
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 10, November-December 2004

Cite this column as follows: Anthony J.H. Simons: “The Theory of Classification, Part 15: Mixins
and the Superclass Interface”, in Journal of Object Technology, vol. 3, no. 10, November-
December 2004, pp. 7-18. http://www.jot.fm/issues/issue_2004_11/column1

The Theory of Classification
Part 15: Mixins and the Superclass
Interface

Anthony J H Simons, Department of Computer Science, University of
Sheffield, U.K.

1 INTRODUCTION

This is the fifteenth article in a regular series on object-oriented type theory for non-
specialists. Earlier articles have built up λ-calculus models of objects [1], classes [2],
inheritance [3, 4] and generic template types [5]. These features are common to a number
of popular object-oriented languages, such as C++, Eiffel and Java (which now has
templates in the latest version). In this article, we look at a less well known, but once
popular construct in object-oriented languages called a mixin.

Mixins were first proposed in the language Flavors [7]. A mixin is best described as
a freestanding component extension, something that is intended to be added onto another
class using the inheritance mechanism. A mixin can be combined with many different
base classes, to yield different extended classes which contain the combined base and
mixin features. Some mixins provide orthogonal functionality that can be added to any
class. Other mixins expect the class with which they are combined to provide certain
operations, because the mixin’s own methods depend on them. In other words, a mixin
has a superclass interface, describing the kind of class from which it expects to inherit.
By examining mixins formally, we can learn more about the type constraints on
inheritance.

2 FLAVORS AND MIXINS

Flavors [6, 7] was an important early object-oriented language, developed at MIT in the
late 1970s. It was the first to introduce multiple inheritance, the idea that a child class
may have more than one parent class and combine all the inherited features in some
principled way. As legend has it, this idea was inspired by the presence of several famous
ice-cream parlours in the vicinity of MIT. When visiting these emporia, you could choose

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_11/column1

THE THEORY OF CLASSIFICATION, PART 15: MIXINS AND THE SUPERCLASS INTERFACE

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

your basic vanilla ice-cream and then mix in one of several other flavours1, such as
pistachio or strawberry. By analogy, the root class in the new language was called
“Vanilla Flavor” and other classes were extensions of this. The idea of a “mixin” was
inspired by the extra sauces and toppings you could add to your ice-cream. A mixin is not
itself a whole class, but rather a package of optional features that you can choose to add
to a class. It is “mixed in” in the sense that, through the mechanism of inheritance, the
mixin’s features may become interwoven with the features of the class with which it is
combined. Mixins were the first attempt to provide flexible solutions to some of the same
problems that are currently addressed using aspects in aspect-oriented programming,
which are woven together in a similar way.

A simple example of a mixin might be an extension that adds a coordinate position
to any other object. The classes in a library may exist without reference to any coordinate
position, for example, a Truck class might describe the intrinsic properties of trucks, and
might be just one of many Vehicle subclasses. Then, for a given simulation application, it
is desired that some of these classes be locatable within a coordinate system. In Flavors
you could create the extended types quickly by combining the canonical types with a
Locatable mixin, to yield locatable versions of each class:

(defflavor simulation-truck () (truck locatable-mixin))

The syntax of Flavors may not be familiar to many readers. The language was built on
top of Lisp. To construct a class, you called the Lisp function defflavor and provided it
with a list of attributes (methods were defined separately). If this class inherited from
other classes, they were supplied in a second list. The syntax looked something like:

(defflavor class-name (var-1, var-2, … var-n)
 (super-1, super-2, … super-n))

where the various super classes are the names of other classes to be “mixed in” with the
new class. There was no real syntactic distinction between a class and a mixin, merely a
naming convention, whereby mixin names always ended in “-mixin”. Folding in a
number of mixins required the linearisation of their properties – in fact, this was no
different from the general problem of multiple inheritance. In Flavors, the inheritance
algorithm combined features from the superclasses in left-to-right order, merging
identically-named attributes, provided that all the recursive orderings declared by the
superclasses could be preserved [7].

1 With apologies to US readers, I and my spell-checker prefer British spelling, but proper names like
“Flavors” are allowed to remain in their proprietary form!

