
Vol. 3, No. 10, 2004

Software interactions

Mireille Blay-Fornarino, Anis Charfi, David Emsellem, Anne-Marie
Pinna-Dery, Michel Riveill, Laboratoire I3S, Bâtiment ESSI, BP 145, 06903
Sophia Antipolis CEDEX, France

This paper proposes the usage of a dedicated Interaction Specification Language (ISL)
to express interactions between software components in a component-based applica-
tion. This approach brings three major benefits: First, it allows component interactions
to be expressed explicitly as first-class entities. Second, it enables the expression of
the interactions independently of any specific programming languages or component
models. This is especially important if we consider the variety of components specifi-
cations and their heterogenity. Third, our approach permits the dynamic adaptation
of the application by defining/removing interactions at runtime.
To this end, Iteraction patterns are specified in ISL. They represent models of fu-
ture interactions that connect some component instances. An Interaction Server is in
charge of managing the life cycle of interactions (pattern registration, instantiation,
destruction, interaction merging). The Interaction service allows the creation of in-
teractions connecting heterogeneous components. Noah is an implementation of the
Interaction Service. It can be thought of as a dynamic aspect repository with a weaver
that uses a commutative and associative aspect composition mechanism.

1 INTRODUCTION

The goal of the interaction service is to enable the dynamic adaptation of component-
based applications. This service is based on the interaction model. In this model,
interactions are described in a meta-language independently of the component im-
plementation language. Component interactions are the basis for application con-
nectivity. Interaction patterns define one or more interaction rules. They can be
registered on a specific server and then instantiated on component instances. This
approach allows to dynamically establish links between components in order to adapt
their behaviour to the environment. This is reached by creating/destroying instances
of an interaction pattern at runtime. In the following, we explain what interactions
are, then we introduce the interaction model through an example and afterthat we
describe the ISL language for interaction pattern definition. Finally, we will discuss
the merging mechanism which is required when at least two overlapping interac-
tions are applied to the same component instance. The merging mechanism is based
on the ISL language and it ensures commutativity and transitivity. This is very
important to insures the consistent adaptation of an application by several users.

Cite this article as follows: Mireille Blay-Fornarino, Anis Charfi, David Emsellem, Anne-Marie
Pinna-Dery, Michel Riveill: ”Software interactions”, in Journal of Object Technology, vol. 3,
no. 10, 2004, pages 161–180,
http://www.jot.fm/issues/issues 2004 11/article4

http://www.jot.fm/issues/issues_2004_11/article4
http://www.jot.fm

SOFTWARE INTERACTIONS

2 INTERACTIONS

”The architecture of a software system defines that system in terms of components
and interactions among those components” [6].

Interactions can be found almost everywhere in the real world. We meet inter-
actions more or less clearly expressed along the software lifecycle.

From Components to Interactions

A component is defined at least by the specification of its provided services and
required services. The execution of a component-based application can be seen as
reacting to messages (probably events) sent by some component instances to other
component instances. The behaviour of a component instance is characterized by
the observable external semantics of its methods when it receives a message. This
semantics is expressed by the methods return values and the messages sent to other
component instances. From our point of view, adapting the component instances can
be attained by modifying their behaviours in order for example to throw exceptions,
send new messages, change the return values, etc.

Now, let us define what is an interaction in our terminology. An interaction
between instances of components specifies how the behaviour of these instances
should change so that the interaction semantics is enforced. Thus, a notification
interaction between an Agenda component and a Display component can modify
the behaviour of the Agenda in such a way that the Display shows an appropriate
message, whenever a new meeting is added or removed from the Agenda.

An interaction pattern is an abstraction of the interaction concept. It is defined
on the component class level and can be instantiated. It is the counterpart to classes
in object-oriented languages whereas interaction instances are the counterpart to
objects.

Interactions in the Analysis Phase

During the analysis phase in the software lifecycle, interactions appear at the model-
ing level. This can be observed on several UML [1] diagrams. When the presence of
interactions has a structural impact, they are expressed by associations in the class
diagrams. Some interactions have an additional behavioural impact. Therefore,
they appear as events and conditions in the state diagrams. However, in UML it is
very difficult to express new interactions that may appear at execution time such as
the availability or absence of some components in the execution environment.

162 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10

2 INTERACTIONS

Interactions and Software Architecture

Interactions also appear in the context of Architecture Description Languages (ADL).
The fundamental concepts of ADL are components and connectors assembled with
help of configurations [12]. A component is specified within ADL by the pro-
vided/required services. These services are expressed like method signatures, mes-
sages or variables.

