
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 10, November-December 2004

Cite this column as follows: Won Kim, Wol Young Lee, Hwan Seung Yong: “On Query-Processing
Issues for Non-Navigational Queries for XML”, in Journal of Object Technology, vol. 3, no. 10,
November-December 2004, pp. 19-26. http://www.jot.fm/issues/issue_2004_11/column2

On Query-Processing Issues for Non-
Navigational Queries for XML

Won Kim, Cyber Databas Solutions, Inc., Austin, Texas
Wol Young Lee, Hwan Seung Yong, Department of Computer Science and
Engineering, Ewha Institute of Science and Technology, Seoul, Korea

Abstract
In an earlier article, we motivated the need for structure-agnostic, that is, non-
navigational, queries against XML documents. The conventional XML query languages
require the users to know the structure of the XML documents and specify search
conditions on the structure. However, the expressive flexibility of XML can give rise to
many different representations and structures for the same document contents. A
structure-agnostic query against XML documents is a very useful complement to the
conventional navigation-based XML query languages. A structure-agnostic query
language is very simple; however, the burden of processing a given query against XML
documents of diverse representations and structures falls entirely on the query
processor. In this article, we identify four key issues that arise in the automatic
processing of structure-agnostic XML queries.

1 INTRODUCTION

In an earlier article [Kim, Lee, Yong 2004], we discussed a need for a query language for
XML that does not require the user to specify the structure (paths) of the XML
documents. The flexibility of XML gives rise to many different representations and
structures for even the same document contents. In environments where different users
may have created many different representations and structures for documents in XML,
or where the precise structures of the documents are difficult to obtain, it may be highly
useful for users to be able to specify only the element names and their values in query
expressions, and have the query processor return matching documents or elements of the
documents.

The fact that users are freed from having to know and specify the structures of the
XML documents in query expressions means, however, that the burden of automatically
navigating the hierarchical structures of the XML documents and matching the search
conditions (element or attribute names and their values) against the elements or attributes
and their values in the stored XML documents falls entirely on the query processor. We

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_11/column2

ON QUERY-PROCESSING ISSUES FOR NON-NAVIGATIONAL QUERIES FOR XML

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

have defined a very simple structure-agnostic XML query language, called Chamois-
XML-Query (CXquery), and designed and implemented a query processor, called
Chamois-XML Query Processor, for evaluating queries expressed in the CXquery
language. We have also measured and analyzed performance of the query processor.

In this article, we will only describe four key issues that arise in processing structure-
agnostic queries, in order to provide concrete research issues for other researchers to
pursue. The specific techniques and algorithms that we have developed and implemented
in Chamois-XML Query Processor will be reported shortly elsewhere.

(To provide a running illustrative example, we take the following paragraph and two
Figures from [Kim, Lee, and Yong 2004].) Suppose that we have XML documents on
movies, as represented in Figure 1-1. Figure 1-2 (a) and (b) represent the XML document
of the same content using hierarchical structures. If we are to search for the titles of
movies whose genre is ‘action’, release year is ‘1994’, and whose stars include ‘Jean
Reno’, we would like to be able to state the search conditions simply as

genre = “action” and year = “1994” and actor = “Jean Reno”
regardless of the structure of the XML documents. Then a non-navigational content-
based query (in XQuery) that includes the above search conditions would look something
like
 for $t in doc()//title
 where genre = “action” and year = “1994” and actor = “Jean Reno”
 return $t
The same structure-agnostic query would work for each of the alternate representations
shown in Figure 1-2.

2 QUERY PROCESSING ISSUES

The Chamois-XML Query language can be formally defined as follows.
Expression ::= (“not”)? Predicate ((“and”| “or”) (“not”)? Predicate)*
Predicate ::= DataName (“=” | “<” | “<=” | “>” | “>=” | “!=” | “contains”)
 DataValue
DataValue ::= numeric | string

where DataName is either an element name or an attribute name.
The processing of a CXquery consists of three steps.

- Step (a): Evaluate each predicate (i.e., search condition) to find a potential
matching XML document.

- Step (b): Do the Boolean processing of all search conditions to find only the
XML document that satisfies all search conditions.

- Step (c): For each matching document, process the result clause to return
appropriate parts of the document.

