
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 1, January-February 2004

Cite this article as follows:J. Leslie Keedy et al: “Qualifying Types with Bracket Methods in Timor”,
in Journal of Object Technology, vol. 3, no. 1, January-February 2004, pp. 101-121.
http://www.jot.fm/issues/issue_2004_01/article1

Qualifying Types with Bracket Methods
in Timor

J. Leslie Keedy, Klaus Espenlaub, Christian Heinlein and Gisela Menger,
University of Ulm, Germany

Abstract
A new kind of type is described whose objects ("qualifiers") have bracket methods
which can modify the run-time behaviour of other objects ("targets"). Bracket methods
can qualify either specific methods of a target or can separately qualify their reader and
writer methods, thus allowing general qualifiers to be developed for standard activities
such as synchronisation, monitoring and protection. Qualifiers are associated with a
target when it is created, in the form of a qualifier list. Individual qualifiers can be
dynamically added to and removed from the list even while the target object is active.

1 INTRODUCTION

Software often involves the programming of "aspects" which are not only orthogonal to
each other, but which sometimes have a quite general character and a wide area of
application (e.g. synchronisation, monitoring). As proponents of aspect oriented
programming have emphasised [13], it is not only important to be able separately to
program such aspects, but also to have mechanisms ("aspect weavers") which allow the
aspects to be woven together into the compound units actually needed for application
systems.

The present authors consider that such a weaving mechanism can best be provided as
a construct within (new) programming languages. In order to handle at least some of the
aspects of software design which can arise, we present in this paper a novel programming
language feature, which we call qualifying types. These allow software units to be defined
which can qualify the methods of other software units in a general way, using bracket
methods in their implementations. They are useful for programming a wide variety of
general purpose properties, e.g. synchronisation, monitoring, logging, protection and
transaction control. Preliminary versions of this idea have been presented in [7, 8] and the
technique has been illustrated with respect to synchronisation in [12].

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_01/article1

 QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

In the present paper we describe how qualifying types are integrated into Timor1, a
programming language which is currently being developed at the University of Ulm in
Germany. Section 2 briefly outlines the basic concepts of Timor which are relevant for an
understanding of the paper. Section 3 explains the basic idea of qualifying types and
section 4 describes how they are defined and implemented using bracket methods.
Section 5 describes how qualifying objects (qualifiers) are associated with objects of the
types which they qualify (targets) and section 6 briefly addresses some flow of control
issues. Section 7 describes when bracket methods are applied. Section 8 briefly considers
issues relating to type compatibility and section 9 compares the technique with
subtyping/subclassing. The paper concludes with a discussion of related work in section
10 and some concluding remarks in section 11.

2 A QUICK TOUR OF RELEVANT TIMOR CONCEPTS

Timor has been designed primarily as a language for supporting the development of
software components. Wherever feasible, Java and C++ have been used as its basic
models, but it is structurally a quite different language. One of its aims is to support a
components industry which develops general purpose software for re-use in many
different application systems. This aim has fundamentally influenced the main features of
the language.

Timor has abandoned the traditional OO class construct by decoupling interfaces and
their implementations. Components designed at an abstract level can often have quite
different implementations (e.g. a type Queue can be implemented as a linked list, as an
array, etc.) and a component designer may well wish to produce and distribute several
different implementations for the same type. Consequently there is a rigorous distinction
between an interface and its potentially multiple implementations. Interfaces and
implementations are formulated according to the information hiding principle [21]. An
interface is either a type (which may be concrete or abstract) or a view.

Concrete types are units from which multiple instances can be constructed.
Constructors, known in Timor as makers, have individual names and are listed in a
section introduced by the keyword maker. A maker returns an instance of its own type. It
may have parameters of its own type (e.g. to construct a new instance by concatenating or
merging values from existing instances). If a maker is not explicitly defined in a concrete
type the compiler automatically adds a parameterless maker with the name init.

The instances of a type are manipulated by methods defined in an instance
section. Instance methods must be designated by the keyword op (i.e. operations which
can change state variables of the instance) or the keyword enq (enquiries which can read
but not change state variables). Abstract variables can be defined in the instance section.

1 see http://www.timor-programming.org

http://www.timor-programming.org

QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 103

These have the appearance of value or reference2 variables but are formally defined as
pairs of methods (an op for setting and an enq for getting the value of the "field") [11].

It is well known that binary methods are problematic [4]. Timor type definitions can
have a method category binary, which defines binary type methods, i.e. methods that
access multiple instances of the type (e.g. to compare them). A compile time error occurs
if a programmer attempts to define an instance method which has a parameter (value or
reference) or local variable of its own type or a supertype thereof. As we shall see later,
such public binary instance methods would create substantial difficulties for a clean
design of qualifying types.

Abstract types are intended to be abstractions of "complete" types (e.g. a collection
as an abstraction for a set, a bag, a list, etc.) and although they do not have real makers,
they can predefine makers and binary methods which are inherited as real methods in
concrete types derived from them [10].

A view is an interface which defines a related set of instance methods and/or abstract
variables that can usefully be incorporated into different types. It is intended to encourage
the idea of "programming to interfaces". A view can have implementations, but it cannot
define makers or binary methods.

In Timor a type can be derived from other types by extension and/or inclusion. The
resulting units are known as derived types and those from which they are derived are their
base types. The keyword extends defines a subtyping relationship and is intended to be
used to signal behavioural subtyping (in the sense of Liskov and Wing [17]), though this
cannot be checked by a compiler. Instances of a type derived by extension can be
assigned to variables of the supertype. The keyword includes allows an interface to be
inherited without implying a subtyping relationship. In this case the derived unit cannot
be used polymorphically as if it were an instance of the base unit [9]. Timor provides
several techniques for supporting multiple type inheritance, addressing different kinds of
problems to be modelled. From the viewpoint of the present paper these need not be
described further, since the end effect of each technique is that a derived type is defined
in terms of instance methods, binary methods and makers, as above. Instance methods are
what determines how a type can be qualified, as we shall shortly see.