”Connectors are architectural building blocks used to model interactions among
components and rules that govern those interactions. Unlike components, connectors
might not correspond to compilation units in implemented systems.” [12]

ADL configuration languages use the architecture description in order to partially
generate the component’s implementation or to improve the application deployment.
The newest configuration language is the CORBA Component Assembly Descriptor
[17], which automates deployment. These descriptors characterize key component
deployment information, such as assembly instructions and interconnection topology.
Some of the configuration languages have a limited dynamic dimension that enables
us to specify possible evolutions of the application as stated by Medvidodic:

”Explicit modelling of architectures is intended to support development and
evolution of large and potentially long-runtime systems. It may be necessary to
evolve such systems during execution. Configurations exhibit dynamism by allowing
replication, insertion, removal and reconnection of architectural elements or sub-
architectures.”

The objective of ADL languages is to describe the communication between the
required services and provided services at different stages of the software lifecycle.
None of them is explicitly geared to the dynamic management of interactions.

Interactions and Component Models

Standard component platforms such as EJB [9], CCM [14] or .NET [16] compel the
developer to define interactions a priori. This is usually done at the level of com-
ponent interface or business logic. In CCM, components can interact with external
entities, such as the services provided by the ORB, other components or clients via
a set of interfaces called ports, which define the standard mechanisms to modify the
component configurations.

The OMG IDL (Interface Definition Language) has been extended to express
component interconnections. A component can offer multiple interfaces, each one
defining a particular point of view to interact with the component. The four kinds
of component interfaces in CCM are facets, receptacles, event sources/sinks and at-
tributes.They can be used for component configuration. [17]. Two interaction modes
are provided: facets for synchronous invocations, and event sinks for asynchronous
notifications. Moreover, a component can define its required interfaces, which define
how the component interacts with others: receptacles for synchronous invocations,

VOL 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 163

SOFTWARE INTERACTIONS

and event sources for asynchronous notifications. Components are installed auto-
matically when they are installed on a component server. The port mechanisms
mentioned above provide interfaces to configure the components i.e. set up the
object connections, subscribe/publish events, etc. It is also possible to use the con-
tainer programming model to implement interactions. The Container API simplifies
the task of developing and configuring CORBA applications by providing an adapta-
tion layer for commonly used services such as Transaction, Notification, Persistence
and Security. However, the application developer still needs to statically express the
component configuration i.e., specify how the component reacts to a given event,
which event pertains to which sink, etc. As a result, the connectivity and the con-
trol induced by interactions are always platform-dependent. Interaction patterns
are scattered among the components and the entities needed for their deployment
like stubs and proxies.

Interactions, AOP and Meta Programming

Aspect Oriented Programming

In an object-oriented application classes collaborate to achieve the application’s goal.
However, there are some concerns that cannot be viewed as being the responsibility
of only one class, they cut across the class hierarchy and affect parts of many classes.
Examples might be logging method calls, authorization or exception handling. Of
course, the code that handles these parts can be added to each class separately, but
that would violate the principle that each class has well-defined responsibilities. This
is where Aspect Oriented Programming (AOP) [10] comes into play: AOP defines a
new program construct, called aspect, which is used to capture crosscutting concerns
in separate and well-modularized program entities. The application classes keep
their well-defined responsibilities and each aspect captures cross-cutting behaviour.

The power of AOP lies in its ability to recognize patterns in pre-existing code
and change them in multiple places (this property is called quantification) with
minimal work from the programmer, without changing the source code of the original
program(this property is called obliviousness). As an Aspect Oriented Programmer,
you simply specify where (pointcut) you want crosscutting functionality (advice)
to be executed. The weaver is responsible for integrating the aspect code with the
base application. We differentiate static AOP approaches where aspect weaving is
performed at compile-time and dynamic AOP approaches where weaving happen
at runtime. Aspects can be applied to a number of classes, and can therefore add
capability without forcing a class to extend or implement anything to obtain it.

Aspects in dynamic AOP languages are quite similar to interactions our inter-
action model but interactions are more powerful in explicitly modeling behavioural
dependencies between components. In fact, aspects are basically language constructs
to modularize crosscutting concerns. They are not appropriate to model the inter-
actions between classes. In the following sections we will show a group interaction,

164 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10

2 INTERACTIONS

which can not be modeled as an aspect. Moreover, in AOP there is a fundamental
problem when it comes to aspect composition. Aspect composition must always be
handled be the programmer. In contrast, our interaction model provides automatic
compostion of interactions. Another advantage of the interaction model, is the use
of ISL language that allows the definition of interactions independently of any pro-
gramming language and across heterogenous components. AOP however uses the
same language for aspect and base code and therefore it does not support interoper-
ability. In addition, the ISL language is more powerful and expressive than common
aspect languages. In fact, ISL provides more operators such for concurreny and
waiting, which are very useful in distributed applications. Shortly put, AOP is good
at modularizing crosscutting concerns whilst interactions are good at modularizing
component interactions.

