
Vol. 3, No. 1, January–February 2004

Checking Class Schema Usefulness

Jean-Claude Royer, OBASCO EMN/INRIA, cole des Mines de Nantes, France

In this paper we introduce a structural and object-oriented model. We present appli-
cations of this model to the checking of some ill-formed classes. We focus on static
class diagrams mixing inheritance and composition relations. We consider an approach
based on the notion of class usefulness, i.e. finitely generated and with at least one
defined value. We show that this allows us to eliminate some wrong class designs
or wrong schema designs. We present a general process to check this and a static
algorithm which applies to the UML language.

1 INTRODUCTION

As quoted in [23, 22] we argue that in the future analysis will be model-driven,
focused and partial. So early investment in modelling and analysis will be essential.
On the one hand we believe that the value of abstract model will be greatly enhanced
if a direct relationship with code can be established. On the other hand we expect
the increasing importance of supporting sound and precise analysis.

One problem we study in this paper is finding a suitable approach to abstractly
define class structure and means to check that such a structure defines at least one
object. As an example, consider the design of lists: many users (even in some books
[28, 12, 26]) consider a head (of type object) and a tail of type list. This is true as
long as the concrete language provides a void value. However this is not satisfactory
at the level of design or (formal) specification since we confuse an empty list with
some non related values. Furthermore the use of void does not help in more complex
situations.

Composite 1..nComposite 1..n

Simple Compound Compound

Figure 1: Two Variants of the Composite Pattern

Another example is the definition of designs mixing inheritance and composition.

Cite this article as follows: Jean-Claude Royer: Checking Class Schema Usefulness, in Journal
of Object Technology, vol. 3, no. 1, January–February 2004, pages 157–176,
http://www.jot.fm/issues/issue 2004 01/article4

http://www.jot.fm/issues/issue_2004_01/article4


CHECKING CLASS SCHEMA USEFULNESS

For example, in the well-known composition pattern, in Figure 1, many users relax
the 1..n cardinality with *, but this is bad too since it defines at least a redundant
model. More problematic is sometimes the existence of wrong definitions, which
does not represent any generated and finite value. This is the case of the variant
on the right in Figure 1 where the Composite class is declared abstract. In [13] a
Z-based semantics for UML is presented with the support of a tool. A Section of
this paper is related to Figure 1, however it is unclear what the authors consider
as a correct design. They completely avoid the discussion about abstract classes,
which may change definitively the correctness of a design.

While there is a great amount of literature and tutorials about inheritance versus
composition (or aggregation), there is too few rules about the use of both the two
concepts in a class diagram.

S

C

S R

TC

Figure 2: Some Wrong Diagrams

The left part of Figure 2 is surely not suitable from a software engineering per-
spective. But [13] considers it legal while [28] and [14] prohibit it. One of the oldest
approach of this problem seems [28] which provides an object-oriented semantic
model and gives a criterion. But the model considers only simple inheritance, con-
crete class, and an implicit void value; so the suggested criterion is incomplete. Their
criterion says: no directed cycle with an inheritance edge. This criterion is false with
the left picture but true with the right one. However these two pictures address
the same problem, assuming that compositions are inherited a composition cycle
appears at the fringe of the graphs. [14] defines an object model with concrete class,
multiple inheritance and composition. Several rules are done and the rule 8 is rele-
vant to our discussion. The rule states that the inheritance and composition graph
must be without cycles. This is a wider rule than the previous one since it covers
multiple inheritance and it also implies that composition graph is cycle-free. But it
fails to check the right diagram because the rule does not cope with inheritance of
compositions.

The current paper presents a natural idea, common to Abstract Data Type
(ADT), to check classes and class diagrams. It is based on an algebraic model which
allows concrete and abstract classes, conditional attributes and multiple inheritance.
¿From this we study conditions and algorithms to avoid such problems in UML
designs. The approach exposed here may be useful to check various situations, for

158 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1



2 AN ALGEBRAIC MODEL FOR CLASSES

instance, recursive data type equations, or the use of inner classes and inheritance
as in Java.

The paper is organised as follows. Section 2 gives a presentation of our model
and its translation into partial first-order structures. Then, in Section 3 we detail the
problem of class usefulness. Section 4 discusses the problem of usefulness for schemas
and an algorithm in the total case is presented. Section 5 shows the application of
our approach to the checking of UML static class diagrams. Finally, we present
some related work and a conclusion summarises this presentation.

2 AN ALGEBRAIC MODEL FOR CLASSES

We present in this section our structural view of classes by translating them into
partial first-order structures (PFOS, see [9]). Our basic model comes from the
study of various object-oriented languages and their use in formal development.
This model, called the formal class model is presented in [1] and a formal and
operational semantics is described in [30]. The operational semantics is based on
conditional term rewriting in a graph of sets of rules. This is a structural object-
oriented data model as the Demeter kernel model [23]. The present paper focuses
on how classes abstractly define objects taking into account the declared attributes
and the inheritance relationships. We do not need here axioms for methods and we
do not discuss issues related to inheritance and behavioural compatibility.

Some Algebraic Hypotheses

Following a common idea [24], we consider that a class is a particular representation
of a data type. We consider that a “formal” class is intermediate between ADTs
and concrete object-oriented classes. For the semantic issue we consider a loose
approach. A first hypothesis is based on generators, we consider a single generator
for each class. This constraint allows us to get a formal model of class with a straight
translation into object-oriented languages.