Subtyping is decoupled from code inheritance. An interface (type or view) can have
multiple implementations, which must be behaviourally equivalent, in the sense that each
fulfils the interface's specification. An implementation, whether for a base or a derived
type, can be a completely new implementation, i.e. code is not automatically inherited.
But it can optionally re-use the code of implementations of other related and/or unrelated
interfaces, by defining re-use variables in the state section of an implementation. These
are variables defined either in terms of interfaces (without specifying a particular
implementation) or of individual implementations, and are demarcated by a hat symbol.
The compiler compares those public methods of the type being implemented which do
not appear in the instance section of the implementation with the public methods of the
re-use variables and when a match occurs this is treated as the implementation for that

2 References are not directly related to physical addresses. They are logical references to objects.

 QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

method. When a re-use variable is defined in terms of an interface any of its
implementations can be re-used, but the re-using implementation can access this only via
its public members. When individual implementations are nominated the re-using
implementation can gain access to the internal state of the re-used implementations (and
therefore can – but need not – simulate conventional subclassing). An earlier version of
this mechanism is described in [9]. Again, the important point here is that an
implementation consists of instance methods, binary methods and makers, and these
determine how a type can be qualified.

Types can be instantiated either as separate objects or as values which can be
regarded as components of an object. Objects are always accessed via references. An
object can contain references to other objects of the same or different types.

3 QUALIFYING TYPES: AN OVERVIEW

A qualifying type is a type whose objects can qualify the behaviour of objects of other
types. In the normal OO paradigm an object of one type (the client) can invoke methods
of an object of any other type (the target), as is trivially illustrated in Figure 1.

Client
object

Target
object

method
invocation

Figure 1: A Normal Method Invocation
An object of a qualifying type "interferes with" this in that it "catches" the invocation and
executes the code of the appropriate bracket method (see Figure 2).

method
invocation

Client
object

Target
object

Figure 2: A Qualifying Type with a Bracket Method

Bracket
Routine

Qualifying
object

i

At this point the bracket method can do one of three things.

First, the bracket method can augment the code of the target method by adding a
prelude and/or a postlude. On completing the prelude it executes a body statement to
indicate the point where the target method is to be invoked (cf. Figure 3). This technique
can be used e.g. to add synchronising or logging operations in the prelude and postlude.

body

method
return

method
invocation Target

object

Figure 3: An Augmenting Bracket Method

bracket
return

prelude
body

postlude

Client
object

Qualifying
object

i

QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 105

Because body is a normal statement, it can be executed conditionally. Hence a bracket
method might allow the target object to be invoked only if some test is passed (cf. Figure
4). This allows qualifying types to implement protection mechanisms. Thus the state of
the qualifier might include an access control list used to carry out the test, or the test may
involve demanding a password from the user before allowing access to the target object.

body

method
return

method
invocation Target

object

Figure 4: A Testing Bracket Method

bracket
return

Client
object

prelude;
if (test) body
else ...;
postlude

Qualifying
object

i

In the simplest case the target method need not be invoked at all. Control is returned to
the client on completion of the execution of the bracket method, without any warning as
such that this has occurred (see Figure 5). This might for example be used as a
disinformation technique, e.g. to fool a hacker into thinking that he can access some
object when in fact its owner has substituted a decoy. Or it might be used to test client
software before a working target is available.

method
invocation Target

object

Figure 5: A Replacing Bracket Method

Bracket
replacing

code

Qualifying
object

i

bracket
return

Client
object

As the above examples make clear, the qualifying object is a normal object of its own
type and it has its own state and methods, which are quite separate from the states and
methods of the client and target objects. Its only special property is that its
implementation includes bracket methods, which can execute body statements. These,
like the other methods of the qualifying object, have access to the state of the qualifying
object. But they do not have access to the state of the client object or target object (unless
they possess a reference which provides such access).

4 DEFINING AND IMPLEMENTING QUALIFYING TYPES

A qualifying type is characterised by the appearance of one or more qualifies clauses in
its definition. Each of these nominates an interface which can be qualified and provides a
list of bracket methods which can perform this qualification. Like other interfaces, these
can have multiple implementations.

 QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

Qualifying Objects of Any Type

Bracket methods which can qualify objects of any type are introduced by the qualifying
clause qualifies any. In this case the type can be defined either to have a single
bracket method which qualifies all the methods of target objects, or up to two bracket
methods can be listed, one which can qualify op methods and one which can qualify enq
methods (see section 2). Here is a simple example of a type definition defined to provide
mutual exclusion synchronisation for target objects:

type Mutex {
qualifies any:
 op bracket all(...); // this provides mutual exclusion
 // and brackets all the instance methods of a target object
}

Although the bracket method declaration in this examples looks special, it is like a
"normal" instance method declaration except that it uses special syntax. The modifier in
the first position is the normal op/enq modifier, indicating whether the bracket method
itself is an operation or an enquiry with respect to its own state. In this example the
bracket method is designated as an op, because it changes its state (e.g. by modifying a
semaphore). The requirement to designate bracket methods as op or enq methods is
important, because it allows qualifiers themselves to be qualified.