Meta-Level Programming

The technique of meta-programming goes back to dynamic languages like CLOS
and Smalltalk. Meta-level programming techniques are key technologies to develop
adaptive and adaptable software systems.

• The Meta Program is a program that manipulates other programs or itself.

• The Meta Object Protocol (MOP) defines the interface between the meta level
and the base level.

AOP has a lot in common with Meta Programming [3]. Both capture crosscutting
aspects of a software system in clean, controlled ways. One of the most fundamental
properties of meta-level programming is that the programmer has access to the
structures that represent a program, i.e. a program written in a specific language is
represented at runtime in this very same language. The most popular language that
implements meta-level programming concepts is CLOS, the Common Lisp Object
System [3]. Its implementations are based on the MOP. The MOP can be seen as a
standard interface to the CLOS interpreter. With the help of the MOP it is possible
to modify the behaviour of the interpreter in a controlled way. This can be used to
dynamically adapt component’s behaviour to its changing environment.

CLOS provides a feature called method combination. For every method it is
possible to define a method that is executed immediately before the primary method
is executed (called the method’s before-method), and a method that is executed
after the primary method (the after-method). These methods can also be defined
in subclasses.

Central to CLOS’ Meta Object Protocol is the concept of meta class. The
meta class is responsible for implementing the class’s protocol e.g., the method call
mechanism, the object creation process, etc. Each class in a system has its own
meta class. Meta classes can be subclassed to create custom behaviour just like any
other class.

VOL 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 165

SOFTWARE INTERACTIONS

Meta-level programming can be used for dynamic component adaptation. How-
ever, it is a quite complex approach that requires expert knowledge. It is in general
complexer and slower than the AOP approaches. Moreover, we think that interac-
tions between components should be expressed at the application level rather than
at the meta level. Expressing interactions at the meta level in the form of message
reception/sending is not intuitive.

3 THE INTERACTION MODEL

The interaction model allows the expression and defintion of interactions between
components as first-class entities. It also enables the adaptation of the application´s
behaviour according to the active interactions within the system. The interaction
model fulfills the following requirements:

• Avoid inconsistencies that may be entailed by many adaptations

• Manage the composition of interactions automatically

• Interoperability of interactions across heterogeneous components

• Enable direct communication between the interacting components without a
centralized interaction management point

Interaction properties

Interactions are the basic elements in the interaction model with the following prop-
erties:

• An interaction pattern defines the behavioural dependencies between the com-
ponent classes that it connects. The interaction instances of this interaction
pattern preserve this coherence locally.

• An interaction pattern is implementation-independent and an interaction in-
stance can connect heterogeneous components across different platforms. For
instance, an interaction can connect a Java component with a .NET compo-
nent.

• Only the component interface (in particular the provided services) may be
used to describe an interaction pattern.

• Interactions can not control properties that do not belong to the component’s
interface. Thus, encapsulation is not broken. The interface of an interaction-
bound component is not modified even though its behaviour is modified.

166 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10

3 THE INTERACTION MODEL

• Interactions and interaction patterns can be dynamically created and destroyed
at application runtime.

• The interaction management is based on a composition mechanism that en-
sures commutativity and associativity.

Implementation of the Interaction Service

In order to support these properties, we provided an implementation called ”Noah”
of the interaction model (available on the website http://noah.essi.fr). This imple-
mentation offers an interaction service and consists of the following parts:

The Interaction Server The interaction server manages interaction patterns and
interaction instances. It enables the dynamic definition/removal of component inter-
actions by instantiating interaction patterns. It also provides methods to traverse
the interaction graph. Moreover, it acts as the central repository for interaction
patterns. By Noah Server we refer to the Java Interaction Server. Noah Server
is implemented as a Java RMI Server but it is also exposed as web service to be
accessible from other platforms such as .NET.

Interacting Components These are components that have been prepared to
manage and interpret interactions. We use code instrumentation at load time or
compile time to modify the component class files. We provide instrumentation
tools for Java based components such as EJB and RMI and for .NET components(
local components and remote components published using the HTTP or TCP chan-
nels). The behaviour of interacting components can be dynamically modified by
adding/removing new interactions on them. So, an interacting component is a dy-
namically adaptable component. To make a component interacting the programmer
can use the tools JavaGenInt for Java and MSILGenInt for .NET.

Use Case

In order to illustrate the interaction model and its implementation, we take a simple
agenda application as an example. This application is made up of several component
classes: a Display component class which displays messages, a Security component
class which authorizes method calls on a given component and an Agenda component
class which stores meetings.

