queue.first(); 
        t.add(n); 
        synchronized(queue) { 
            queue.remove(n); 
        } 
        poolExpired = queue.size() == 0; 
        return t; 
    } 
 
    public synchronized TreeSet getEntireQueue (String computerName)  
                throws RemoteException { 
        System.out.println("Load transfered from server to " +  
                            computerName); 
        TreeSet q = new TreeSet(queue); 
        queue.clear(); 
        return q; 
    } 
 
    public synchronized void stop (String computerName, boolean forced) 
                throws RemoteException { 
        if (forced && noMore) { 
            return; 
        } 
        if (!forced) { 
            System.out.println(computerName + " completed its work."); 
        } 
        numberStopped++; 
        if (numberStopped == numberProcesses || forced) { 
            t.endTiming(); 
            noMore = true; 
            if (!forced) { 
                System.out.println("\n\nOptimum solution obtained."); 
            } else { 
                System.out.println( 
      "Solution forced to stop prematurely and may not be optimum."); 
            } 
            System.out.println( 
                    "The total number of nodes generated: " + 
                    totalNodeCount); 
            System.out.println("Tour cost: " + bestTour); 
            double time = t.getElapsedTime() + accumulatedTime; 
            int hours = (int) (time / 3600.0); 
            time -= hours * 3600; 
            int minutes = (int) (time / 60.0); 
            time -= minutes * 60; 
            int seconds = (int) time; 
            System.out.println("Elapsed time: " + (t.getElapsedTime() + 
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                    accumulatedTime) + " seconds.      <" + hours + 
                    " hours " + minutes + " minutes " + seconds + 
                    " seconds>"); 
            try { 
                gui.displayOutput(); 
            } catch (Exception ex) {} 
        } 
    } 
 
    public void setBestTour (int bestTour) { 
        if (bestTour < this.bestTour) { 
            this.bestTour = bestTour; 
        } 
    } 
 
    public void setBestNode (Node bestNode) { 
        this.bestNode = bestNode; 
    } 
 
    public void registerNodeCount (long count) throws RemoteException { 
        totalNodeCount += count; 
    } 
 
    public void generateSolution (boolean ongoing) { 
        if (!ongoing) { 
            // Create root node 
            byte [] cities = new byte[2]; 
            cities[1] = 1; 
            Node root = new Node(cities, 1, numRows); 
            root.setLevel(1); 
            totalNodeCount++; 
            root.computeLowerBound(c); 
            System.out.println( 
                   "The lower bound for root node (no constraints): " + 
                    root.lowerBound()); 
            queue.add(root); 
            Node next = (Node) queue.first(); 
            synchronized(queue) { 
                queue.remove(next); 
            } 
            int newLevel = next.level() + 1; 
            byte [] nextCities = next.cities(); 
            int size = next.size(); 
 
            for (int city = 2; city <= numRows; city++) { 
                if (!present((byte) city, nextCities)) { 
                    byte [] newTour = new byte[size + 2]; 
                    for (int index = 1; index <= size; index++) { 
                        newTour[index] = nextCities[index]; 
                    } 
                    newTour[size + 1] = (byte) city; 
                    Node newNode = 
                        new Node(newTour, size + 1, numRows); 
                    newNode.setLevel(newLevel); 
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                    totalNodeCount++; 
                    newNode.computeLowerBound(c); 
                    int lowerBound = newNode.lowerBound(); 
                    queue.add(newNode); 
                } 
            } 
        } 
    } 
 
    public Node bestNode () { 
        return bestNode; 
    } 
 
    public int bestTour () { 
        return bestTour; 
    } 
 
    public int numRows () throws RemoteException { 
        return numRows; 
    } 
 
    public long nodesGenerated () { 
        return totalNodeCount; 
    } 
 
    private boolean present (byte city, byte [] cities) { 
        for (int i = 1; i <= cities.length - 1; i++) { 
            if (cities[i] == city) { 
                return true; 
            } 
        } 
        return false; 
    } 
 
    public Cost cost () { 
        return c; 
    } 
} 

The GUI class (details not shown) contains the code that binds the TSPObject in the rmi 
registry.  This is the object that is used in each client class for inter-process 
communication between the client and server.  The code segment that accomplishes this 
is (replace the IP address www.xxx.yyy.zzz with the actual IP address of the server) 
 
 solution = new TSP(costMatrix, size, Integer.MAX_VALUE / 4, this); 
   try { 
    Naming.rebind("rmi://www.xxx.yyy.zzz//TSPObject", solution); 
      System.out.println( 
          "RMI server running with TSP object bound in rmi registry"); 
   } catch (MalformedURLException ex) { 
       System.out.println(ex); 
   }
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4 EMPIRICAL RESULTS 

The computation time was reduced as one would expect by the presence of additional 
processors.  The result below shows the benefit of the distributed processing in solving 
the 24 city problem. 
 
 

Number of Cities Execution Time on 
Dell 1.7GHz (Single 
Threaded Previous 
Implementation) 

Execution Time 
Using All Five 
Machines in parallel 

24 299.25 seconds 73.415 seconds 
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