The keyword bracket replaces the usual return type, indicating that the return value
has the type of whatever method is being bracketed. The method "name" all signifies
that the method is applied to all instance (and bracket) methods of the target object.
Finally a parameter list containing the ellipsis character is used to indicate that any
parameters defined for a target method can be accepted, and that these are not accessed in
the bracket method's implementation.

The type Mutex can be implemented using semaphores as follows:
impl MutexSemImpl of Mutex {
state: // introduces state variables
 Semaphore mutex = Semaphore.init(1);
qualifies any: // implements the bracket method
 op bracket all(...) {
 mutex.p();
 try {return body(...);}
 finally {mutex.v();}
 }
}

The body statement indicates the point in the code at which the method of the target
object invoked by the client is actually called. A body statement is a "normal" statement,
except that it can only appear in an implementation of a bracket method. The use of the
ellipsis in the argument list indicates that the parameters which were originally provided
are passed on without change. A return statement is used, indicating that the value
which body returns (which may be void) is in turn passed back.

QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 107

A qualifying type for providing reader-writer synchronisation can distinguish
between op instance methods (i.e. writer methods) and enq instance methods (i.e. reader
methods), without requiring the designer of the qualifying type to know details of the
individual methods of the objects to be qualified. Here is a definition:

type RWsync { // provides reader writer synchronisation
qualifies any: // for any type
 op bracket op(...); // brackets op methods (writers)
 op bracket enq(...); // brackets enq methods (readers)
}

and the reader priority implementation of Courtois, Heymans and Parnas [5]:
impl CourtoisEtAl of RWsync {
state:
 Semaphore mutex = Semaphore.init(1);
 Semaphore readers = Semaphore.init(1);
 int readcount = 0;
qualifies any: // provides reader-writer synchronisation
 op bracket op(...) { // the writer protocol
 mutex.p();
 try {return body(...);}
 finally {mutex.v();)
 }
 op bracket enq(...) { // the reader protocol
 readers.p(); readcount++;
 if (readcount == 1) mutex.p();
 readers.v();
 try {return body(...);}
 finally {
 readers.p(); readcount--;
 if (readcount == 0) mutex.v();
 readers.v();
 }
 }
}

In this example the method "names" op and enq signify which bracket method is applied
to operations and which to enquiries of the target object.

Both Mutex and RWsync are unusual in that they have no instance methods of their
own. Most qualifying types need instance methods independently of their bracket
methods. These typically provide information which governs the decisions taken in
bracket methods and/or allow information to be recovered which has been acquired by
bracket methods. Sometimes the instance methods form a consistent type without the
bracket methods, in which case it can be more modular to define a separate type and then
extend this to a type with bracket methods as in the following example of an access
control list (ACL) [16]. The ACL is held in the state variables and is maintained via its
instance methods. Subjects are threads which have unique integer identifiers.

seq AccessMode {NOACCESS, READ, WRITE}
// a seq is an enumeration with values in ascending order
type ACL {

 QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

maker:
 ThisType init(int maxId); // highest thread id in the ACL
 // the keyword ThisType indicates that derived types also
 // automatically have a maker with the same definition
instance: // these are normal instance methods
 op void addThread(int threadId; AccessMode access)
 throws InvalidThreadId;
 // adds access information for a thread to the ACL
 op void removeThread(int threadId) throws InvalidThreadId;
 // logically removes a thread from the ACL
 enq AccessMode currentAccess(int threadId)
 throws InvalidThreadId;
 // returns the current access of the thread with this id
 enq int maxId(); // returns the maximum thread identifier
}

Using the normal subtyping technique we can extend the type ACL to become a
qualifying type which checks an invoking thread's right to modify or read the target
object:

type ACLprotecting {
extends: ACL;
qualifies any:
 enq bracket op(...) throws InvalidAccess;
 enq bracket enq(...) throws InvalidAccess;
}

This could be implemented, re-using any implementation of ACL, as follows:
impl ACLprotectingImpl of ACLprotecting {
state: ^ACL acl;
qualifies any:
 enq bracket op(...) throws InvalidAccess {
 // the writer bracket
 if (acl.currentAccess(thisThread) == WRITE)
 return body(...);
 else throw new InvalidAccess.init();
 }
 enq bracket enq(...) throws InvalidAccess {
 // the reader bracket
 if (acl.currentAccess(thisThread) >= READ)
 return body(...);
 else throw new InvalidAccess.init();
 }
}

The keyword thisThread is a built in expression which identifies the current thread.
Bracket methods for qualifying all, op or enq are known as standard bracket methods,
because they qualify non-specific methods of the target interface. Standard bracket
methods cannot access parameters nor the values returned by the target object.
Exceptions thrown by a target method are (implicitly) passed on unchanged. Standard
bracket methods can throw exceptions, as the above example illustrates.

QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 109

Qualifying Specific Views and Types

Bracket methods designed to qualify particular instance methods are known as specific
bracket methods. These can be defined to qualify the instance methods of particular
types, and they are often appropriate for qualifying objects of more than one type which
contain the same view interface. Consider, for example, a view Openable, which might
be incorporated into many "file" types:

view Openable {
 op void open(AccessMode mode) throws OpenError;
 op void close();
 enq AccessMode currentOpenMode();
}

A type designed to synchronise access to individual objects containing this view might be
defined as follows:

type OpenSynchroniser {
qualifies Openable: // qualifying a view
 op void open(AccessMode mode) throws OpenError;
 // this bracket method allows
 // multiple readers or a single writer.
 // OpenError is thrown if mode is set to NOACCESS
 op void close() throws InvalidAccess;
 // throws InvalidAccess if currentOpenMode is
 // NOACCESS, otherwise releases the synchronisation
 enq bracket op(...) throws InvalidAccess;
 // throws InvalidAccess if not open for writing
 enq bracket enq(...) throws InvalidAccess;
 // throws InvalidAccess if not open for reading or writing
}

The advantage of qualifying a view is that the same qualifying type can be used to
bracket objects of different types (here different kinds of "files") which contain that view.