It exists several representations of the same abstract data type into classes. Ex-
amples are finite lists which may be implemented, at least, in two different ways:
with a unique class or with a hierarchical schema of three classes [30]. Our model
does provide the ability to abstractly represent various designs of the same data
type. We also need a kind of non-strict constructor as the don’t care values of [4].
Nevertheless our need is simpler since undefined values are necessary but they are
never the result of a computation. Let us consider the simple example of finite
lists specified in Figure 3. The precise understanding of the PFOS formalism is
not necessary to understand our approach. Note that −→o means partial function,

e
= is existential equality, × is product type and other symbols are usual boolean

connectors. The newFlat constructor is strict (as required by the considered alge-
braic model) relatively to the D definedness predicate. However a term built with

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 159



CHECKING CLASS SCHEMA USEFULNESS

newFlat may represent a correct value even if one of its subterms is not a defined
value. The difference between correct and wrong values is done by the use of the
⊥Flat constant and an additional level of interpretation. The ⊥Flat value is well-
defined relatively to the term definedness but it is not a correct value from a user
point of view. This specification denotes finite lists plus a special value, which is

spec flat enrich natural, elem by
sorts Flat⊥
opns
⊥Flat : −→ Flat⊥

popns
newFlat : Boolean × Elem⊥ × Flat⊥ −→o Flat⊥
head : Flat⊥ −→o Elem⊥
tail : Flat⊥ −→o Flat⊥

preds
isEmpty : Flat⊥

vars e : Elem⊥; l : Flat⊥
axioms

D(newFlat(e, h, t)) <=> (e ∧ (h
e
= ⊥Elem) ∧ (t

e
= ⊥Flat)) ∨

(¬e ∧ ¬(h e
= ⊥Elem) ∧ ¬(t e

= ⊥Flat))

D(head(newFlat(e, h, t))) <=> ¬e ∧ ¬(h e
= ⊥Elem) ∧ ¬(t e

= ⊥Flat)

D(tail(newFlat(e, h, t))) <=> ¬e ∧ ¬(h e
= ⊥Elem) ∧ ¬(t e

= ⊥Flat)

D(newFlat(e, h, t)) => isEmpty(newFlat(e, h, t))
e
= e

D(head(newFlat(e, h, t))) => head(newFlat(e, h, t))
e
= h

D(tail(newFlat(e, h, t))) => tail(newFlat(e, h, t))
e
= t

endspec

Figure 3: A Partial Structure for Lists

often noted in denotational semantics by ⊥. The need of ⊥ arises because we are
interested in finitely generated terms and we have strict recursive generators. The
previous specification, one may found it a bit exotic, is straightforward to implement
in any object-oriented languages.

A type is strict if it exists at least one finitely generated value of its sort, then
the type has at least one non empty reachable algebra as model. In our context the
definition is more complex due to the presence of ⊥ values, it is called usefulness.
A sufficient condition, classic in ADT is to require a sensible signature for every
types, i.e. there is always one constant in each sort. This condition is generally too
constraining in our context. We study this point in Section 3 and its checking is the
basic idea of the consistency checking developed in this paper.

The Algebraic Presentation of a Formal Class

We consider a particular class of specification called projective specifications. They
are built from a unique generator with a set of field selectors. These field selectors
correspond to an abstraction of the class attributes but with the additional feature
that they may be partial. This increases the expressive power of classes but also
makes more precise the object description and hence avoid some ill-formed situa-
tions. As an example, in Figure 4, tail is partial because we have the precondition

160 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1



2 AN ALGEBRAIC MODEL FOR CLASSES

requires: empty?(Self) = false. If tail had been total then it would not
have represented finite lists anymore.

Flat
inherit from OBJECT

aspect:
field selectors
empty? : Flat −→ Boolean

head : Flat−→o Nat

requires: empty?(Self) = false

tail : Flat−→o Flat

requires: empty?(Self) = false

Figure 4: A Flat Formal Class for Finite Lists

The Figure 4 represents the formal class description equivalent to the PFOS in
Figure 3. We have three abstract attributes empty?, head and tail which are seen
as operations (possibly partial) on the data type. This description can be directly
implemented in any object-oriented languages without the risk of wrong and infinite
definition. This is why we pay attention to the precondition of the field selectors.
Such a class comes directly from the specification in Figure 3, we explain in the rest
of this Section the translation principles. The general prototype for such a class
is described in Figure 5, as previously noted it only represents the structural part
(however preci and INV TC are behavioural descriptions). This may be seen as a
modern record with variant of Pascal [33].

C
inherit from S1, ..., Sn

aspect:
field selectors
sel1 : C−→o T1

requires: prec1

...

seln : C−→o Tn

requires: precn

constraint:
INVTC

Figure 5: Prototype of the C Formal Class

The field selectors, sel1, ..., seln, are observers which characterise the structure
of the instances of a class. The structuring types of a projective specification are
the types of the field selectors T1, ..., Tn, they also appear as arguments of the
generator. We note dps the graph of the relation C has Ti as structuring type.
Difficulties may arise when this graph has directed cycles or circuits, in the above
example we have Flat dps Flat, it will be called a circular dps. The type C may
have an INV TC constraint (invariant as in Eiffel [24]) and the selectors may be

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 161



CHECKING CLASS SCHEMA USEFULNESS

partial with preconditions preci. The invariant is viewed as a common condition
(preferably maximal) to the selector preconditions. In the rest of this paper, we will
omit this invariant. This prototype has a straight correspondence with classes and it
may be directly implemented in various languages. We have studied its translation
into several languages: Eiffel, Java, Smalltalk, and C++.