TEMPLATES AND ABSTRACT SUBCLASSES

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 9

3 TEMPLATES AND ABSTRACT SUBCLASSES

To illustrate the idea of mixins in another way, we may use the template mechanism in
C++ to define “abstract subclasses”. The Locatable mixin described above might be
simulated in C++ as the following “abstract subclass”:

template <class Any>
class Locatable : public Any {
public:
 Locatable();
 void moveTo(int x, int y);
 Point position() const;
private:
 Point point; // my position
};

template <class Any>
Locatable::Locatable() : Any(), point(0, 0) {}

template <class Any>
void LocatableMixin::moveTo(int x, int y) {
 point.moveTo(x, y);
}

template <class Any>
Point Locatable::position() const {
 return point;
}

Listing 1: C++ definition of an “abstract subclass”

Locatable is defined like a C++ subclass, but inherits from a type parameter Any, which
has the effect of delaying the combination of local features with the (as yet unknown)
inherited features from some eventual base class. Locatable versions of the various
Vehicle subclasses may be constructed on the fly, in the style:

Locatable<Car> car1;
Locatable<Bus> bus1;

at which point the Any parameter is bound to the specific types Car and Bus,
respectively. Any C++ class which inherits from a type parameter is an “abstract
subclass”. The parameter helps to underline how it expects to be combined with some
unknown base class.

4 MIXINS VERSUS ABSTRACT SUBCLASSES

The difference between this “abstract subclass” approach and the earlier “mixin”
approach is that Flavors defines each mixin component independently, as a freestanding
extension. Combining mixins is more like multiple inheritance in C++ (with virtual base

THE THEORY OF CLASSIFICATION, PART 15: MIXINS AND THE SUPERCLASS INTERFACE

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

classes), in which the programmer derives a new subclass which “mixes” all the
components. The abstract subclass approach is more like a wrapper function, which
expects to be applied to some base object denoting super, and then combines the
additional fields with the base fields yielding the subtype directly.

Bracha and Cook described a mixin as “an abstract subclass” or “a subclass
definition that may be applied to different superclasses” [8]. Here, we would prefer a
slightly more careful use of the term “mixin”, since we want to draw a formal difference
between a subclass and a mixin, which we can illustrate using the model of inheritance
from earlier articles [3, 4]. Recall that inheritance is modelled as the combination of
records using the ⊕ union with override operator:

derived = base ⊕ extra
In this, base is the parent object and derived is the subclass object, constructed by
combining base with a record of extra fields. It is clear that derived is the result of the
combination, a whole subclass object, rather than just an extension. On the other hand,
the extra record of additional fields is exactly what we mean by a mixin. The notion of an
abstract subclass should therefore be modelled as a function:

absub = λb.(b ⊕ extra)
derived = absub(base)

and this illustrates the difference : the abstract subclass is a function which includes the
inheritance operator, whereas the mixin is simply a record of extra fields.

5 MIXINS AS EXTENSION TYPES

Most object-oriented languages don’t encourage the specification of mixins in isolation,
but instead, records of extra fields are typically declared within the scope of a complete
subclass definition (like the example in section 3 above). The reasons for this have to do
with self-reference and the typing of inheritance. When a conventional object subtype is
defined (in the style of Java or C++), references to the self-type in the extension are
equivalent to the eventual subtype [2], rather than the type of the extension. We can
illustrate this with a Point subtype that extends an Object base type:

Object = µσ.{identity : → σ}
 ⇒ {identity : → Object}, after unrolling.

Point = µσ.(Object ∪ {x :→ Integer, y :→ Integer, equal : σ → Boolean})
 ⇒ {identity : → Object, x :→ Integer, y :→ Integer,
 equal : Point → Boolean}, after unrolling

Note that the extension record has an equal method accepting the self-type σ, which after
unrolling the recursion, is equivalent to Point. This is because σ is recursively bound

MIXINS AS EXTENSION TYPES

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 11

outside the union of base fields and extra fields, to the result of the union. The self-type in
the extension record is therefore not independent, but refers to the subtype.

If Java or C++ allowed the programmer to declare mixins as freestanding records of
extra fields to be added to any class, these would have an independent self-type of their
own:

PointMixin = µσ.{x :→ Integer, y :→ Integer, equal : σ → Boolean}
 ⇒ {x :→ Integer, y :→ Integer,
 equal : PointMixin → Boolean}, after unrolling

Point = Object ∪ PointMixin
 ⇒ {identity : → Object, x :→ Integer, y :→ Integer,
 equal : PointMixin → Boolean}, after unrolling

Note how the self-type σ of the PointMixin is bound independently, to refer recursively
to the PointMixin type. After combination with the Object type, this yields a Point type in
which self-type reference is entirely schizophrenic [3]: the inherited self-type is Object,
and the extension self-type is PointMixin, but nowhere is the self-type equivalent to the
Point type! So, for this reason, languages based on subtyping would have trouble dealing
with self-reference if they wished to admit freestanding types as mixins.