A specific bracket method declaration must match the signature of the method which
it is designed to qualify, except that, as with standard bracket methods, the op/enq
qualifier reflects the behaviour of the bracket method with respect to its own state data. It
can be defined to throw some or all of the exceptions of the target method, and it can add
new exceptions. An implementation of a specific bracket method can access the
parameters intended for the target object and return a different value from that returned
by the target object.

In an implementation of a specific bracket method the body statement can be used
either with an ellipsis as its parameters (indicating that the parameters are passed
unchanged to the target method) or parameter values may be explicitly supplied.
Similarly, a different return value can be supplied from that which body returns. If the
method is defined as void, the return statement need not be used.

The example illustrates that standard bracket methods can be defined in a
qualifies clause for a specific interface. These are not to be confused with the standard
bracket methods defined to qualify any. When appearing in a clause for qualifying a

 QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

specific view (or type), they are applied to all matching instance methods of the target
object (including those not defined in the view) except those for which specific bracket
methods have been defined.

5 USING QUALIFYING TYPES

Timor types can be instantiated either as dynamic objects (using the operator new) or as
variables within objects (without new). Only dynamic objects can be qualified using the
technique described in this section, which shows how qualifying objects can be
associated with target objects. A later paper will describe how qualifiers can be statically
associated with instances of other types.

Instantiating Qualifying and Qualified Objects

A qualifier is instantiated like any other object, as follows:
ACLprotecting* protected = new ACLprotecting.init(100);

In this example protected is a reference to a new ACLprotecting object. At this or
any later point in the program's execution the instance methods of this object can be
invoked to add and remove ACL entries, etc., e.g.

protected.addThread(20, READ);

This qualifier might be used to protect access to an object of type Thing (which we need
not explicitly define, because objects of any type can be qualified by ACLprotecting
objects). An association with the qualifier can be established when the qualified object is
instantiated, e.g.

Thing* t1 = new {protected} Thing.init();

The same qualifier can be used to qualify more than one object, e.g.
Thing* t2 = new {protected} Thing.init();

Furthermore an object can have multiple qualifiers. Thus after instantiating a further
qualifier using a statement such as

RWsync* synchronised = new RWsync.init();

it would be possible to define another Thing qualified as
Thing* t3 = new {protected, synchronised} Thing.init();

The Qualifier List

The expression {protected, synchronised} is a normal Timor list literal, here with
two entries. In the object creation context it refers to a qualifier list, which has the type
List<:Qualifier*:> (specialising the generic type List as a list of Qualifier
references). The type Qualifier is automatically a supertype of all qualifying types.

The effect is that all method invocations on this Thing object (whether via t3 or via
some other reference) are qualified via the ACLprotecting and then the RWsync object.
When an instance method of the target is invoked, the qualifiers in its qualifier list are

QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 111

searched for appropriate bracket methods, and these are scheduled from left to right as
described in section 6. For example the ACLprotecting qualifier would permit an
attempt by thread 20 to invoke an enq method on this Thing object to proceed, and it
would then be synchronised as a reader, while an attempt by the same thread to invoke an
op method would result in the exception InvalidAccess being thrown.

The qualifier list for an object contains copies of references to the qualifiers which
apply to a target. Hence if a new reference value is subsequently assigned to a reference
variable which has been used to add an entry to a qualifier list this does not affect the
qualifier list.

Because any List<:Qualifier*:> expression can appear in an object creation
clause, a qualifier list can be explicitly created as an object and then be associated with a
target object or objects. For example the creator of the Thing in the above example
might have used the following alternative code:

List<:Qualifier*:>* qualified = new List<:Qualifier*:>.init();
ACLprotecting* protected = new ACLprotecting.init(100);
RWsync* synchronised = new RWsync.init();
qualified.insert(protected); // inserts at end of list
qualified.insert(synchronised);
Thing* t4 = new qualified Thing.init();

Making the qualifier list a first class object has a number of advantages. For example, the
qualifier list can be directly accessed as a separate object, with the effect that qualifiers
can be dynamically added to and removed from it, even after the list has been associated
with target objects. (In this case the qualification of targets is affected.)

A user can prevent other users from changing the qualifier lists of target objects
which he creates simply by choosing to pass references for the targets into their scopes
while not passing them references for their qualifier lists.

Alternatively a user might choose to protect the qualifier lists by qualifying these
with qualifiers which carry out security checks. This is another advantage of making
qualifier lists into first class objects, e.g.

ACLprotecting* secured = new ACLprotecting.init(100);
List<:Qualifier*:>* qualified =
 new {secured} List<:Qualifier*:>.init();

Synchronising Targets with their Qualifier Lists

Care must be taken when modifying qualifier lists to ensure that such activities are
properly synchronised. This is the responsibility of the programmer, but it can easily be
achieved using techniques which have already largely been described. For this purpose
we define a qualifying type ListSync. This can be viewed as a special form of reader-
writer qualifier which regards all critical accesses to a qualifier list as writer actions, and
all accesses to its target object(s) as reader actions. In this way a change to a qualifier list
can only occur when no other changes to the list are in progress and no methods of the
target objects are active. On the other hand methods of the target object(s) can be invoked

 QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

in an unrestricted manner (e.g. in parallel) provided that the qualifying list is not being
changed3. To achieve this the type ListSync can be defined as follows:

type ListSync {
qualifies List<:Qualifier*:>: // qualifies a qualifier list
 op bracket op(...);
 // operations on a qualifier list are treated as writers
 op bracket enq(...);
 // enquiries on a qualifier list are treated readers
qualifies any: // qualifies any other target object(s)
 op bracket all(...); // all methods are treated as readers
}

This example illustrates that even if a specific type (here List<:Qualifier*:>) is
being qualified, the qualifier need not include specific bracket methods but can simply
define general bracket methods.