Preconditions and invariant are boolean algebraic expressions built over the
self variable which represents the object receiver. We assume that an object
(or instance of a class) is characterised by its instance values, i.e. a tuple of val-
ues v = (vi : Ti)1≤i≤n. To each instance we associate its characteristic vector
u = (ui : Boolean)1≤i≤n which collects the field selector precondition values for v.
Defined expressions over the self variable are equivalent to expressions built over
the tuple of values (vi : Ti)1≤i≤n. We call characteristic formula FC the logic formula
built over u and v and which checks if v is a tuple of values with vector u associated
to class C.

The definition of the characteristic formula is:

FC(u1, ..., un, v1, ..., vn) =̂
n∧

i=1

(ui = preci(v1, ..., vn)) ∧ (ui = ¬(vi = ⊥Ti
)))

It defines the set of the useful instances of a class. The first part copes with the
selector precondition and the second part deals with the definition of the value.
Note: we consider that every selector is partial and needs the use of ⊥. In case of
total selectors, the structuring type does not require a ⊥ value, the precondition is
true, and the second clause (ui = ¬(vi = ⊥Ti

)) is not needed.

Translating Formal Classes into PFOS

¿From a formal class it is not too difficult to produce the corresponding projective
specification. The transformation of the prototype in Figure 5 produces the algebraic
specification in Figure 6. Computation of the signature is quite simple and axioms
for selectors are straight. The result must verify some syntactic constraints, we do
not present them here. The major problem is to explicit the definedness of terms,
i.e. the DefC , Def1, . . . , and Defn expressions.

The characteristic formula allows us to compute the definedness in the following
way: The definedness for a generator call is given by a kind of “Shannon formula”:

DefC(v1, ..., vn) =̂
∨

(ui)1≤i≤n ∈ Booleann

∧¬(∀ 1 ≤ i ≤ n ui 6= false)

FC(u1, ..., un, v1, ..., vn)

162 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1



2 AN ALGEBRAIC MODEL FOR CLASSES

spec tad enrich spec1, ..., specm by
sorts C

opns
⊥C : −→ C

popns
newC : T1, ..., Tn −→o C

sel1 : C −→o T1

...

seln : C −→o Tn

vars X1 : T1; ... ; Xn : Tn

axioms
D(newC(X1, ..., Xn)) <=> DefC(X1, ..., Xn)
D(sel1(newC(X1, ..., Xn))) <=> Def1(X1, ..., Xn)
...

D(seln(newC(X1, ..., Xn))) <=> Defn(X1, ..., Xn)

Def1(X1, ..., Xn) => sel1(newC(X1, ..., Xn))
e
= X1

...

Defn(X1, ..., Xn) => seln(newC(X1, ..., Xn))
e
= Xn

endspec

Figure 6: The Resulting Transformation of the C Prototype

The definedness for selectors is similar:

Defj(v1, ..., vn) =̂
∨

(ui)1≤i≤n ∈ Booleann

∧ ¬(∀ 1 ≤ i ≤ n ui 6= false)
∧ uj = true

FC(u1, ..., un, v1, ..., vn)

Below is the definedness for class Flat and its processing with the help of the Larch
Prover tool [16]. The formula may seem complex, but it contains many trivial
simplifications and the Larch Prover tool simplifies it with no further axioms.

% Line beginning with % is a Larch Prover comment
% Larch Prover definition of F for class Flat
assert F(u1, u2, u3, v1, v2, v3) = ((u1) /\

(u2=(~v1)) /\ (u2 = ~(v2=botNat)) /\
(u3=(~v1)) /\ (u3 = ~(v3=botFlat)))

% Larch Prover definition for DefFlat
assert DefFlat(v1,v2,v3) = (F(true,true,true,v1,v2,v3) \/

F(true,true,false,v1,v2,v3) \/
F(true,false,true,v1,v2,v3) \/
F(true,false,false,v1,v2,v3) \/
F(false,true,true,v1,v2,v3) \/
F(false,true,false,v1,v2,v3) \/
F(false,false,true,v1,v2,v3))

% automatic reduction by the Larch Prover to

DefFlat(v1, v2, v3) = (¬(v3 = ⊥Flat) ∧ ¬(v2 = ⊥Nat) ∧ ¬v1)
∨ (v3 = ⊥Flat) ∧ (v2 = ⊥Nat) ∧ v1))

(1)

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 163



CHECKING CLASS SCHEMA USEFULNESS

3 CLASS USEFULNESS AND ITS CHECKING

An edge of the dps relation is said total if its precondition is true else it is called
partial. These definitions are extended to sets of edges.

Definition 3.1 A useful instance is different from ⊥ and its tuple of values is either
empty or it has at least one useful value and the associated precondition is true.

Definition 3.2 The C class is useful if and only if it defines at least one useful
instance.

We naturally assume that predefined types are useful (in fact they are even strict).
The characteristic formula defines the set of useful instances of a class. If n = 0
then there is only a unique instance for the class. If n > 0 then FC must have a
solution tuple.

Lemma 3.3 C is useful if and only if either n = 0 or else DefC is satisfied.

This is for example the case of the Flat class, which has two different characteristic
vectors: {(true, false, false), (true, true, true)}. This leads to the two well-known
kinds of useful instances: empty lists with tuple (true,⊥Nat,⊥Flat) and non empty
lists with tuple (false, v2 : Nat, v3 : Flat). It seems harder to find a general and
necessary condition for class usefulness; in fact the use of preconditions prohibits to
get a general and static criterion.

Lemma 3.4 If C is useful then its dps graph has no total circuit.

