
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 10, November-December 2004

Cite this article as follows: Manuel Torres, José Santos: “A Language to Define External
Schemas in ODMG Databases”, in Journal of Object Technology, vol. 3, no. 10, November-
December 2004, pp. 181-192. http://www.jot.fm/issues/issue_2004_11/article5

A Language to Define External
Schemas in ODMG Databases

Manuel Torres, Departamento de Lenguajes y Computación, University of
Almeria, Spain
José Samos, Departamento de Lenguajes y Sistemas Informáticos, University
of Granada, Spain

Abstract
ODMG is the de facto standard for object-oriented databases (OODB) but does not
address the definition of external schemas. In order to provide such functionality, we
have developed an external schema definition methodology that allows the definition of
external schemas in ODMG databases. In this work, the language used by the schema
definer to specify the schema components (e.g. classes, interfaces, and so on) is
proposed. Besides, we describe the effect caused on the ODMG schema repository by
the definition of external schemas using the proposed language.

1 INTRODUCTION

ODMG standard [Catell00] addresses many OODBs issues. However, a well-known
functionality of databases as is the definition of external schemas is not addressed by the
standard. External schemas match with the higher level of the ANSI/SPARC architecture,
providing different views of the conceptual schema for particular users or group of users.

In order to provide ODMG with that functionality, we have developed an external
schema definition methodology for ODMG databases [Torres02]. This methodology
allows database administrators to define external schemas in a three-step process. First,
schema definers specify the classes to be included in external schemas; second, schemas
are closed so that, classes do not have references to classes that are not included in the
schema; third, schemas are generated obtaining inheritance relationships instead of
specifying them manually, avoiding the introduction of mistakes. Schema closure and
schema generation are studied in [Torres01b, Torres01a] respectively.

The methodology also introduces an extension of ODMG metadata [Torres03] to
give support for defining external schemas in ODMG introducing metadata for derived
classes (classes defined from existing ones customizing them, like relational views for
tables in relational databases), external schemas, and so on. Therefore, a mechanism

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_11/article5

A LANGUAGE TO DEFINE EXTERNAL SCHEMAS IN ODMG DATABASES

182 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

analogous to relational views must exist to define derived classes in OODBs. Many
proposals have been defined for such a purpose: virtual classes [Abiteboul91,
Rundensteiner92, Santos95], view classes [Bertino92, Guerrini97], and so on. However,
to the best of our knowledge, only two proposals [Garcia02, Roantree99] have been
defined in the ODMG framework because ODMG only has proposed the definition of
named queries for that purpose. In our methodology, derived classes are defined using the
mechanisms proposed in [Garcia02, Roantree99].

In this paper, a language to define external schemas in ODMG databases is
proposed. The language allows the specification of external schemas selecting the
components that make up an external schema. However, given that this specification
process interacts closely with the repository, a brief overview of the extension to ODMG
metadata introduced in [Torres03] is also described in this paper.

The remainder of this paper is structured as follows. Section 2 introduces our
methodology for defining external schemas in ODMG. This section also summarizes the
ODMG object model as well as an extension of ODMG metadata we have proposed to
define external schemas in ODMG. In Section 3 the external schema definition language
is proposed and for each operation, the effect on the extended ODMG repository is
described. Finally, Section 4 summarizes the conclusions and discusses the future work.

2 OUR EXTERNAL SCHEMA DEFINITON METHODOLOGY AT A
GLANCE

This section is divided in three subsections. First, the ODMG object model is summarized
in order to introduce the concepts we use in our methodology. Then, the external schema
definition methodology we have developed for ODMG databases is briefly introduced.
Finally, an overview about the extension of ODMG metadata we have proposed to
support the definition of external schemas in ODMG is put forward.