The example also illustrates that a qualifying type can contain multiple qualifies
clauses. The rule determining their applicability is that the most specific qualification
applies. In the present case it means that if an object of type List<:Qualifier*:> is
qualified the first set of bracket methods applies, whereas any other type is qualified by
bracket methods of the second qualifies clause.

This qualifier might be used as follows to ensure properly synchronised access to a
qualifier list and its target:

ListSync* ls = new ListSync.init(); // create the qualifier
List<:Qualifier*:>* qualified =
 new {ls} List<:Qualifier*:>.init();
// create a qualifier list qualified by the qualifier
qualified.insert(ls);
// insert the same qualifier into the qualifier list
Thing* t5 = new qualified Thing.init();
// create the target as qualified by the qualifier list

This code takes advantage of the fact that the same qualifier can qualify multiple targets
and that a qualifier list can itself be qualified (here even by a qualifier which is also in its
own list)4.

6 FLOW OF CONTROL

The flow of control of bracket methods is complicated by at least the following issues:
a) a body statement is a "normal" statement which can, for example, be used in a

conditional statement, and it can be invoked more than once in a bracket method;

3 Further qualifiers can be included in a target's qualifier list in order to provide appropriate synchronisation
for the target itself.
4 If the target is itself a qualifier list this code will not work quite as intended, as the target (qualifier list)
will have its operations synchronised exclusively, although a higher degree of parallelism might in
principle be achievable. However, this somewhat pathological case (which does not cause an error) does
not merit a modification of the definition of qualifying types.

QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 113

b) exceptions can be thrown by the target method and/or by bracket methods;
c) an object can be qualified by more than one qualifying object;
d) bracket methods can themselves be bracketed by other bracket methods; and
e) access to an object may proceed (using the dot notation) via other objects which are

themselves qualified.
The combined effects of these possibilities leads to a non-trivial flow of control
algorithm, the details of which must be left to a later paper.

Suffice here to say that the basic algorithm involves dynamically traversing a tree of
objects with the target object at its root and its child nodes being those objects in its
qualifier list which have a matching bracket method for the target method being invoked.
Lower levels of the tree are based on the same principle, except that the bracket method
selected at the higher level is considered to be the target method and child nodes are those
objects in the qualifying object's qualifier list with a bracket method which matches this,
recursively. The selected bracket methods are executed in endorder sequence (activated
by the invocation of a target method or a body statement).

7 APPLICABILITY OF QUALIFIERS

Bracket methods are applied only to invocations of the public instance methods of a
target object, including the set and get methods of its abstract variables. They are not
applied to invocations of its private methods, nor to the invocations of the methods of its
internal variables.

When the object dereferencing operator is used in a right side expression (i.e. when it
returns the complete state of an object) this is considered to be the equivalent of an enq
method. An object dereferencing operator used on the left side of an assignment
statement is similarly considered to be equivalent to an op method. Hence enq or op (or
all) bracket methods associated with qualifiers are applied as appropriate to
dereferencing operations on targets.

If instance or bracket methods of an object invoke public instance methods of the
object itself (whether or not the keyword this is explicitly used) these are not subject to
qualification, because that could lead to difficulties such as creating deadlocks when a
synchronisation qualifier is used.

If it were possible to pass a reference for an object to the object itself which could
then be used by the object to invoke its own public methods, this could also create
situations which could easily lead to bracketing problems such as deadlocks. However,
the rule designed to prevent binary instance methods (cf. section 2) also prevents this
situation from arising under normal circumstances.

When an abstract reference of an object is read (e.g. using the dot notation, to reach
another object), this is of course an invocation of the get method associated with the
object which contains the reference, and its qualifiers must be applied accordingly. For
example if the object has a qualifies any qualifier then the standard enq bracket

 QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

method must be applied (unless a more specific bracket method applies). However none
of the qualifiers associated with the referenced object is applied at this stage.

8 TYPE COMPATIBILITY AND POLYMORPHISM

The type of a reference to which a target object can be assigned does not reflect that
qualifiers may be associated with the object. Hence given the existence of a type Thing,
the following statements are all valid:

Thing* t1 = new Thing.init();
Thing* t2 = new {protected} Thing.init();
t1 = t2; // t1 refers to the protected Thing created in line 2

This reflects the decision that the qualifiers associated with an object do not formally
affect the type of the object, i.e. a qualified object is always compatible with an
unqualified object which has the same basic type.

On the other hand the behaviour of an object can be radically influenced by its
qualifiers. For example it might be synchronised or monitored or protected. In the last
case the effect is that it may not be called at all, and if a qualifier is used as a decoy object
the client may not be able to observe that the behaviour has changed. In some cases
qualifiers may throw exceptions unexpectedly (e.g. to indicate access violations), or a
qualifier might demand a password from the user at the terminal, etc. These points clearly
indicate that behavioural conformity in the sense of [17] can by no means be guaranteed,
though often the behaviour could be described as "behaviourally conform if successful"
(e.g. if an ACLprotecting object allows an access to proceed).

If a qualified object is assigned to a supertype reference the normal subtyping rules
apply. The methods invocable from the supertype reference are dynamically scheduled in
the usual way, and the bracket methods are still applied, of course.