6 MIXINS AS EXTENSION GENERATORS

Flavors is a language, like Smalltalk and Eiffel, in which self is rebound during
inheritance to refer to the subclass instance. Accordingly, the self-type evolves during
inheritance to refer to the subclass’s type. In earlier articles, we found that type
generators could be used to describe this kind of flexibility in the self-type [2, 3]. The
type of a mixin can be expressed using a type generator, instead of a fixed type:

GenPointMixin = λσ.{x :→ Integer, y :→ Integer, equal : σ → Boolean}
In this, the self-type σ is a parameter introduced by λ, and is not yet bound to any specific
type. Given a similar generator for the Object type, we can construct a generator for the
Point type, by unifying the self-types of the base and mixin generators in the
combination:

GenObject = λσ.{identity : → σ}

GenPoint = λτ.(GenObject[τ] ∪ GenPointMixin[τ])
 ⇒ λτ.{identity : → τ, x :→ Integer, y :→ Integer,
 equal : τ → Boolean}

THE THEORY OF CLASSIFICATION, PART 15: MIXINS AND THE SUPERCLASS INTERFACE

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

Point = (Y GenPoint)
 ⇒ {identity : → Point, x :→ Integer, y :→ Integer,
 equal : Point → Boolean}, after unrolling.

Here, the subclass generator GenPoint introduces a new self-type τ and propagates this
into both the base generator GenObject and the extension generator GenPointMixin (by
applying them to the new type), so creating two record types which refer to the same self-
type τ. After the union of fields, τ refers homogeneously to the self-type. After fixing the
recursion, τ is bound to the desired Point type.

7 BOUND AND FREE MIXINS

We characterise mixins as either bound or free, to denote whether or not they depend on
their superclass. The GenPointMixin type generator above was defined as though it were
the type of a free mixin, capable of being combined with any other object, since its
methods were assumed not to interact with any superclass behaviour. To examine this in
more detail, we can build an object generator to represent the implementation of the
mixin [4]:

freePointMixin = λself.{ x a 2, y a 3,
 equal a λp.(self.x = p.x ∧ self.y = p.y)}

The body of the implementation has no dependency on any super-object, illustrating the
independence of the mixin. One possible weakness in this design is that the equal method
can only compare the local x and y values. If this were “mixed in” with some other base
object with an equal method, the inherited method would be overridden by the mixin’s
version.

To illustrate this, we introduce the object generator genSquare, representing a
geometric square with its own side and equal methods:

genSquare = λself.{side a 5, equal a λs.(self.side = s.side)}
We may seek to combine the genSquare and freePointMixin generators by inheritance;
the resulting generator genLocSquare represents a locatable square:

genLocSquare = λself.(genSquare(self) ⊕ freePointMixin(self))

= λself.({side a 5, equal a λs.(self.side = s.side)} ⊕
 {x a 2, y a 3, equal a λp.(self.x = p.x ∧ self.y = p.y)})

= λself.{side a 5, x a 2, y a 3,
 equal a λp.(self.x = p.x ∧ self.y = p.y)}

Although two versions of equal are present before record combination, the operator ⊕
prefers fields from the right-hand side, replacing any identically-named fields on the left.

BOUND AND FREE MIXINS

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 13

The inherited version of equal is therefore overridden and the version of equal obtained
in the result is insufficient, because we can no longer compare the sides of squares.

Since equal is a common method and is likely to exist in most classes, we would
prefer our mixin to adapt the equal method of its base class, rather than replace it
wholesale. In an earlier article [9] we showed how inherited methods could be adapted
by method combination, in which a redefined version of the method calls the original
version through the super variable. To make inherited methods available to a mixin, we
have to supply it with a variable standing for the super-object. The following is an object
generator for a bound mixin, whose implementation depends on both self and super
variables. The super variable will be bound later to a superclass instance:

boundPointMixin = λself. λsuper.{x a 2, y a 3, equal a λp.(super.equal(p) ∧
 self.x = p.x ∧ self.y = p.y)}

The dependency on the super-object is evident in the revised body of the equal method,
which calls super.equal(p) before comparing the respective x and y values. Note how a
bound mixin generator must always have an extra argument, λsuper, to bind to the
eventual base object.