ODMG object model

In the ODMG standard, the basic modelling properties are the object and the literal.
Objects and literals can be categorized by their types. All elements of a type have a
common range of states (the same set of properties) and a common behaviour (the same
set of operations). The state of an object is defined by the values it carries for its set of
properties. These properties can be attributes (e.g. name, idEmployee) or relationships
with other objects (e.g. relationship between teachers and students). In ODMG, there are
several ways for specifying types: an interface defines only the abstract behaviour of
an object type; a literal defines only the abstract state of a literal type; a class
defines the abstract behaviour and the abstract state of an object type. Because of the
existence of two different object types (i.e. classes and interfaces) two sorts of inheritance
relationships may be defined in ODMG, known as ISA and EXTENDS. On the one hand,
ISA is a multiple inheritance relationship for behaviour inheritance between object types.

OUR EXTERNAL SCHEMA DEFINITON METHODOLOGY AT A GLANCE

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 183

On the other hand, EXTENDS is a simple inheritance relationship for state and behaviour
inheritance relationships between object types.

Overview of our external schema definition methodology for ODMG
databases

The methodology we have developed to define external schemas is based on the ODMG
3.0 object model [Catell00], and it explicitly considers the ODMG schema repository for
defining derived classes and external schemas, making it easier the reuse of previous
definitions. Derived classes are defined using the mechanisms proposed in [Roantree99,
Garcia02] because ODMG does not address the definition of derived classes. (In fact,
ODMG proposes the use of named queries, which do not offer the expected
functionalities). In our mechanism, derived classes and derived interfaces are integrated
within the repository by means of the derivation relationship [Bertino92] as described in
[Samos95]. This relationship is only used in the repository to relate derived classes to
their base classes (resp. interfaces), making easier the integration, and avoiding the
generation of intermediate unnecessary classes as in [Scholl91, Rundensteiner92].
However, end-user schemas do not use this kind of relationship in order to preserve the
object-oriented paradigm. Therefore, existing inheritance relationships between classes
and interfaces of the schema must be obtained when derived classes and derived
interfaces are included in external schemas. For such a purpose an external schema
generation algorithm [Torres01a] is used, which obtains the existing relationships
between derived classes and the remainder set of classes of the external schema. External
schema specification is carried out by means of the external schema definition language
proposed in this paper. The language specifies the classes and interfaces to be included in
the external schema. From this specification, we obtain a set of isolated classes and
interfaces. Then, a closure process is applied to this set so that no references to classes or
interfaces not included in the schema exist in the schema [Torres01b].

Figure 1 illustrates a repository for an ODMG database of people. People may be
clients or employees, and both groups have vehicles. In addition the adresses of people
are stored as objects. Information about temporaries is also stored. Temporaries and
employees have several common properties and behaviour, but different from the issues
common to employees and clients, that is modelled with the interface Worker. For the
sake of simplicity, attributes and operations are not depicted in the figure. Figure 1 also
illustrates an external schema (the surrounded area) which replaces the class Employee
with a derived class Employee’. Employee’ hides some instances and properties of
Employee. The figure shows that the process for integrating derived classes is easy, and
is related to connect derived classes with their base classes by means of derivation
relationships. Figure 1 also shows how the derivation relationship is used in the
repository but not in the external schema.

A LANGUAGE TO DEFINE EXTERNAL SCHEMAS IN ODMG DATABASES

184 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

belongsTohas

Employee

Employee’

Client Temporary

Worker

PeopleAddress Car

Class

Derived c lass

Interface

ISA

EXTENDS

One-To-Many

Fig. 1: Repository and external schema

Therefore, in our mechanism, unlike in [Bertino92, Kim95, Santos95, Guerrini97,
Garcia02], external schemas only use relationships that are allowed in ODMG. So that,
the object-oriented paradigm does not have to be extended, and unnecessary intermediate
classes have not to be generated. However, metadata for derived classes and derived
interfaces must be defined to define external schemas in ODMG databases.