9 BRACKET METHODS VS. SUBCLASSES/SUBTYPES

It is sometimes assumed that qualifying types can be viewed as an alternative to
subclassing/subtyping. In [12] we discussed the relationship between these two concepts
in more detail, reaching the conclusion that the latter are considerably more powerful
than normal subtyping/subclassing, for at least the following reasons.
a) There is no general way of simulating qualifies any via subclassing in the

standard OO paradigm. Each class qualified in this way must be separately
subclassed.

b) There is no general way of imitating standard bracket methods for all/op/enq
methods. Each superclass method must be separately programmed in a subclass with
the code which appears in these brackets, depending whether it is a reader or a writer.

Points a) and b) taken together help to explain why it is impossible, for example, to have
user-supplied standard synchronisation modules in the standard OO paradigm. (There are

QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 115

additional reasons, e.g. concerned with static variables and methods and with the use of
public fields in the OO paradigm, but these are not relevant to the present discussion.)
c) Although in many cases the use of specialised qualifying types can be simulated by

subclassing, this is not always so. The creator of a new target object in Timor can
combine different qualifiers in any order which he chooses. Using subclassing is less
modular in that an order has to be statically determined for successive subclasses.

d) As we have shown in [12] in an example involving various orthogonal combinations
of bounded buffer synchronisation, subclassing cannot always be reasonably used to
simulate qualifying types.

e) Qualifying types are more powerful in that they can provide code which in
reasonable circumstances permits methods declared as final to be "overridden" e.g. to
protect an object.

f) The instance methods of a qualifier do not automatically become methods of the
target. This is important in a case such as ACLprotecting, where a protected object
should not also include the methods which allow the ACL to be modified! (Passing
the object via a supertype variable does not help if the language allows downcasts.)

g) Subclassing cannot be used to simulate the fact that a single qualifying object can be
used to qualify more than one object.

h) Subclassing cannot be used to define a subclass which modifies its own behaviour as
a superclass, whereas one ACLprotecting object can be used for example to
protect the access to another object which is also an ACLprotecting object.

This list shows that subclassing is not a real alternative to qualifying types. On the other
hand we do not regard it as a replacement for subtyping, which is also supported in
Timor. Subtyping in particular is important when types are being modelled which can be
used polymorphically, e.g. a set or a bag can be modelled as more specific examples of a
general type collection. In such cases we are concerned with variants of the "same" kind
of thing. On the other hand the idea of qualifying types becomes more significant when
we are concerned with programming quite different aspects of a problem.

10 COMPARISON WITH OTHER WORK

This paper has described the basic concepts of qualifying types with bracket methods.
The idea is based on earlier work in our group [7, 8].

The idea that code can be bracketed is by no means new, and dates back at least to
Pascal-Plus [24]. A form of bracketing is possible in almost all object oriented languages
by redefining the methods in a subclass and calling the original methods from within the
redefined methods via a super construct. So, for example, a class RWsyncThing can be
defined as a subclass of Thing. But in languages which support only single inheritance, a
subtype RWsyncBook of Book must include all the same additional code as
RWsyncThing.

In languages such as Eiffel [18] with multiple inheritance, a class RWsync can be
defined and inherited by both RWsyncThing and RWsyncBook. This means that the type

 QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

RWsync is only declared in a single place. The bracketing must, however, still be
achieved via redefinition in both RWsyncThing and RWsyncBook.

When the inner construct of Beta [15] (cf. body) appears in a superclass method,
the same method in a subclass is bracketed by the superclass method's code. But a Beta
superclass RWsync needs to know which methods occur in its subclass RWsyncThing in
order to bracket them and is therefore of no use in bracketing RWsyncBook.

Mixins are a generalization of both the super and the inner constructs. The
language CLOS [6] allows mixins as a programming technique without supporting them
as a special language construct, but a modification of Modula-3 to support mixins
explicitly has also been proposed [3]. A mixin is a class-like modifier which can operate
on a class to produce a subclass in a manner similar to that of qualifying types. So, for
example, a mixin RWsync can be combined with a class Thing to create a new class
RWsyncThing. Bracketing can be achieved by using the 'call-next-method' statement (or
super in the Modula-3 proposal) in the code of the mixin methods. As with Beta,
however, the names of the methods to be bracketed must be known in the mixin. This
again prevents it from being used as a general component.

In [22] encapsulators are described as a novel paradigm for Smalltalk-80
programming. The aim is to define general encapsulating objects (such as a monitor)
which can provide pre- and post-actions when a method of the encapsulated object is
invoked. This is similar to bracket methods but is based on the assumption that the
encapsulator can trap any message it receives at run-time and pass this on to the
encapsulated object. This is feasible only for a dynamically typed system. The
mechanism illustrated in this paper can be seen as a way of achieving the same result in a
statically type-safe way via a limited form of multiple inheritance. The applications of
encapsulators are also more limited than bracket methods as they cannot distinguish
between reader and writer methods.

Specialised qualifying types can be simulated using Java proxies, but the
programming is considerably more cumbersome, and methods to be bracketed cannot be
isolated from those not requiring brackets. Thus all method calls to a target object must
be redirected to the proxy. But even for methods which require bracketing the approach is
inefficient: the proxy object and an associated handler must both be invoked, and
reflection must be used to establish which target methods have been invoked. Multiple
qualification of a target method is particularly complicated and inefficient.

Composition filters [2] allow methods of a class to be explicitly dispatched to
internal and external objects. In addition the message associated with a method call can
be made available via a meta filter to an internal or external object, thus allowing the
equivalent of a bracket method to be called. However, because filters are defined in the
"target" class, a dynamic association of filters with classes is not possible, and all the
objects of a class are qualified in the same way.