We have a well-founded subterm ordering because useful instances are finitely gen-
erated and thus the dps relation has no total circuit.

To check usefulness is more complex when dps is circular and partial. Since
we allow preconditions, the composition relation may be circular but it cannot be
anything1. A common case is when the C class has only self-circular dependency.
Omitting the self-circular dps means to take vi = ⊥C and ui = false for all vi : C
in the characteristic formula.

Lemma 3.5 Let be a C class that has only self-circular dps, C is a useful class if
and only if it exists a useful value omitting the self-circular dps.

Since we have a well-founded subterm ordering, it exists a least useful instance which
has ⊥C values for self-circular attributes. The opposite way is trivial. This lemma
applies for example in the case of the Flat class. The formula 1 is reduced by taking
v3 = ⊥Flat and a useful instance is described by the tuple (true,⊥Nat,⊥Flat). Tools
like theorem provers, logic programming languages, or constraint solvers may help
to satisfy this formula. Below is an example processed with the Larch Prover tool.

1This remark is also valid in an imperative model whenever we distinguish object structures
from object pointers.

164 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1



3 CLASS USEFULNESS AND ITS CHECKING

% proof of the usefulness of Flat[Nat]
prove \E v1 \E v2 DefFlat(v1, v2, botFlat)
% automatic simplification done by Larch Prover
Current subgoal: \E v1 v1
% satisfaction is immediate but manual
resume by specialisation u1 to true

Conjecture user.4
[] Proved by specialization.

Let be T the transformation where: The invariant is changed to true and the
partial edges are changed to false.

Lemma 3.6 If C is a useful class then T (C) is a total and useful class.

It can be proved from the definition of class usefulness.

Structural Inheritance

The notion of inheritance we consider here deals only with the structural aspects
of classes. A previous work [29] defines inheritance on a set theoretical basis for
classes which may have several structural descriptions. [30] introduces a rewriting
approach to method inheritance. Our objective was to get inheritance more rigorous.
We assume that name conflicts have been solved using renaming or overriding [24].
The inheritance definition is based on a matching of selector names between the field
of the S superclass and the fields of the C subclass. It defines a coercion called the
structural projection, which is a partial homomorphism between the Σ-structures
associated to the classes. In [29] we proved a static and necessary condition for the
existence of this structural projection.

Criterion 3.7 (Inheritance Criterion) C ako S =⇒ ∀fselSi : S −→o Ti, ∃fselCi :
C −→o Ri, (Ri = Ti) ∨ (Ri ako Ti)

This approach allows subtyping, but furthermore it implies that methods of the
superclass are inherited in a safe way by the subclass.

With inheritance it is relevant to consider two distinct sets of instances: the
set of effective instances (which are instantiated from the class) and the set of all
the instances (which takes into account instance polymorphism), see [17, 29] for
more details and examples of definitions. In the following DefC is the characteristic
function of the set of effective instances and HC is the characteristic function of the
set of all the instances. Let {Sj < C} the set of the strict and direct subclasses
of C. Instance polymorphism is defined as formula HC , which denotes if a tuple of

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 165



CHECKING CLASS SCHEMA USEFULNESS

values is an instance of C or of one of its subclasses.

HC = DefC

∨
{Sj<C}

HSj

Inheritance introduces instance polymorphism but also the notions of abstract class
and concrete class. The definition for concrete class usefulness is now the following:

Definition 3.8 Let be C a concrete class, it is useful if and only if HC has a
solution.

We consider abstract classes since they play an important role in object hierarchies.
Contrary to a concrete class, the characteristic formula of an abstract class would
be DefC = false. Nevertheless the case of abstract classes is more subtle because
they are sometimes useful and sometimes not. For example, if an abstract class is
at the fringe of the inheritance graph, we consider that such an abstract class must
be useful in some way, i.e. DefC must be satisfiable.

Definition 3.9 Let be C an abstract class, it is useful if and only if DefC has a
solution and either C is a leaf of the inheritance graph or else

∨
{Sj<C}HSj

has a
solution.

The rationale for this choice is: To minimally subclass an abstract class is to add a
concrete subclass with no further information and it must lead to a useful subclass.
We must allow abstract class at the fringe of the inheritance graph because it is an
important feature of the class library design. Indeed several variants are possible
here, we think that our choices are sensible. Nevertheless other ways seem right, see
[23] for a different choice, and the discussion related to Figure 9.

4 CHECKING SCHEMA USEFULNESS

A schema of class is a set of classes linked by inheritance and structural dependency
relations. It is commonly accept as true that ako is not circular and we have already
seen that dps is not total circular. We also assume that our inheritance definition
is satisfied, hence the criterion 3.7 is true.

Useful Schema

Definition 4.1 (Useful Schema) A class schema is useful if and only if all of its
classes are useful.

To check if a class schema is useful may become complex since we have mutually
recursive equations and generally large size class diagrams. It is not prominent that

166 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1



4 CHECKING SCHEMA USEFULNESS

View

Static View Dynamic View

2..n
Internal Structuring View External Structuring View

Composition ViewIntegration View

Figure 7: The View Diagram of Korrigan

the schema of Figure 7 is useful.

One approach, presented in [3], is to build, a priori, correct schemas from recur-
sive data type equations. But this requires to formalise the data type with equations,
and it does not generate the best object-oriented class design.