An extension of ODMG metadata to support the definition of external
schemas

ODMG defines a Schema repository (metaschema) to store descriptive information about
the objects that make up the different schemas of the database, that is, metadata. Figure 2
illustrates an extract of the ODMG metaschema. This extract depicts metaclasses
involved in external schema definition. Instances of those metaclasses are the types,
classes, relationships, and so on, used in each schema definition. Main metaclasses of
Figure 2 are MetaObject, DefiningScope, Module, Interface, Class,
Attribute, Relationship, Operation and Exception. MetaObject represents
the elements of the schema that are stored in the repository. DefiningScope stores
instances that represent definition scopes of other metaobjects. Module includes an
instance for each defined module. Interface and Class contain all the class and
interface definitions, respectively. Analogously, Attribute and Relationship store
the definition of each attribute and relationship specified in a class or interface. Finally, in
Operation defined operations are stored, and Exception includes instances of all the
exceptions that can be raised by operations.

OUR EXTERNAL SCHEMA DEFINITON METHODOLOGY AT A GLANCE

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 185

Type

DefiningScope

Module

Interface

Class

Exception

Property

Attribute Relationship

Operation

MetaObject
Scope

traversal

inherits

derives

extender

extensions

definedIn

defines

operations

exceptions

result operations

type

properties

One
Many
ISA

Fig. 2: Extract of ODMG schema repository related to external schema definition

However, current ODMG metadata have some limitations to define external schemas. On
the one hand, ODMG specifications do not include metadata to define neither derived
classes nor derived interfaces. On the other hand, ISA and EXTENDS relationships are
established in a generic way, without taking into account the schema where they take
place in. Therefore, we have proposed an extension to ODMG metadata in order to give
support to the definition of external schemas [Torres03]. This extension is illustrated in
Figure 3 where new metaclasses and modified ones are depicted with a shaded name.

The extension introduces i) metaclasses for derived classes and derived interfaces
whose instances are the derived classes and derived interfaces included in user schemas;
ii) metaclasses to model the interfaces and classes of a module in the ODMG schema
repository, as well as the inheritance relationships by module (EXTENDS relationships are
stored in the repository as instances of ModuleClasses, indicating for each class its
superclass in each schema it is included in. Analogously, ISA relationships are stored as
instances of ModuleInterfaces).

A LANGUAGE TO DEFINE EXTERNAL SCHEMAS IN ODMG DATABASES

186 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

Type

DefiningScope

Module

GenericInterface

GenericClass

Exception

Property

Attribute Relationship

Operation

MetaObject
Scope

traversal

definedIn

defines

operations

exceptions

result operations

type

properties

Derived classClass

baseOf

baseOf

derivedFrom

derivedFrom

correspondsToSubtypes

correspondsToSupertypes

ModuleInterfaces

keys (inModule,

correspondsToSubtypes,

correspondosToSupertypes

inModule

inModule

subtypes

subclasses

ModuleClasses

keys (inModule,

correspondsToSubclasses)

correspondsToSubclasses

correspondsToSuperclasses

inherits

derives

extender

extensions

usedIn

includes

DerivedInterfaceInterface

Fig. 3: Extended ODMG schema repository to enable the definition of external schemas

Once we have introduced briefly the ODMG metadata extension to define external
schemas in ODMG databases, next section describes the language proposed in this paper
to define external schemas showing the effect produced in the extended repository when
language operations are processed.

3 EXTERNAL SCHEMA SPECIFICATION

The specification of an external schema deals with the selection of classes and interfaces
to be included in external schemas. In the proposed external schema definition
mechanism, schema specification is carried out in the repository, in order to reuse
existing classes or interfaces. The specification must allow the selection of schema
components, derived or not, returning the set of classes and interfaces that initially make
up an external schema. It is an initial set because that set may be modified later in schema

EXTERNAL SCHEMA SPECIFICATION

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 187

closure [Torres01b] and schema generation [Torres01a] steps. The specification process
updates the repository adding or modifying the corresponding instances in the related
metaclasses (e.g. some metaclasses must be updated to reflect which classes and
interfaces make up the defined schema). So, the effect caused in the repository by each
schema specification operation of the proposed language must be addressed, illustrating
how instances are added, modified o deleted from their metaclasses. The proposed
language allows the schema definer to create new external schemas from scratch, or to
modify and delete existing external schemas.