MetaCombiners support the dynamic addition/removal of mixin-like adjustments for
individual objects [19]. The effect of specialised qualifying types can be achieved with
specialisation adjustments (which can invoke super) on an individual object basis.

QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 117

Similarly field acquisition and field overriding [20] can be used to simulate inheritance of
field methods and therefore in conjunction with the keyword field (cf. super) can
simulate the use of body in bracket methods. In both cases there appears to be no
equivalent to general bracket methods.

The experimental language Piccola [1] is a component composition language which
allows abstractions not well supported by the OO paradigm (such as synchronisation) to
be integrated into applications. While it has similar aims, it differs from the Timor
approach, where qualifying types are integrated into the base language and therefore need
no special composition language.

The AOP language AspectJ [14] and similar languages (cf. [23]) can achieve many
of the aims of qualifying types, but with a number of limitations:

a) Because Java has no way of distinguishing between op and enq methods, some
convention for method names must be used (e.g. methods beginning with set are
writers, those with get are readers). Target classes not developed according to the
convention must each be examined individually and separate aspects developed.

b) Because they operate at the source level an aspect affects the target class, so that
different objects of the same class cannot be qualified in different ways.

c) Because aspects are not separately instantiated an aspect "instance" cannot be
flexibly associated with a group of objects rather than a single object.

d) New methods explicitly defined with an aspect ("introduction") become methods
of the qualified objects. Thus methods defined, for example, to manipulate an
ACL in a protection aspect, become methods of the objects being protected, so
that a protected object includes the methods which control its protection!

e) Because the order of the execution of AspectJ advice is statically defined in
aspects, these must be defined with a knowledge of each other, except in cases
where precedence is considered to be irrelevant. In contrast the execution order of
Timor bracket methods is easily defined at the time a target object is created.

f) In contrast with AspectJ aspects, general qualifying types and specialised types
based on view interfaces (e.g. Openable) do not depend on a knowledge of (nor
the presence at compile time of) each other's source or bytecode or that of types
which they might qualify.

11 CONCLUDING REMARKS

Qualifying types and their implementations, as defined in Timor, strongly support the
idea that a system can be built from separately developed, re-usable components which
need not have an advance knowledge of each other. It is easy for example to develop
qualifying modules which can synchronise, protect or monitor target modules in a general
way, although the targets may have been developed in complete isolation from them or
may not even exist at the time the qualifiers are produced. And because qualifiers are
themselves first class objects they can themselves easily be qualified by other qualifiers.

 QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

Mixing and matching such modules is easily and flexibly achieved at run-time using
object creation expressions which allow multiple qualifiers to be associated with a single
target and/or multiple targets to be qualified by a single qualifier. This flexibility
contrasts with other approaches to weaving aspects into a single program, where the
qualifying code is in effect cut and pasted into existing types at the source or bytecode
level and thus affects the static types of objects.

Achieving this level of flexibility in a general way was only possible by defining a
new language with particularly clean structures for type definitions. These include

a) replacing public fields by abstract variables that correspond to instance methods,
b) a clear distinction between instance methods and binary methods (which can only

be defined as binary type methods),
c) designating each instance method as either an op (writer) or an enq (reader),
d) abandoning Java's idea that all type instantiations are referenced objects in favour

of the concept that a type can be instantiated either as a separate object (which can
be referenced from other objects) or as a value component of some other object,

e) abandoning Java's concept of type related static variables and methods.
It has been impossible in the space available for this paper to provide a fuller discussion
of Timor's structure, and how it handles features such as static variables, which cannot be
cleanly integrated with the concept of qualifying types.

It has similarly also been impossible to describe other features of qualifying types,
e.g. how they can be integrated more statically with the type definitions of their targets
(e.g. how to produce a type which is always synchronised) and how calls out of a target
can be qualified. Lack of space also prevents us from providing examples of qualifying
types which program aspects that are conceptually strongly integrated with particular
types. These are all topics which will be addressed in future papers.

ACKNOWLEDGEMENTS

Special thanks are due to Dr. Mark Evered and Dr. Axel Schmolitzky for their invaluable
contributions to discussions of Timor and to the ideas which have been taken over from
earlier projects. Without their ideas and comments Timor would not have been possible.

REFERENCES

[1] F. Achermann and O. Nierstrasz, "Applications = Components + Scripts - A
Tour of Piccola," in Software Architectures and Component Technology, M.
Aksit, Ed.: Kluwer, 2001, pp. 261-292.

[2] L. Bergmans and M. Aksit, "Composing Crosscutting Concerns Using
Composition Filters," Communications of the ACM, vol. 44, no. 10, pp. 51-
57, 2001.

QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 119

[3] G. Bracha and W. R. Cook, "Mixin-based Inheritance," ECOOP/OOPSLA
'90, Ottawa, Canada, 1990, ACM SIGPLAN Notices, vol. 25, no. 10, pp. 303-
311.

[4] K. B. Bruce, L. Cardelli, G. Castagna, et al., "On Binary Methods," Theory
and Practice of Object Systems, vol. 1, no. 3, pp. 221-242, 1995.

[5] P. J. Courtois, F. Heymans, and D. L. Parnas, "Concurrent Control with
Readers and Writers," Communications of the ACM, vol. 14, no. 10, pp. 667-
668, 1971.

[6] L. G. DeMichiel and R. P. Gabriel, "The Common Lisp Object System: An
Overview," ECOOP '87, Paris, 1987, Springer-Verlag, LNCS, vol. 276, pp.
151-170.