Once again, we combine the genSquare generator with the boundPointMixin
generator to obtain a generator for the locatable square, genLocSquare. Note in passing
how self is reintroduced outside of the record combination, and how both generators
accept this new value of self, to ensure uniform self-reference. In addition, the
boundPointMixin receives an actual argument genSquare(self), representing the value of
super; in fact this same expression denotes the base object on the left-hand side of record
combination:

genLocSquare = λself.(genSquare(self) ⊕
 boundPointMixin(self, genSquare(self)))

= λself.({side a 5, equal a λs.(self.side = s.side)} ⊕ {x a 2, y a 3,
 equal a λp.((λs.(self.side = s.side) p) ∧ self.x = p.x ∧ self.y = p.y)})

= λself.{side a 5, x a 2, y a 3,
 equal a λp.(self.side = p.side ∧ self.x = p.x ∧ self.y = p.y)}

After simplification, the result has exactly the desired implementation of a generator for a
locatable square object. The super.equal(p) expression is expanded during this
simplification to yield the body of the inherited method, which is combined using logical
and with the further parts of the redefined equal method.

8 THE SUPERCLASS INTERFACE

We now want to add types to the bound mixin implementation described above. In this,
we shall need to provide polymorphic types for self and for super. The typing of self is

THE THEORY OF CLASSIFICATION, PART 15: MIXINS AND THE SUPERCLASS INTERFACE

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

relatively straightforward, but the typing of super is shown below to be much more
difficult. It is particularly desirable to try to establish the type of super, since this captures
exactly the superclass interface of a mixin, describing the type of object with which it
expects to be combined. However, the type of super is made more complex by the fact
that the eventual self- and super-types must stand in a subtyping relationship. So,
although these two types would appear on the surface to be independent, they are in fact
related. Other treatments of typed mixins [11] have expressed this by introducing the
super-type first, then a dependent self-type. Our novel approach reverses the order of
dependency, introducing the self-type first, then a dependent super-type.

Previously, we showed how the type of self in an object generator could be given by
an F-bound constructed from the corresponding type generator [10]. All combinations
with the boundPointMixin form a class with at least the x, y and equal methods in their
interface. The type generator GenPointMixin (from section 6) already describes this
interface:

GenPointMixin = λσ.{x :→ Integer, y :→ Integer, equal : σ → Boolean}
such that we may give a polymorphic type σ for self ranging over all those types with (at
least) these methods:

∀(σ <: GenPointMixin[σ]) . self : σ
What is unusual about this is that it does not depend on the type of super in any way. We
would normally have expected to use a type generator of two arguments, σ and τ,
reflecting the two-argument structure of the object generator. The reason why we can
ignore the super-type τ is because it never appears in the public interface of the class – it
is irrelevant! This allows us to introduce the self-type σ independently, using the simpler
type generator.

The polymorphic type τ of super may now be expressed as a range of types within
certain bounds. The lower bound is the type σ of self (because self : σ must eventually
stand in a subtyping relationship with super : τ), which gives rise to the lower bound
condition:

∀(σ <: GenPointMixin[σ]) . ∀(τ | σ <: τ) . super : τ
The upper bound is expressed in terms of a minimum type, determined by examining the
methods that are invoked on the super variable, then constructing an interface which
supports at least these methods. We can only do this by internal inspection of the object
generator implementation. In the example above, the boundPointMixin expects the super
object to have at least an equal method. Accordingly, we may construct a type-generator
representing the interface of all objects possessing (just) the equal method:

GenEqual = λτ.{equal : τ → Boolean}
and from this create the upper bound condition:

THE SUPERCLASS INTERFACE

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 15

∀(σ <: GenPointMixin[σ]) . ∀(τ <: GenEqual[σ]) . super : τ
What is different here is that the constraint is not expressed as: τ <: GenEqual[τ], but
rather in terms of the self-type σ. This is because, at the time the super-type is bound, all
generator-types will be adapted to the current self-type σ. Combining the lower and upper
bound constraints on the super-type yields the range:

∀(σ <: GenPointMixin[σ]) . ∀(τ | σ <: τ <: GenEqual[σ]) . super : τ
This, finally, is the type of the superclass interface! It is quite complicated, but intuitively
expresses the idea that the eventual type of super is a supertype of self and a subtype of
the interface providing the equal method.