At runtime the component instances will be connected/disconnected by interac-
tions. We define an interaction pattern team between two Agenda components and
a Display component, an interaction pattern notification between a Display compo-
nent and an Agenda component and an interaction pattern security that associates

VOL 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 167

http://noah.essi.fr

SOFTWARE INTERACTIONS

an Agenda component with a security component.These patterns are shown in the
listing below.

The creation of instances of these interaction patterns leads to changes in the
component behaviour. Thus, the security component checks each method call on
the Agenda instance michelAgenda before this latter responds to that call. Only
authorized method calls are processed by the Agenda component. We notice thereby
a change in the behaviour of the Agenda: the base behaviour was to execute all
method calls, now it executes only calls authorized by the security manager.

The interaction patterns security and notification address so-called non-functional
concerns, whereas the interaction pattern team addresses the functional part or busi-
ness logic. The interaction security can be implemented as an aspect in AOP whereas
the interaction team can not be modelled as an aspect.

Figure 1 shows one possible graph of components and interactions during the
execution of the agenda application.

Figure 1: Interaction between components

Definition of Interaction Patterns

In the agenda example, the programmer can define an interaction pattern that
associates an agenda component instance with a display component instance at
runtime, so that an appropriate message is displayed whenever a meeting is added
or removed from the agenda. The programmer defines interaction patterns and
deliver them together with the application. The interaction patterns are adaptation
models that the final user can apply to the application components at runtime in
order to reconfigure the application. The interaction patterns are defined at the level
of component classes whereas the interactions instances (or shortly interactions)
affect instances of the component classes. The final user can in his turn create
additional interaction patterns e.g., he can define an interaction pattern persistence

168 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10

3 THE INTERACTION MODEL

to connect an Agenda component to a database component in order to store the
agenda meetings in the database.

Interaction patterns are specified in the Interaction Specification Language (ISL).
This language is described in the next section. An interaction pattern defines at least
one interaction rule. Interaction rules express the control that should be executed
on the connected components. An interaction rule consists of two parts: the left
side is the notifying message and the right side is the action. The semantics of
an interaction rule is to rewrite method code i.e., instead of executing the default
method (default behaviour), the interaction runtime should execute the rule’s action.
This applies to all component methods that match with the rule notifying message.
”Match” means in this context, the same component class and the same method
signature.The following listing shows the interaction patterns we mentioned so far.

interaction notification(Object obj, Display display) {
obj.* -> obj._call // display.notify(_call)

}

interaction team(Agenda group, Agenda member, Display display) {
group.addMeeting(String title) ->

group._call ; member.addMeeting(title)

member.addMeeting(String title) ->

member._call; display.notify(_call)

}

interaction security(Object obj, SecurityService security) {
obj.* -> if security.check(_call)

then obj._call

else exception "unauthorized user";

endif

}

interaction persistance(Agenda agenda, Database database) {
agenda.addMeeting(String title)-> agenda._call;

database.store(agenda.getOwner(),agenda)

}

VOL 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 169

SOFTWARE INTERACTIONS

The interaction pattern notification can bind any Java component to a Display
component. It declares only one interaction rule expressing that every message
received by the component obj should be executed by obj and sent to the Display
component concurrently.

The ISL keyword call denotes the notifying message call (obj. call). It also
represents the reified notifying message when it is used alone (call) as a method
parameter. The reified notifying message is an object that encapsulates the notifying
method call and the call parameters.

The interaction pattern team can bind three components. It defines two in-
teraction rules. The first interaction rule in this pattern states that the notifying
message addMeeting to the Agenda instance group results in executing the message
by the Agenda instance group itself and also by the Agenda instance member. This
interaction pattern defines a collaboration relationship among the Agenda instances.

Once defined, the interaction pattern has to be registered on the Interaction
Server. This latter provides a method registerPattern(String islPattern) that takes
an interaction pattern as parameter. The Interaction Server acts as a repository
for interaction patterns. Interaction patterns can be retrieved or modified with the
method getPatternCode(String patternName). We have also developed a graphical
tool called Noah Editor, which facilitates writing interaction patterns and visualizes
interaction instances and interacting components.

Creating and removing interactions

At runtime the programmer can bind or unbind component instances using one
of the interaction patterns registered on the interaction server. For this purpose,
the Server provides the method instantiatePattern(String patternName, NoahProxy
targets[]).