The verification principles are the following: We build a graph where the nodes
are the equations to solve and where edges are the dependence between equations.
For a class, we have two nodes DefC and HC . The edges starting from a given node
are labelled with and or or to denote the kind of constraint among them. To build
the graph we use the patterns in Figure 8. The process to verify the usefulness of

T1 ... Tn structuring types of C S1 ... Sm subclasses of C

Hc

HT1 HTn

and
or

Defc

HS1 HSm HTnHT1

and
or

Defc

HS1 HSm

Hc

Abstract ClassConcrete Class

Figure 8: Construction of the Verification Graph

a class schema is based on putting marks on the nodes of the verification graph.
To mark a node implies that the corresponding formula is satisfied by at least one
useful value. At the beginning no node is marked and, if the process successfully
terminated, at the end all nodes are marked.

Process 4.2
We iterate the following rules until all nodes are marked or no rule applies. These
rules have as premise “if the node is not marked”.

1. If the node has no starting edges then it is marked.

2. If the node is linked with another node marked by a or then the former node
is marked.

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 167



CHECKING CLASS SCHEMA USEFULNESS

3. If the node has an and starting edge and all its neighbours are marked. We
try to satisfy the Def formula as we have discussed in Section 3 and if this
succeeds then the node is marked else the verification process fails.

A class schema is useful if and only if its verification graph is solvable using the
previous verification process. The general process is not decidable, but a limited
static criterion is developed in Subsection 4.

The Smallest Wrong Example

This process succeeds in the example Figure 7, but it fails in the example Figure 9.
The verification process shows a circuit in the satisfaction of the formulas.

S {abstract}

C {concrete}

S {abstract} S {concrete}
C {abstract} wronga usefulb

C {concrete} wrongc usefuld

Figure 9: The Smallest Wrong Example and Its Variants

We have previously seen a necessary condition in the total case: The dependency
graph is not circular. This example shows that wrong schemas, in the total case,
comes from circuits in the dps∪ako−1 graph. But the criterion is not simple because
we have abstract classes and changing the status of a class may transform a wrong
schema into a useful one and vice versa. The right part of Figure 9 summarises the
different cases for this example. The a, b, c, d cases illustrate different and common
situations. Case a is wrong, if we subclass the C class with a concrete class it leads
to a wrong schema. The b case is here considered as acceptable (many languages
allow it), but we may add conditions to avoid it. Case c is typically a wrong example
of schema and conversely case d is a classic and useful example.

A Static Criterion for the Total Case

A simple static criterion is possible in the total case by direct verification on the
class schema.

Lemma 4.3 A concrete class is useful if and only if it only and structurally depends
from useful classes or it has at least one useful subclass.

168 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1



5 APPLICATIONS TO THE UML LANGUAGE

Lemma 4.4 An abstract class is useful if and only if: It only and structurally
depends from useful classes and, either it is a leaf of the inheritance graph or it has
one useful subclass.

These two lemmas comes from Definitions 3.8 and 3.9 and from the fact that in the
total case solving DefC reduces to the usefulness of the structuring types of C.

A term rewriting approach is possible to check if a given class schema is useful.
First we define class schemas as values of a data type System and we formalise the
previous lemmas as conditional term rewriting rules. This was done with the help
of the Larch Prover tool, which proves the left-to-right rules terminating (under the
predefined noeq-dsmpos ordering) and the system without critical pair. This auto-
matically proves that the rewriting system is convergent: It computes a function.
We have also implemented a simple version of the algorithm in Python and its com-
plexity is the following. Let be n the number of class, nAko the maximum number
of subclasses, and nDps the maximum number of structuring types; the algorithm
loops n times and each time it checks all the classes. Each check costs no more than
nAko+nDps. The overall complexity is less than n2× (nAko+nDps) and we think
that some optimisations are still possible.

In the general (partial) case the previous algorithm gives a necessary condition to
get a useful class schema. The graph may be transformed into a total schema by re-
laxing the invariants and the preconditions using the T transformation of Section 3.

Lemma 4.5 If a partial class schema S is useful then the T (S) schema is total and
useful.

The sketch of the proof is the following. Since ako is a well-founded ordering, we
have classes at the fringe and lemma 3.6 applies to them. If a class is a node in the
inheritance graph of T (S), it is useful because its subclasses are useful.

5 APPLICATIONS TO THE UML LANGUAGE

We illustrate in this Section the concrete application of our work to the UML
language. First of all, our approach is more general on several points: Typing,
conditional attributes, and inheritance criterion. Second we are only interested in
checking usefulness of classes, i.e. a limited kind of inconsistency checking: There is
no class with an empty set of instance. In UML there are several diagrams, but we
focus on static class diagrams. In this kind of diagrams, we consider classes (abstract
and concrete), typed attributes, inheritance, aggregation, and composition relations.
Interfaces may be viewed as particular abstract classes without attributes and with
subtyping. General associations do not denote something about usefulness but they
bring informations about the number of instances and other kinds of inconsistency
checking are possible (see [15, 7, 32] for examples).

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 169



CHECKING CLASS SCHEMA USEFULNESS

Another point has to be quoted here, [6] explains that the current official seman-
tics of UML restricts the interpretation of classes to finite sets of objects. That is an
obviously strict and weak semantics. The author proposes to use OCL constraints
to avoid ill-formed schema. However its proposal does not have a simple link with
object-oriented programming. Our theoretical approach shows that we may have a
natural semantics for classes with an infinite set of objects in UML. Nevertheless
we have to check some rules to avoid ill-formed schemas.