[7] J. L. Keedy, M. Evered, A. Schmolitzky, and G. Menger, "Attribute Types
and Bracket Implementations," 25th International Conference on Technology
of Object-Oriented Languages and Systems, Melbourne, 1997, pp. 325-338.

[8] J. L. Keedy, K. Espenlaub, G. Menger, A. Schmolitzky, and M. Evered,
"Software Reuse in an Object Oriented Framework: Distinguishing Types
from Implementations and Objects from Attributes," 6th International
Conference on Software Reuse, Vienna, 2000, pp. 420-435.

[9] J. L. Keedy, G. Menger, and C. Heinlein, "Support for Subtyping and Code
Re-use in Timor," 40th International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS Pacific 2002), Sydney, Australia,
2002, Conferences in Research and Practice in Information Technology, vol.
10, pp. 35-43.

[10] J. L. Keedy, G. Menger, and C. Heinlein, "Inheriting from a Common
Abstract Ancestor in Timor," Journal of Object Technology (www.jot.fm),
vol. 1, no. 1, pp. 81-106, 2002.

[11] J. L. Keedy, G. Menger, and C. Heinlein, "Taking Information Hiding
Seriously in an Object Oriented Context," Net.ObjectDays, Erfurt, Germany,
2003, pp. 51-65.

[12] J. L. Keedy, G. Menger, C. Heinlein, and F. Henskens, "Qualifying Types
Illustrated by Synchronisation Examples," in Objects, Components,
Architectures, Services and Applications for a Networked World,
International Conference NetObjectDays, NODe 2002, Erfurt, Germany, vol.
LNCS 2591, M. Aksit, M. Mezini, and R. Unland, Eds.: Springer, 2003, pp.
330-344.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin, "Aspect-Oriented Programming," ECOOP '97, 1997, pp. 220-
242.

 QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 1

[14] G. Kiczales, E. Hilsdale, J. Hugonin, M. Kersten, J. Palm, and W. G.
Griswold, "An Overview of AspectJ," ECOOP 2001 - Object-Oriented
Programming, 2001, Springer Verlag, LNCS, vol. 2072, pp. 327-353.

[15] B. B. Kristensen, O. L. Madsen, B. Moller-Pedersen, and K. Nygaard, "The
Beta Programming Language," in Research Directions in Object-Oriented
Programming: MIT Press, 1987, pp. 7-48.

[16] B. W. Lampson, "Protection," Proc. 5th Princeton Symposium on Information
Sciences and Systems, 1971

[17] B. Liskov and J. M. Wing, "A Behavioral Notion of Subtyping," ACM
Transactions on Programming Languages and Systems, vol. 16, no. 6, pp.
1811-1841, 1994.

[18] B. Meyer, Eiffel: the Language. New York. Prentice-Hall, 1992.

[19] M. Mezini, "Dynamic Object Evolution without Name Collisions," ECOOP
'97, 1997, Springer Verlag, LNCS, vol. 1241, pp. 190-219.

[20] K. Ostermann and M. Mezini, "Object-Oriented Composition Untangled,"
OOPSLA '01, Tampa, Florida, 2001, ACM SIGPLAN Notices, vol. 36, no.
11, pp. 283-299.

[21] D. L. Parnas, "On the Criteria To Be Used in Decomposing Systems into
Modules," Communications of the ACM, vol. 15, no. 12, pp. 1053-1058,
1972.

[22] G. A. Pascoe, "Encapsulators: A New Software Paradigm in Smalltalk-80,"
OOPSLA '86, 1986, pp. 341-346.

[23] O. Spinczyk, A. Gal, and W. Schröder-Preikschat, "AspectC++: An Aspect-
Oriented Extension to the C++ Programming Language," 40th International
Conference on Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002), Sydney, Australia, 2002, Conferences in Research
and Practice in Information Technology, vol. 10, pp. 53 - 60.

[24] J. Welsh and D. W. Bustard, "Pascal-Plus - Another Language for Modular
Multiprogramming," Software-Practice and Experience, vol. 9, pp. 947-957,
1979.

About the authors

J. Leslie Keedy is Professor and Head, Department of Computer
Structures, University of Ulm, Germany, where he leads the Timor
language design and the Speedos operating system design groups. His
email address is keedy@informatik.uni-ulm.de. His biography can be
visited at http://www.informatik.uni-ulm.de/rs/mitarbeiter/jlk/

mailto:keedy@informatik.uni-ulm.de
http://www.informatik.uni-ulm.de/rs/mitarbeiter/jlk/

QUALIFYING TYPES WITH BRACKET METHODS IN TIMOR

VOL. 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 121

Klaus Espenlaub is working towards his Ph.D. in Computer Science
at the University of Ulm. Currently he works as a research assistant in
the Department of Computer Structures at the University of Ulm. His
research interests include secure operating systems, protection
mechanisms and computer architecture. His email address is
espenlaub@informatik.uni-ulm.de.

Christian Heinlein received a Ph.D. in Computer Science from the
University of Ulm in 2000. Currently, he works as a scientific
assistant in the Department of Computer Structures at the University
of Ulm. His research interests include programming language design
in general, especially genericity, extensibility and non-standard type
systems. His email address is heinlein@informatik.uni-ulm.de.

Gisela Menger received a Ph.D. in Computer Science from the
University of Ulm in 2000. Currently she works as a scientific
assistant in the Department of Computer Structures at the University
of Ulm. Her research interests include programming language design
and software engineering. Her email address is
menger@informatik.uni-ulm.de.

mailto:espenlaub@informatik.uni-ulm.de
mailto:heinlein@inforamtik.uni-ulm.de
mailto:menger@informatik.uni-ulm.de