The interaction server creates an RMI interaction object that represents the in-
teraction, stores it and then passes it to the involved component instances. These
components need to take into account the interaction rules expressed by the interac-
tion object. When an interaction is added on a component instance, it first checks
if any interaction rule with the same notifying message was already applied to it.
If that is the case, it merges the new rule with the existing one. The merging pro-
cess will be explained later, It generates one interaction rule which is semantically
equivalent to the input rules. From the next notifying call on, the component’s
behaviour is changed. For example, if we successively instantiate the interaction
team on the Agenda group and the Agenda instances David, Michel and Anis the
merging mechanism will generate the rule shown below for the notifying message
”group.addMeeting”.

groupAgenda.addmeeting(String _var0) -> groupAgenda._call;

170 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10

3 THE INTERACTION MODEL

davidAgenda.addMeeting(_var0)

// michelAgenda.addMeetingl(_var0)

// AnisAgenda.addMeeting(_var0)

The resulting rule means that each time a new meeting is added to the group
agenda, the meeting must also be added to the agendas of the team members. The
”;” is the notation of the ISL sequential operator while the symbol ”//” denotes the
concurrency operator. Accordingly, the actions of adding the new meeting (var 0)
to the member agendas are performed in parallel.

Since interacting components are not necessarily Java components, special prox-
ies are needed. The proxies are java objects that provide an identical interface to
the interaction server. In fact, even in the Java world components may be quite
different e.g., Enterprise Java Beans, local Java objects or remote Java objects etc.
We can also have interactions that involve .NET components as well as Java compo-
nents. For this reason, the method instantiatePattern(String pattern, NoahProxy[]
objects) takes an array of proxies as second parameter. This proxy design pattern
abstracts away from the technical component properties such as implementation
language, platform, etc.

Alternatively, new interactions can be created with the help of the tool Noah
Editor. The user first selects the registered interaction pattern he wants to instan-
tiate (e.g. notification). A window pops up showing the types of components that
can be connected by this pattern and all known running component instances of
these types. After that, the user chooses the specific instances that should be con-
nected by the interaction and the tool requests the interaction server to create the
corresponding interaction objects.

The screenshot in Figure 2 shows Noah Editor. On the upper left corner, all
registered interaction patterns are listed. The user can input a new interaction pat-
tern. When the user selects one of the listed patterns, the tool shows the interacting
components that are bound by this pattern in the ”Registered object” window. The
concrete interaction objects are RMI objects and they are shown in the window ”Ob-
ject’s interactions”. The tool also displays the business methods of an interacting
component and the interaction rules that concern each of them. Business methods
are those methods that realize the object’s business logic. Only these methods are
relevant to interactions i.e., they may appear on the left side of an interaction rule.

When the user selects the business method addMeeting(string meeting) of the
Agenda instance David, the Noah Editor displays the ISL interaction rule that
pertain to the notifying message addMeeting on the component instance David.

To delete an interaction, the Interaction Server provides the method removeIn-
teraction (String identifier). All connected component instances (present on the left
side of the interaction rule) will be requested to adapt their behaviour after the
interaction (identified by the String identifier) has been destroyed. The destruction
of an interaction can be performed with Noah Editor as well.

VOL 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 171

SOFTWARE INTERACTIONS

Figure 2: Screenshot of Noah Editor

Interacting components

Components that appear on the left side (notifying message) of an interaction rule
must necessarily have been made interacting components. However, on the right
side (action) of an interaction rule, every component (even non-interacting) may
appear. Interacting components fulfil these requirements:

• they can switch the main execution thread to a local control after the reception
of a notifying message.

• they are able to dynamically merge and unmerge interaction rules.

• they can send messages directly to the other connected interacting components
without going through the interaction server.

The execution of messages (method calls) within interacting components is quite
different from the ordinary method execution. When an interacting component
receives a message that turns out to be a notifying message, the interaction rule

172 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10

3 THE INTERACTION MODEL

that is associated with that message is evaluated locally. This evaluation can be
thought of as interpreting the rule’s action. During this evaluation, calls among the
involved components are direct and do not pass through the interaction server.

Several tools are shipped with the interaction server. Code Instrumentation and
Code Engineering techniques are the base upon which these tools perform class
modification. The classes are modified, so that they can manage interaction rules
(adding, removing and merging). The tool JavaGenInt handles this task for local
and RMI Java components. It uses the Byte Code Engineering Library (BCEL)[5].

For Enterprise Java Beans the proxies take charge of interactions in a similar way
to standard services like synchronisation, consistency and persistence. In JOnAs [4]
the proxies are generated by the GenIC code generation tool. We modified the tool
so that the generated proxies can manage interactions. To make an EJB interacting,
the developer sets the attribute ”value” of the element ”jonas-interaction” to ”true”.
This setting is specified in the deployment descriptor of the EJB application. The
XML DTD of the EJB deployment descriptor has been extended appropriately.