External schema definition language

Next, the EBNF syntax of the proposed external schema definition language is described.
This language consists of schema-level operations and component-level (classes and
interfaces) operations. Schema-level operations allow defining, modifying or deleting
schemas, whereas component-level operations allow adding or deleting components from
the schemas.
<define_es> ::= <create_es>; | <modify_es>; | <delete_es>;

<create_es> ::= DEFINE ES <name> {

 [<added_component>] }

<modify_es> ::= MODIFY ES <name> {
 [<added_component>]

[<deleted_component>] }

<added_component> ::= <component_addition> |
 <component_addition> <added_component>

<deleted_component > ::= <component_deletion> |
 <component_deletion> <deleted_component>

<component_addition> ::= ADD CLASS <name>; |
 ADD DERIVED CLASS <name>; |
 ADD INTERFACE <name>; |
 ADD DERIVED INTERFACE <name>; |
 ADD SUBSCHEMA ROOTED BY <class_name> IN SCHEMA <schema_name>; |
 ADD ES <name>;

<component_deletion> ::= REMOVE CLASS <name> [AND NOT USED]; |
 REMOVE DERIVED CLASS <name> [AND NOT USED]; |
 REMOVE INTERFACE <name> [AND NOT USED]; |
 REMOVE DERIVED INTERFACE <name> [AND NOT USED]; |

REMOVE SUBSCHEMA ROOTED BY <name> [AND NOT USED]; |
 REMOVE ES <name>;

<delete_es> ::= UNDEFINE ES <name> [AND NOT USED]

In order to illustrate the operations of this language, we will use an example about an
external schema that hides all the data related to employees from the people database.

A LANGUAGE TO DEFINE EXTERNAL SCHEMAS IN ODMG DATABASES

188 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

Figure 4.a illustrates the ODMG schema of the database. Figure 4.b shows the definition
of an external schema, which hides data related to employees using the proposed
language. The definition of this schema in the proposed language specifies the schema
name in the schema definition operation (DEFINE ES) and class names in the class
addition operations (ADD CLASS).

belongsTo

has

EmployeeClient Temporary

Worker

PeopleAddress Car

Class

Interface

ISA

EXTENDS

Aggregation

One-To-Many

DEFINE ES example {
 ADD CLASS People;
 ADD CLASS Address;
 ADD CLASS Car;
 ADD CLASS Manufacturer;
 ADD CLASS Client;
};

(a) (b)

Fig. 4: a) People database; b) External schema definition

Schema-level operations

In this subsection, the three schema-level operations DEFINE ES, MODIFY ES and
UNDEFINE ES are described, which allow creating, modifying and deleting external
schemas, respectively.

Schema definition. The DEFINE ES <name> operation creates a new external
schema identified as name provided that in the repository does not exist a schema with
that name. The definition of an external schema specifies by means of component-level
operations the classes and interfaces that the schema definer wants to include in the
schema. The result of this operation is the creation of a new instance in the metaclass
Module. Therefore, regarding to the previous external schema, a new instance example
in the metaclass Module is created.

Schema modification. The MODIFY ES <name> operation is applied to existing
defined external schemas, and allows the incorporation of existing components and the
deletion of previously added components. In order to modify a schema named as name, a
schema with this name must exist in the repository, that is, an instance corresponding to
name must exist in the metaclass Module. If the schema definer wants to add a
component to the schema, such a component must be stored in the repository, so that an
instance corresponding to that component must be included in the metaclass
MetaObject. The includes-definedIn relationship defined between
DefiningScope and MetaObject is used to avoid the inclusion of a component that
already exists in that schema. The same relationship is used to avoid the deletion of a
schema component that does not exist in that schema.

Schema elimination. The UNDEFINE ES <name> [AND NOT USED] operation
deletes from the repository an external schema named as name. Optionally, if parameter
AND NOT USED is specified, each class defined for the schema name that is not being
used in other schemas is also deleted. This is an optional feature because the schema

EXTERNAL SCHEMA SPECIFICATION

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 189

definer may want to preserve derived classes that are not used in other schemas as
shorthand in queries [Guerrini97] or to be included in new external schemas.