We assume that our inheritance criterion is true with the UML diagrams, a
simple parsing over the diagram may ensure it. We do not interpret OCL, but for
instance [18], shows the link between ADT or first-order logic and OCL. Thus a
translation from OCL into our algebraic expressions is possible. Using this transla-
tion our general process applies in the case of UML. This general process is inter-
esting but surely only useful for specialists, we need an automatic technique more
adequate to UML designers. In the rest of this Section we present a limited but
automatic way based on our criterion for the total case.

The composition relation (represented as a black diamond) in UML is not circu-
lar at the level of instances. This comes from the fact that the relation is transitive,
antisymmetric and prohibit instance sharing (see [19] for a more detailed discussion).
At the level of class, composition is called structural dependency in our model. A
class composition (or equivalently the dps relation) is total if the minimal cardi-
nalities are strictly greater than 0 (or the selectors have true preconditions). We
consider that aggregation is a composition with object sharing. We restrict the
static diagrams: There is no code description and the cardinalities are limited in the
following way: For a composition or an aggregation, we only consider the navigation
from the composite to the component and the cardinalities {0} or {1}. This is done
by taking the minimal cardinality, because we are interested in the existence of at
least one instance. The algorithm of the total case 4 applies and as Lemma 4.5
states, this gives a necessary criterion for usefulness.

The schema of Figure 10 represents a preliminary UML design of a tool in the
Korrigan environment [11]. It defines different kinds of state/transition diagrams:
classic labelled state machines, symbolic machines with guards, with mail boxes,
asynchronous machines and so on. It has neither inheritance nor composition cycles,
criteria of [28, 14] do not apply since we have abstract classes. We check it with our
algorithm and we found an error.

We have processed several middle case studies of the literature and we mainly
found useful schemas (an example of a ill-formed schema may be found in [8]). The
published diagrams have often a small size, they have been designed by specialists
and many times they have been implemented and such errors have been fixed. As
mentioned in the introduction, designers strongly relax the cardinalities by putting
0 or *. Designers often abuse of associations where composition or aggregation rela-
tions would be more adequate. These remarks explain that errors are not prominent
in the diagrams from the literature. But as our examples illustrate it, such a tool is
useful during the class design.

170 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1



5 APPLICATIONS TO THE UML LANGUAGE

Mbox CleanState

Nreceipt

StsClean Explode

Integer

Boolean

ABox

ATAG

StrucState SymbolicStateNaryState

TagEpsilon

String

1..*

2

StrucTran SymbolicTranNaryTran

1..*

1..*

2

NaryTAG

TAGMachine

StrucTAG SymbolicTAG

*

*

1..*

2

2

1..*

1..*

*

Machine

State

TAGStateTAGTran

Transition

Figure 10: The TAG Schema

Related Work

[23] introduces an axiomatic object-oriented and structural data model called the
Demeter kernel model. This model defines class dictionary graph which is a set of
constructions and alternations. This is similar to our model but we have a more
powerful structural model with partial informations. Another important difference
is: in Demeter superclasses are always abstract classes and leaves of the inheritance
graph are concrete classes. Our choices are less strict than those of Demeter and
match some languages like Eiffel with no explicit interfaces. Demeter provides also
some rules but nothing related to our class usefulness checking. The cycle-free
alternation rule is simply: no circuit in the inheritance graph. Our total criterion
applies to the class dictionaries of Demeter and gives the following simple criteria:

• A concrete class is useful if and only if it structurally depends from useful
classes

• An abstract class is useful if and only if it has a useful concrete subclass.

One of the oldest reference which gives a rule about this problem seems [28]. It
presents a model but without selector preconditions, without multiple inheritance,
without abstract class and without care about ⊥. The purpose of this book is to
define a copy-and-paste semantics, and also to provide type-checking and inference.
One aspect of this work is the well-formedness requirement which is linked to sepa-
rate compilation. This work allows dps circuits (has − a relation), but void values
are implicit in each class, they are always useful. Our criterion is based on a more
basic need than separate compilation: We want to be sure that each class may de-

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 171



CHECKING CLASS SCHEMA USEFULNESS

scribe at least one finitely generated value. Our model is more general and we do
not tackle separate compilation.

V. Engelson [14] presents a simple and more general rule in a context with con-
crete classes and multiple inheritance. This rule states no circuit in the inheritance
and composition graph. It implies the previous one, the cycle-free alternation of [23]
and the dps without circuit. However it does not cope with abstract class and does
not explicit inheritance of compositions as illustrated with Figure 2.

There is now a real interest in checking consistency of UML specifications. We
may point out three levels of checking for such a language: Purely syntactic check-
ing, static semantic checking or verification of the dynamic semantics. UML is a
complex language, the different approaches focus only on few aspects: Mainly on
static diagrams, Statecharts, message sequence charts or activity diagrams. One
may also note that consistency is intra-model or inter -models. Our work presents
an automatic means to check a related consistency property inside static class di-
agrams. We avoid in the sequel to discuss several important work about checking
behavioural specifications because it is out of the scope of this paper.

Many tools are able to type-check and to control syntax, but they seem really
limited as we may read it in [25]. There are also tools for the static semantic
level as [10], which checks the conformity of UML model against the OCL MOP
description. [5] proposes to formalise the consistency conditions that must hold
between model components. This is of course not sufficient because OCL and the
meta-object description have not been proved consistent and they are not yet stable.
There are now several work about checking inconsistencies in UML at the semantic
level [21, 20, 27, 2, 31, 7]. Often they use a translation into labelled transition
systems hence applying model-checking. Other approaches prefer to use a theorem
prover approach for several reasons: This increases the expressive power since they
are not limited to finite data types or state machines. For instance in [2], using our
model and the Larch Prover tool, we have shown how to check general inconsistency
problem in the UML static class diagrams. The main problem is that tools are only
useful for proof specialists, the designers need automatic decision procedures. This
one of the important benefit of model-checking.