The interaction service also supports .NET components. The MSILGenInt tool
takes a .NET assembly (.dll or .exe file) as input and makes the classes of the
assembly ’interacting’. MSIL GenInt performs code engineering at the intermediate
language level. MSIL stands for Microsoft Intermediate Language, which is similar
to Java bytecode.

For all interacting components, the overhead of the interaction mechanism is
the cost of a testing instruction when no interaction rule is applied to the notifying
message. In the other case, the message is executed using the dynamic invocation
technique provided by the Reflection API of Java or .NET.

Interoperability and Interactions

One of the encountered problems relates to the communication between compo-
nents from different platforms. The interacting components may be local objects,
Enterprise Java Beans, or remote objects in java or .NET. We need to handle these
components in a uniform way. This is required by the interaction server when it
passes interaction objects to the interacting components the components. Note that
these objects are serialized into an XML representaton of XML. Furthermore, direct
inter-component communication also rises the same requirement. For this reason,
we should find a way to handle the components uniformly and minimize differences
between the various implementations. In fact, ISL parsing, ISL tree management
and rule merging are common elements among the different implementations.

Our approach is to encapsulate a reference to the interacting component in a
NoahProxy object that manages message sending and provides an identical interface
to all interacting components. This is fully transparent to the user.

VOL 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 173

SOFTWARE INTERACTIONS

4 THE INTERACTION SPECIFICATION LANGUAGE (ISL)

The ISL language is used to specify interaction patterns independently of the appli-
cation programming language. It includes several operators such as the conditional
operator (if . . . then . . . else . . . endif), the sequential operator (;), the concurrency
operator (//), the waiting operator, and the exception handling operator. The key-
word ’this’ within an interaction pattern refers to the interaction object itself. ISL
recursively defines the component behaviour with the operators described below
(each behaviour describes a behavioural class). The term behaviour denotes the
interaction rule’s action (right side). A detailed description of the the semantics of
ISL operators and constructs can be found in [2].We shortly discuss some of them:

• The method invocation operator ”.” denotes a method call on the receiving
component. Using the keyword call in place of a method call refers to the
notifying method call.

• The assignment operator ”:=” assigns the return value of a message sending
behaviour (method call) or of an assignment to a variable.

• The sequence operator ”;” states that two behaviours should be executed one
after the other.

• The concurrency operator ”//” states that two behaviours should be executed
in parallel.

• The waiting operator (” X” where X is a label) states that the execution of
a message, variable assignment or another waiting behaviour is blocked, until
the end of the execution of a behaviour labelled by ”[X]”.

• The conditional operator (if then else endif) states a conditional execution
of a behaviour depending on the boolean result of the execution of another
behaviour.

• The exception handling operator (try . . . catch) permits throwing exceptions.
It can only be used to express that the execution of a notifying message has
been rejected. The exception thrown is then returned to the user (if it is not
caught in the interaction rule).

• The delegation operator states that an action that does not contain the trigger-
ing message of the current rule should be considered as the triggering message.
There is no keyword to denote this operator. It is implicitly added during the
phase of semantic analysis.

• The wild card operator * matches all messages on the receiving component. It
can be only used after the method invocation operator. This operator is used
in the security pattern, so that all method calls on the Agenda are notifying.

174 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10

5 RULE MERGING

• The ISL keyword call represents the notifying message call. It also represents
the reified notifying message when it is used alone as a method parameter.

5 RULE MERGING

The definition of interaction pattern follows the principle of Separation of Concerns.
Creating interactions occurs dynamically, on behalf of several users having different
point of view of the application (local view). This leads to a separation of interac-
tions as every user expresses controls and behaviour modifications regardless of the
others. Consequently, the interaction model should enforce the overall coherence of
the component adaptations (global view).

Thus, when more than one interaction is simultaneously applied to the same
notifying message of a component, merging interaction rules becomes necessary.
Rule merging is dynamically managed by the interacting component itself each time
a rule is added to or removed. The merging mechanism is specified through a finite
set of merging rules and equivalence axioms based on the ISL operators. These rules
and axioms are described in more detail in [2]. The rule merging fulfills the following
properties:

• The coherence of interactions rules: in particular rule merging is rejected if
it entails a non deterministic behaviour. Moreover, rule merging should not
provoke any non-explicit waiting especially when concurrency and sequence
operators are involved.

• Rule merging is commutative: the order in which the rules have been added
to the interacting components does not affect the behaviour of the system.
The resulting behaviour is equivalent for all sequences of interactions. In
fact, if we first instantiate the interaction pattern notification and then the
interaction pattern security, we would intuitively expect the same behaviour
as if we instantiated both patterns the other way around.