9 TYPED MIXIN COMBINATION

We may now observe the interplay of types when we combine a typed version of the
boundPointMixin with a typed version of the canonical square. First, we attach types to
the mixin, as determined above:

boundPointMixin : ∀(σ <: GenPointMixin[σ]) .
 ∀(τ | σ <: τ <: GenEqual[σ]) . σ → τ → GenPointMixin[σ]
= λ(σ <: GenPointMixin[σ]). λ(τ | σ <: τ <: GenEqual[σ]).
 λ(self : σ). λ(super : τ).{x a 2, y a 3,
 equal a λ(p : σ).(super.equal(p) ∧
 self.x = p.x ∧ self.y = p.y)}

The typed version of the canonical square is given in the usual way by:

GenSquare = λσ.{side : → Integer, equal : σ → Boolean}

genSquare : ∀(σ <: GenSquare[σ]). σ → GenSquare[σ]
= λ(σ <: GenSquare[σ]). λ(self : σ).
 {side a 5, equal a λ(s : σ).(self.side = s.side)}

The typed locatable square is to be derived by adding the point mixin to the canonical
square. First, we establish the resulting type generator, GenLocSquare:

GenLocSquare = λσ. (GenSquare[σ] ∪ GenPointMixin[σ])

= λσ.{ side : → Integer, x : → Integer, y : → Integer, equal : σ → Boolean }
The typed locatable square is then given by the “mixed in” combination:

genLocSquare : ∀(σ <: GenLocSquare[σ]). σ → GenLocSquare[σ]
= λ(σ <: GenLocSquare[σ]). λ(self : σ) .
 (genSquare(self) ⊕ boundPointMixin(self, genSquare(self)))

THE THEORY OF CLASSIFICATION, PART 15: MIXINS AND THE SUPERCLASS INTERFACE

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

= λ(σ <: GenLocSquare[σ]). λ(self : σ) .{side a 5, x a 2, y a 3,
 equal a λ(p : σ).(self.side = p.side ∧ self.x = p.x ∧ self.y = p.y)}

The result is a typed object generator for a locatable square, exactly as desired.
We now want to check whether the type constraints of the typed mixin generator

were properly observed. In the combination, the mixin generator was called with:
• the new value of self, having the reintroduced self-type: σ < GenLocSquare[σ]
• the value of super, genSquare(self), having the adapted type: GenSquare[σ]

The self-type σ was expected to satisfy: ∀(σ <: GenPointMixin[σ]). This holds by the
rule of classification [3]. Since the two generators stand in a pointwise subtyping
relationship:

∀τ . GenLocSquare[τ] <: GenPointMixin[τ]
then if σ <: GenLocSquare[σ] then it follows that σ <: GenPointMixin[σ].

The super-type GenSquare[σ] was expected to satisfy: ∀(τ | σ <: τ <: GenEqual[σ]).
We can check this by the substitution of {GenSquare[σ] / τ} to see if both the lower and
upper bound conditions hold. Firstly, we examine the lower bound:

∀(σ < GenLocSquare[σ]) . σ <: GenSquare[σ]
This holds, because the two generators stand in a pointwise subtyping relationship:

∀τ . GenLocSquare[τ] <: GenSquare[τ]
therefore if σ <: GenLocSquare[σ] then it follows that σ <: GenSquare[σ]. Secondly, we
examine the upper bound:

∀(σ < GenLocSquare[σ]) . GenSquare[σ] <: GenEqual[σ]
Again, we can show that the two generators stand in a pointwise subtyping relationship
for all possible types τ:

∀τ . GenSquare[τ] <: GenEqual[τ]
therefore they still stand in this relationship for some subset of types σ ⊆ τ. So, we have
demonstrated that mixins can be typed and applied to base classes which properly satisfy
the superclass interface.

10 CONCLUSION

We started this article by presenting the concept of a mixin. A mixin is a freestanding
record of extra fields, intended to be combined with any other object. In some sense,
mixins are the primitive building blocks in languages with inheritance-like mechanisms.
Bracha and Cook revived interest in mixins when they demonstrated how the models of
inheritance in languages as diverse as Smalltalk, Beta and CLOS could all be mapped

CONCLUSION

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 17

onto a simpler model based on the composition of mixins [8]. However, the typing they
gave was based on simple first-order types, resulting in fragmented self-types after record
combination. This is why mixins don’t receive so much attention in Java and C++, and
one reason why multiple inheritance is less useful in languages like C++ which are based
on simple subtyping.