3.3. Component-level operations

The component-level operations allow the addition of classes or interfaces to new
schemas or existing ones, and allow the deletion of classes or interfaces from existing
schemas. After running these operations, the usedIn-includes relationship must be
updated adding or deleting the added or removed components, respectively.

Class addition. The ADD CLASS <name> operation adds the class name to a new
schema or to an existing one that is being modified. Such a class must be stored in the
repository, and after running this operation, the class name belongs to the set of
components of the schema that is being defined.

Derived class addition. The ADD DERIVED CLASS <name> operation is
analogous to the ADD CLASS <name> but for derived classes.

Interface or derived interface addition. The operations related to interfaces ADD
INTERFACE <name> and ADD DERIVED INTERFACE <name> are similar to the
corresponding ones for classes, except that they deal with interfaces.

Subschema addition. The ADD SUBSCHEMA ROOTED BY <class_name> in
SCHEMA <schema_name> operation adds to the schema that is being created or
modified each class stored in the repository as direct or indirect subclass of the class
class_name in the schema schema_name. The schema schema_name must be
specified because the class class_name may be included in several schemas, and then,
its set of subclasses may change from one schema to another. In order to include in the
schema the subschema rooted by class_name in schema_name, class_name must be
included in schema_name, and this fact may be found analysing the usedIn-includes
relationship.

Schema addition. The ADD ES <name> operation adds to the external schema that
is being defined each class of the schema name stored in the repository.

Class and derived class deletion. The REMOVE CLASS <name> [AND NOT
USED] and REMOVE DERIVED CLASS <name> [AND NOT USED] operations delete
the class name from the schema that is being modified if such a class is included in that
schema. If the option AND NOT USED is specified, the class name is also deleted from the
repository if it is not included in another schema.

Interface and derived interface deletion. The operations related to interfaces,
REMOVE INTERFACE <name> [AND NOT USED] and REMOVE DERIVED
INTERFACE <name> [AND NOT USED], are similar to the corresponding ones for
classes, except they are related to interfaces.

Subschema deletion. The REMOVE SUBSCHEMA ROOTED BY <name> [AND NOT
USED] operation deletes from the external schema the subschema whose root is name,
that is, deletes from the schema all the subclasses of name. However, this operation is
executed if the class name exists in the schema that is being modified. This operation is

A LANGUAGE TO DEFINE EXTERNAL SCHEMAS IN ODMG DATABASES

190 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

equivalent to execute as many REMOVE CLASS as subclasses has the class name in the
schema that is being modified. Similarly, like happens with previous operations, if the
option AND NOT USED is specified, deleted classes are also deleted from the repository if
neither are used by other classes nor are included in other schemas.

Deletion of schemas included in a schema. Finally, REMOVE ES <name> deletes
the schema name from the external schema that is being modified, deleting therefore,
each class and interface included in the schema name.

Effect of schema definition in the repository

Figure 5 illustrates the effect that produces the definition of the previous external schema
in the repository. In addition, the figure also illustrates the definition of the conceptual
schema depicted before (Figure 4.a). It can be seen that Module has two instances: one
for the conceptual schema, and another for the external schema of the example. Besides, a
new defining scope for the external schema with their components, as well as instances
corresponding to EXTENDS relationships has also been created. In [Torres01a] the schema
generation algorithm for obtaining the EXTENDS relationship existing between Client
and People in the external schema is described. It can also be seen that the external
schema includes all the classes specified by the schema definer but no class is defined in
such a schema.