• Rule merging is also associative. If we merge the interaction pattern team with
the interaction pattern notification, then take the resulting rule and merge it
with the interaction pattern persistence, we will get the same result as if we
firstly merge the interactions persistence and notification together and then
add the interaction team.

• Two rules that throw exceptions can not be merged because if an exception
is thrown at runtime we do not know which rule has raised it. We say that
raising exceptions is absorbing for the merging mechanism.

• Merging the sequential operator with the concurrency operators should not
induce any chronological order that does not emanate from the input rules.

VOL 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 175

SOFTWARE INTERACTIONS

When the merging may introduce an order between the actions, the wait-
ing operator is used. The rationale for this is the following equivalence:
m; p[X] ≡ m//p {X}

When rule merging is possible, it generates one rule that will be executed instead
of the merged rules. The resulting rule has the same semantics as the merged rules.
Figure 3 explains how an interacting component manages interaction rules and how
it performs rule merging.

An interacting component has an array of rules for each business method. At
the first position (zero) of each array, the result of merging all rules that affect that
business method is placed. If an interaction rule is added to a component, it will
be stored in the next free slot in the respective array. Then, it will be merged with
the rule in the first slot of that array. The result of rule merging is again placed in
the first position. In Figure 3 we see the rule array of the Agenda instance Anis,
which pertains to the method addMeeting. The merging of the two interactions
notification and security (both have the same notifying message obj.*) generates
one rule which is stored in the first slot of the array.

Figure 3: Merging rule

6 CONCLUSION

The interaction model allows the dynamic adaptation of components with help of
interaction patterns and interaction instances. The user expresses interaction pat-
terns at the application level using the ISL language. The merging mechanism is
essential to keep the global coherence and consistency of all interactions. It ensures
commutativity and associativity.

Within the current implementation, it is possible to define interactions on Java-
based components (local and RMI or EJB) or .NET-based components. The Noah

176 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10

6 CONCLUSION

interaction server can be downloaded at http://noah.essi.fr. The interaction service
has been used to dynamically manage data bases [7], to manipulate frameworks [15]
and to integrate technical services [13]. Furthermore, a study is being conducted
about managing the adaptation of nomadic applications with help of interactions.

The advantages of the interaction model over AOP approaches include the sup-
port of heterogeneous components, the powerful interaction language ISL with its
composition mechanism, and the support for expressing behavioural dependencies
between components at runtime. In fact, the primary focus of AOP languages such
as AspectJ [11] is the modularization of crossucutting concerns. like aspects, in-
teractions are also crosscutting in their nature because they connect independent
component classes. However in AOP, it is difficult to express multi-party interac-
tions like of the interaction team. In Meta Programming, the programmer could
express interactions in terms of meta-behaviours, which is complex for the normal
programmer and takes him away from the application to higher meta levels. In
both AOP and Meta Programming the composition of interactions is based on the
explicit order of interactions, which is difficult to manage by the final users. The
advantage of our approach is the automatic composition mechanism with clear and
formal semantics.

With regard to services, the CORBA notification service [8] is somewhat close to
the interaction service. Nevertheless, within the notification service the programmer
has to implement the interactions by means of notifications and event management.
In addition, the absence of interactions, as well-structured entities, makes the com-
position of interactions quite difficult to manage by the system.

Several works around the interaction model are currently in progress. We con-
sider extending the syntax of the ISL language and defining additional operators.
For example the operator return will allow giving up the control before an inter-
action rule is fully executed. We also consider placing interactions at other joint
points besides method calls e.g., field access/write and constructor calls. In this
way interactions could be as expressive as current AOP languages. The interaction
service has also been used in some specific domains like Expert Systems: We pro-
vided a library of interaction patterns, which can be easily used by the final users
of the expert system.

We also found out that the expression of generic interaction patterns is very
useful. In fact, the same type of interactions may apply to different types of inter-
acting components. The investigation of generic interaction pattern is in course and
we are evaluating the various alternatives to integrate generic interactions to the
interaction server Noah.

At present, the interaction model does not precise any user rights because it was
originally conceived to allow collaborative programming. We are now working on
a security model, which specifies the different programmer roles and the respective
user rights such as create, destroy, put and remove interactions. A further thrust
of research within the RAINBOW team focuses on Human Computer Interaction

VOL 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 177

http://noah.essi.fr

SOFTWARE INTERACTIONS

(HCI). It this field, we examine how the interaction model can be used for HCI
composition. With the interaction model, we can consider HCI like technical services
of a business component (which contains only the application logical part). So, the
HCI interface is just like the services security or persistence. In this vein, we can
manage the dialog between UI and business components by means of interaction
rules.