Our current work is an example of an automatic decision procedure related to
the general problem of consistency. Here this is not the general consistency problem
of first-order logic but only a sub case. This is a similar situation as in [15] which
studies cardinality checking using the idea that classes and associations must have
at least one non-trivial model. [32] develops a related approach to check consistency
between classes and sequence diagrams based on attribute typed graphs. They do
multiplicity checking but the approach seems not very useful from a practical point
of view since class cardinalities are often unknown.

172 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1



6 CONCLUSION

6 CONCLUSION

In this paper, we present a formal and structural model of classes based on partial
first-order structures. This model has a straight link to object-oriented programming
and allows various descriptions (with or without inheritance) of the same data type.
Our formal model has a uniform and powerful abstraction of instance variables,
which permits precondition on the field selectors. This allows us to adapt the notion
of strictness to our classes. Due to the presence of recursive and partial generators,
the adequate concept is called class usefulness. We herein develop a general process
to check class usefulness either at the level of class, i.e. with only composition, or at
the level of class schema, i.e. taking into account inheritance. A static criterion is
described and was implemented for the total case, i.e. whenever the preconditions
are assumed to be true. We discuss the case of abstract classes which introduce the
need for specific rules to check class usefulness. We illustrate this issue on several
different examples common in pattern descriptions. We also show results which allow
the application of this criterion to the general case, i.e. with partial preconditions
for the field selectors. Lastly, we detail the use of these techniques to the case of
some parts of the UML class diagrams. We have a static criterion, which is useful
to check class usefulness with abstract and concrete classes, interfaces, inheritance,
composition and aggregation relationships.

We have presented the basic principle of our consistency checking but two ad-
ditional remarks may be done. It is possible to adapt the algorithm to propose
categories, abstract or not, for classes to get the acceptable solutions. An effi-
cient algorithm must be developed for that, since at first sight the complexity is
2n×n2× (nAko + nDps). Our future work includes refining this study and propos-
ing algorithms to check redundancy in class schemas and to suggest the best choice
of cardinalities.

Acknowledgments

The author thanks Yann-Gal Guhuneuc and Pascal Poizat for their careful reading
of previous versions of this paper, and their insightful comments.

REFERENCES

[1] Pascal André, Dan Chiorean, and Jean-Claude Royer. The Formal Class Model.
In Joint Modular Languages Conference, Modula, Oberon & friends, ISBN 3-
89559-220-X, pages 59–78, Ulm, Germany, 1994.

[2] Pascal André, Annya Romanczuk, Jean-Claude Royer, and Aline Vascon-
celos. Checking the Consistency of UML Class Diagrams Using Larch
Prover. In T. Clark, editor, Proceedings of the third Rigorous Object-
Oriented Methods Workshop, BCS eWics, ISBN: 1-902505-38-7, 2000.
http://www.ewic.org.uk/ewic/workshop/view.cfm/ROOM2000.

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 173



CHECKING CLASS SCHEMA USEFULNESS

[3] Pascal André and Jean-Claude Royer. La modélisation des listes en program-
mation par objets. In Pierre Cointe, Christian Queinnec, and Bernard Serpette,
editors, Journées Francophones des Langages Applicatifs (JFLA’94), number 11
in Collection Didactique, ISBN : 2-7261-0824-5, pages 259–285, Noirmoutier,
1994. INRIA.

[4] Egidio Astesiano and Maura Cerioli. Non-strict don’t care algebras and speci-
fications. Mathematical Structures in Computer Science, 6(1):85–125, 1996.

[5] Hnatkowska B., Huzar Z., and Magott J. Consistency Checking in UML Models.
In 4th International Conference on Information Systems Modelling (ISM ’01),
2001. http://www.fit.vutbr.cz/events/ism/2001/.

[6] Thomas Baar. Metamodels without Metacircularities. RSTI - L’objet, 4th

Rigorous Object-Oriented Methods Workshop, 9(4):95–114, 2003.

[7] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Unifying Class-Based
Representation Formalisms. J. of Artificial Intelligence Research, 11:199–240,
1999.

[8] Dulcinea Carvalho, Roy Campell, Geneva Bedford, and Dennis Mickunas. Def-
inition of a User Environment in a Ubiquitous System. In D. C. Schmidt
R. Meersman, Z. Tari and al., editors, On The Move to Meaningful Internet
Systems 2003: Coopis, DOA, and ODBASE, volume 2888 of Lecture Notes in
Computer Science, pages 1151–1169. Springer Verlag, 2003.

[9] M. Cerioli, T. Mossakowski, and H. Reichel. From Total Equational to Partial
Conditional. In H.J. Kreowski, B. Krieg-Brueckner, and E. Astesiano, editors,
Algebraic Foundation of Information Systems Specification, chapter 3, pages
31–104. Springer Verlag, 1999.

[10] Dan Chiorean, Adrian Crcu, Mihai Pasca, Cristian Botiza, Horia Chiorean,
Sorin Moldovan, and Ilinca Ciupa. A Framework for Checking UML Models
- The UBB OCL Evaluator . Poster 6 at the 16th European Conference on
Object-Oriented Programming, 2002.

[11] Christine Choppy, Pascal Poizat, and Jean-Claude Royer. The Korrigan En-
vironment. Journal of Universal Computer Science, 7(1):19–36, 2001. Special
issue: Tools for System Design and Verification, ISSN: 0948-6968.