Mixins are much more interesting in those languages which modify self-reference
and the self-type during inheritance. They then have some of the power of aspects in
aspect-oriented programming, since they can weave in extra attributes and methods and
even adapt the course of an inherited method through method combination. However, the
formal characterisation of mixins was previously thought difficult. In particular, it was
thought that the type of the superclass interface was impossible to express without going
to higher order logics. This is because super apparently ranges over a set of classes, so
quantification should have to range over sets of generators (type functions), rather than
just over sets of simple types. In earlier work by Harris and others [11], the higher-order
type of super was introduced first, and then the type of self, which depended on the type
of super. Here, we showed how it is possible to provide a second-order type for super, by
reversing the order in which the self-type and super-type are introduced. This provided an
elegant typing for mixins, which was checked using an example of typed mixin
combination.

REFERENCES

[1] A J H Simons: “The theory of classification, part 3: Object encodings and
recursion”, in Journal of Object Technology, vol. 1, no. 4, September-October
2002, pp. 49-57. http://www.jot.fm/issues/issue_2002_09/column4

[2] A J H Simons: “The theory of classification, part 7: A class is a type family”,
in Journal of Object Technology, vol. 2, no. 3, May-June 2003, pp. 13-22.
http://www.jot.fm/issues/issue_2003_05/column2

[3] A J H Simons: “The theory of classification, part 8: Classification and
inheritance”, in Journal of Object Technology, vol. 2, no. 4, July-August
2003, pp. 55-64. http://www.jot.fm/issues/issue_2003_07/column4

[4] A J H Simons: :The theory of classification, part 9: Inheritance and self-
reference”, in Journal of Object Technology, vol. 2, no. 6, November-
December 2003, pp. 25-34. http://www.jot.fm/issues/issue_2003_11/column2

[5] A J H Simons: “The theory of classification, part 13: Template Classes and
Genericity”, in Journal of Object Technology, vol. 3, no. 7, July-August
2004, pp. 15-25. http://www.jot.fm/issues/issue_2004_07/column2

[6] H Cannon, Flavors, Technical Report (Cambridge: MIT AI Laboratory,
1980).

http://www.jot.fm/issues/issue_2002_09/column4
http://www.jot.fm/issues/issue_2003_05/column2
http://www.jot.fm/issues/issue_2003_07/column4
http://www.jot.fm/issues/issue_2003_11/column2
http://www.jot.fm/issues/issue_2004_07/column2

THE THEORY OF CLASSIFICATION, PART 15: MIXINS AND THE SUPERCLASS INTERFACE

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

[7] D A Moon, “Object-oriented programming with Flavors”, Proc. 1st ACM
Conf. Object-Oriented Prog. Sys., Lang. and Appl., pub. ACM Sigplan
Notices, 21(11), (ACM Sigplan, 1986), 1-6.

[8] G Bracha and W Cook, “Mixin-based inheritance”, Proc. 5th ACM Conf.
Object-Oriented Prog. Sys., Lang. and Appl. and Proc. 4th European Conf.
Object-Oriented Prog., pub. ACM Sigplan Notices, 25(10) (ACM Sigplan,
1990), 303-311.

[9] A J H Simons: “The theory of classification, part 10: Method combination
and super-reference”, in Journal of Object Technology, vol. 3, no. 1, January-
February 2004, pp. 43-53. http://www.jot.fm/issues/issue_2004_01/column4

[10] A J H Simons: “The theory of classification, part 11: Adding class types to
object implementations”, in Journal of Object Technology, vol. 3, no. 3,
March-April 2004, pp. 7-19. http://www.jot.fm/issues/issue_2004_03/
column1

[11] W Harris, Typed Object-Oriented Programming: ABEL Project Posthumous
Report, Hewlett-Packard Laboratories (1991).

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching in the
Department of Computer Science, University of Sheffield, where he
leads object-oriented research in verification and testing, type theory
and language design, development methods and precise notations. He
can be reached at a.simons@dcs.shef.ac.uk.

http://www.jot.fm/issues/issue_2004_01/column4
http://www.jot.fm/issues/issue_2004_03/column1
http://www.jot.fm/issues/issue_2004_03/column1
mailto:a.simons@dcs.shef.ac.uk