Interactions bring an additional abstraction layer and provide tools which permit
controlling this layer. We also aim at offering more flexibility and more control
over the application’s adaptation by analyzing the interaction graph by developing
administrative tools such as the interaction network viewer.

REFERENCES

[1] S. S. Alhir. UML in a Nutshell. O’Reilly, 1998.

[2] L. Berger. Mise en oeuvre des interactions en environnements distribués, com-
pilés et fortement typés: le modèle MICADO. PhD thesis, Université de Nice-
Sophia Antipolis, octobre 2001.

[3] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and
D. A. Moon. Common lisp object system specification x3j13. In SIGPLAN
Notices (Special Issue), 23, 1988.

[4] E. Cecchet and J. Marguerite. Jonas v2.4 tutorial. Technical report, Nice
University and INRIA, 2002.

[5] M. Dahm. Byte code engineering with the bcel api, 2001.

[6] R. M. DeLine, D. Klein, T. Ross, D. Toung, and G. Zelesnik. Abstraction
for software architecture and tools to support them. IEEE Trans. Software
Engineering, 21(4):314–335, April 1995.

[7] Moisan S. Dery A.M., Blay-Fornarino. Distributed access knowledge-based
system: Reified interaction service for trace and control. 3nd International
Symposium on Distributed Object Applications (DOA 2001), September 2001.

[8] Object Management Group. Notification service, omg document formal/00-06-
20. Technical report, June 2000.

[9] Sun Microsystem Inc. Enterprise javabeans specification. version 1.1, January
2000.

[10] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings European Confer-
ence on Object-Oriented Programming, volume 1241, pages 220–242. Springer-
Verlag, Berlin, Heidelberg, and New York, 1997.

178 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10

6 CONCLUSION

[11] Lamping J. Kiczales G. Aspectj homepage. Technical report, 2001.

[12] Nenad Medvidovic and Richard N. Taylor. A framework for classifying and
comparing architecture description languages. In M. Jazayeri and H. Schauer,
editors, Proceedings of the Sixth European Software Engineering Confer-
ence (ESEC/FSE 97), pages 60–76. Springer–Verlag, 1997.

[13] Anne-Marie Dery Michel Riveill Olivier Nano, Mireille Blay-Fornarino. An ab-
stract model for integrating and composing services in component platforms.
Seventh International Workshop on Component-Oriented Programming (in con-
junction with ECOOP’2002), Malaga, Spain, June 2002.

[14] R. Marvie R. and M-C. Pellignini. Modèles de composants, un état de l’art.
Numéro spécial de L’Objet, 8(3), 2002.

[15] P. Rapicault. Modèles et techniques pour spécifier, développer et utiliser un
framework : une approche par méta-modélisation. PhD thesis, Université de
Nice-Sophia Antipolis, May 2002.

[16] Jeffrey Richter. Applied Microsoft .Net Framework Programming. Microsoft
Press, 2002.

[17] Nanbor Wang, Douglas C. Schmidt, and Carlos O’Ryan. Overview of the corba
component model. Technical report, Whashington University in St Louis, 2000.

ABOUT THE AUTHORS

Mireille Blay-Fornarino is Assistant professor in CNRS/I3S lab-
oratory, University of Nice. She can be reached at blay@essi.fr. See
also http://rainbow.essi.fr/blay.

Anis Charfi Anis Charfi is a PhD student at the Darmstadt Uni-
versity of Technology. During his master thesis within the Rainbow
team he implemented the interaction model in .NET. He can be
reached at charfi@informatik.tu-darmstadt.de.

David Emsellem is research ingeneer in CNRS/I3S Laboratory,
University of Nice. He can be reached at emsellem@essi.fr.

VOL 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 179

mailto:blay@essi.fr
http://rainbow.essi.fr/blay
mailto:charfi@informatik.tu-darmstadt.de
mailto:emsellem@essi.fr

SOFTWARE INTERACTIONS

Anne-Marie Pinna-Dery is Assistant professor in CNRS/I3S lab-
oratory, University of Nice. She can be reached at pinna@essi.fr. See
also http://rainbow.essi.fr/pinna.

Michel Riveill is professor of computer science at the Université
de Nice - Sophia Antipolis. He heads the Rainbow project at the
Laboratoire I3S (http://www.i3s.unice.fr). Previously, he was suc-
cessively Professor of Computer Science at Université de Savoie, In-
stitut National Polytechnique de Grenoble since 1993. He can be
reached at riveill@essi.fr. See also http://rainbow.essi.fr/riveill.

180 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 10

mailto:pinna@essi.fr
http://rainbow.essi.fr/pinna
http://www.i3s.unice.fr
mailto:riveill@essi.fr
http://rainbow.essi.fr/riveill