[12] Roland Ducournau. Spcialisation et sous-typage : thme et variations. RSTI
Techniques et Sciences Informatique, 21(10):1305–1442, 2002.

[13] Sophie Dupuy, Yves Ledru, and Monique Chabre-Peccoud. Vers une intgration
utile de notations semi-formelles et formelles : une exprience en UML et Z.
L’objet, 6(9–32):21–47, 2000. ISSN 1262-1137.

174 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1



6 CONCLUSION

[14] Vadim Engelson. ObjectMath Inheritance and Composition Diagram Editor.
Linkping Electronic Articles in Computer and Information Science, 5(6), 2000.
http://www.ep.liu.se/ea/cis/2000/06/.

[15] Pascal Fradet, Daniel Le Métayer, and Michaël Périn. Consistency Check-
ing for Multiple View Software Architectures. In Oscar Nierstrasz and Michel
Lemoine, editors, Proceedings of the 7th European Engineering Conference and
the 7th ACM SIGSOFT Symposium on the Foundations of Software Engeneer-
ing, volume 24.6 of Software Engineering Notes (SEN), pages 410–428, N. Y.,
September 6–10 1999. ACM Press.

[16] Stephan Garland and John Guttag. An overview of LP, the Larch Prover. In
Proc. of the 3rd International Conference on Rewriting Techniques and Appli-
cations, volume 355 of Lecture Notes in Computer Science. Springer-Verlag,
1989.

[17] Giorgio Ghelli and R. Orsini. Types and Subtypes as Partial Equivalence Rela-
tion. In Workshop on inheritance hierarchies in knowledge representation and
programming languages, pages 129–140, February 1989.

[18] A. Hamie, J. Howse, and S. Kent. Interpreting the Object Constraint Language.
In Proceedings of Asia Pacific Conference in Software Engineering. IEEE Press,
January 1998.

[19] Brian Henderson-Sellers and Franck Barbier. Are UML’s Aggregation Kinds
Meaningful. L’objet, 5(3-4):21–47, March 2000. ISSN 1262-1137.

[20] W.M. Ho, F. Pennaneac’h, and N. Plouzeau. UMLaut: A Framework for Weav-
ing UML-based Aspect-oriented Designs. In In Technology of object-oriented
languages and systems (TOOLS Europe), pages 324–334, 2000.

[21] Daniel Jackson. A Comparison of Object Modelling Notations: Alloy, UML
and Z. http://sdg.lcs.mit.edu/ dnj/publications.html.

[22] Daniel Jackson and Martin C. Rinard. Software analysis: A roadmap. In Pro-
ceedings of the 22th International Conference on Software Engineering (ICSE-
00), pages 133–146, NY, June 4–11 2000. ACM Press.

[23] Karl J. Lieberherr, Paul Bergstein, and Ignacio Silva-Lepe. From objects to
classes: Algorithms for object-oriented design. Journal of Software Engineering,
6(4):205–228, July 1991.

[24] Bertrand Meyer. Object-Oriented Software Construction, 2nd Ed. Prentice-
Hall, Englewood Cliffs, NJ 07632, USA, second edition, 1997.

[25] Michael Moors. Consistency Checking. http://www.therationaledge.com/
rosearchitect/mag/current/spring00/f6.html, apr 2000.

VOL 3, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 175



CHECKING CLASS SCHEMA USEFULNESS

[26] Kasper Osterbye and J. Olsson. Scattered Associations in Object-Oriented
Modeling. In Proceedings of Nordic Workshop on Programming Environment
Research, June 1998. Bergen, Norway.

[27] Richard F. Paige, Jonathan S. Ostroff, and Phillip J. Brooke. Checking the
Consistency of Collaboration and Class Diagrams using PVS. RSTI - L’objet,
4th Rigorous Object-Oriented Methods Workshop, 9(4):115–134, 2003.

[28] J. Paslberg and M.J. Schwartzbach. Object-Oriented Type Systems. John Wiley
& Sons, 1994.

[29] Jean-Claude Royer. A New Set Interpretation for the Inheritance Relation and
its Checking. ACM OOPS MESSENGER, 3(3):22–40, 1992.

[30] Jean-Claude Royer. An Operational Approach to the Semantics of Classes: Ap-
plication to Type Checking. Programming and Computer Software, 27(3):127–
147, 2002. ISSN 0361-7688, http://www.maik.rssi.ru/index.html.

[31] Jean-Claude Royer. Temporal Logic Verifications for UML: the Vending Ma-
chine Example. RSTI - L’objet, 4th Rigorous Object-Oriented Methods Work-
shop, 9(4):73–92, 2003.

[32] A. Tsiolakis and H. Ehrig. Consistency Analysis of UML Class and Sequence
Diagrams using Attributed Graph Grammars. In H. Ehrig and G. Taentzer, ed-
itors, Proc. of Joint APPLIGRAPH/GETGRATS Workshop on Graph Trans-
formation Systems, Berlin, March 2000, 2000. Technical Report no. 2000/2,
Technical University of Berlin.

[33] N. Wirth and K. Jensen. Pascal - User Manual and Report. Springer, Berlin,
3 edition, 1985.

About the author

Jean-Claude Royer is currently a Professor in Ecole des Mines
de Nantes, he is member of the EMN/INRIA OBASCO project
and member of the LINA laboratory. His researches focus on
object-oriented programming, component and formal specifications
of mixed systems. He can be reached at Jean-Claude.Royer@emn.fr.

176 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 1