Fig. 5: Repository once defined the external schema

CONCLUSIONS AND FUTURE WORK

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 191

4 CONCLUSIONS AND FUTURE WORK

In this paper, an external schema definition language for ODMG databases, and its effect
in the schema repository have been put forward. The language allows schema definers to
create new schemas as well as to update and delete existing ones. Schema specification
selects which classes, interfaces, or even schemas, are included in external schemas. The
specification is based on the information stored in the repository. After defining schemas,
repository information is updated to reflect the changes. The effect on the ODMG schema
repository extended for enabling the definition of external schemas of each language
operation has been also described. The proposed language is part of an external schema
definition methodology that we have developed for ODMG databases. Currently we are
working in an extension of this methodology for schema evolution in ODMG databases.

ACKNOWLEDGEMENTS

This work has been supported by the Spanish CICYT (project TIC 2000-1723-C02-02).

REFERENCES

[Abiteboul91] Abiteboul, S., Bonner, A. 'Object and Views'. In Proc. ACM
SIGMOD International Conference on Management of Data. pp.
238-247. 1991

[Bertino92] E. Bertino. “A View Mechanism for Object-Oriented Databases” In
Proc. of the 3rd EDBT. pp. 136-151. 1992

[Catell00] R.G.G. Catell. The Object Database Standard: ODMG 3.0. Morgan
Kaufmann. 2000

[Garcia02] J.García Molina, M.J. Ortín Ibáñez, G. García Mateos. “Extending
the ODMG standard with views” In Information and Softare
Technology. Vol 44. pp. 161-173. 2002

[Guerrini97] G. Guerrini, E. Bertino, B. Catania, J. Garcia-Molina. “A Formal
View of Object-Oriented Database Systems” TAPOS. Vol. 3(3). pp.
157-183. 1997

[Kim95] W. Kim, W. Kelley, “On View Support in Object Oriented Database
Systems”. In Modern Database Systems. pp. 108-129. 1995

A LANGUAGE TO DEFINE EXTERNAL SCHEMAS IN ODMG DATABASES

192 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

[Roantree99] M. Roantree, J.B. Kennedy, P.J. Barclay. “Providing Views and
Closure for the Object Data Management Group Object Model” In
Information and Software Technology. Vol. 41. pp. 1037-1044. 1999

[Rundensteiner92] E.A. Rundensteiner. “Multiview: A Methodology for Supporting
Multiple Views in Object-Oriented Databases” In Proc. of the 18th
VLDB. pp. 187-198. 1992

[Samos95] J. Samos. “Definition of External Schemas in Object Oriented
Databases” In Proc. of OOIS 1995. pp. 154-166. 1995

[Santos95] C.S. Santos, “Design and Implementation of Object-Oriented
Views”, In Proc. of 6th DEXA. pp. 91-102. 1995

[Scholl91] M.H. Scholl, C. Laasch, M. Tresch. “Updatable Views in Object-
Oriented Databases”, In Proc. of the 2nd DOOD. pp. 189-207. 1991

[Torres01a] M. Torres, J. Samos “Generation of External Schemas in ODMG
Databases” In Proc. of IDEAS 2001. pp. 89-98. 2001.

[Torres01b] M. Torres, J. Samos “Closed Schemas in Object-Oriented
Databases” In Proc. of DEXA 2001. pp. 826-835. 2001.

[Torres02] M. Torres. Defining external schemas in ODMG databases. PhD
Thesis. University of Almeria, Spain (2002)

[Torres03] M. Torres, J. Samos. Extending ODMG Metadata to Define external
Schemas. In Journal of Object Technology, vol. 2, no. 2, March-
April 2003, pp. 183-202. http://www.jot.fm/issues/issue_2003_03/
article5

About the authors
Manuel Torres is assistant professor at the Departamento de Lenguajes y Computación
of the University of Almeria. His interests include object-oriented databases, especially
view mechanisms and their application to schema evolution. He can be reached at
mtorres@ual.es.

José Samos is associate proffesor teacher at the Departamento de Lenguajes y Sistemas
Informáticos of the University of Granada. He heads a research group about object-
oriented databases and data warehousing. He can be reached at jsamos@ugr.es.

http://www.jot.fm/issues/issue_2003_03/article5
http://www.jot.fm/issues/issue_2003_03/article5
mailto:mtorres@ual.es
mailto:jsamos@ugr.es