QUERY PROCESSING ISSUES

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 21

<movie>
<year>1994</year>
<country>America</country>
<country>France</country>
<genre>drama</genre>
<genre>action</genre>
<title>Leon</title>
<director>Luc Besson</director>
<actor>Jean Reno</actor>
<actor>Natalie Portman</actor>

</movie>

<movie>
<production year=“1994”

country=“‘America’ ‘France’”>
</production>
<detail_info genre=“‘drama’ ‘action’”

title=“Leon”>
</detail_info>
<people actor= “Jean Reno”

director=“Luc Besson”>
</people>

</movie>

<movie>
<general_info>

<year>1994</year>
<country>America</country>
<country>France</country>
<genre>drama</genre>
<genre>action</genre>

</general_info>
<detail_info>

<title>Leon</title>
<people>

<director>Luc Besson</director>
<actors>

<actor>Jean Reno</actor>
<actor>Natalie Portman</actor>

</actors>
</people>

</detail_info>
</movie>

<movie>
<year><yyyy>1994</yyyy></year>
<country><name>America</name>

<name>France</name></country>
<genre><type>drama</type>

<type>action</type></genre>
<title><name>Leon</name></title>
<director>

<name>Luc Besson</name>
</director>
<actor><name>Jean Reno</name>

<name>Natalie Portman</name></actor>
</movie>

(a) Data described as elements

(b) an arbitrary element name intervene
between element names

(c) Data described as attributes
(d) attribute names intervene between
an element name and its value

<movie>
<year yyyy=“1994”></year>
<country name1=“America”

name2=“France”></country>
<genre type1=“drama”

type2=“action”></genre>
<title name=“Leon”></title>
<director name=“Luc Besson”>
</director>
<actor name1= “Natalie Portman”

name2= “Jean Reno ”></actor>
</movie>

(e) an element name intervene between an element
name and its value

Figure 1-1 Example documents having a non-nested relationship among
year, genre, and actor

<year>1994

<country>America
<genre>action

<movie>
<title>Leon</title>
<director>Luc Besson</director>
<actor>Jean Reno</actor>

</movie>
…

</genre>
…

</country>
…

</year>
(a) Data described as elements

<genre type=“action”>
<country name=“America”>
<year><yyyy>1994</yyyy>
<movie>

<title>Leon</title>
<people director=“Luc Besson”

actor=“Jean Reno”
</people>

</movie>
…

</year>
…

</country>
…
</genre>

(b) Data described as attributes/ an arbitrary data
intervene between an element name and its value

Figure 1-2 Example documents having a nested relationship among year, genre, and actor

ON QUERY-PROCESSING ISSUES FOR NON-NAVIGATIONAL QUERIES FOR XML

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

Intuitively, Step (a) requires the query processor to navigate the XML document looking
for the element or attribute name that appears in a search predicate in the query. Once the
element or attribute name is found, the value associated with it is compared against the
value in the search predicate. To illustrate this (so far very obvious observation), we
represent an XML document in a hierarchical structure, shown in Figure 2-1. The
rectangles represent elements or attributes included in elements, and the circles represent
their values. We indicate an attribute included in an element in a dotted rectangle to the
right of the element. Figure 2-1(a) shows how the search predicates genre=”action” and
year=”1994” and actor=”Jean Reno” may be evaluated.

Unfortunately, the flexibility of XML, the structure-agnostic nature of CXquery, and
the nature of the environments in which structure-agnostic queries may be used, all
conspire to give rise to at least four key complications to automatic query processing. In
the remainder of this section, we will discuss these issues.

First, in structure-agnostic queries, the users only need to specify search predicates.
Each search predicate consists of the name of an element or attribute, an operator, and the
value associated with the element or attribute. In an environment where the schema or
DTD of XML documents is not precisely known or “fuzzy” (approximate) search is done,
even the precise names of the elements and attributes may not be known. In such
situations, the query processor needs to do similarity matching of the names that appear
in the search predicates. The results of the query would then need to be ranked, as they
are not necessarily all precise matches. For example, for the element names “actor”,
“genre”, and “year”, the query processor may also need to search for names such as
“performer”, “category”, and “date”, respectively.

Second, there may be intervening elements and/or an attribute between an element
name and its corresponding value. An XML document of the same content as that
represented in Figure 2-1(a) may easily be represented as in Figure 2-1(b). In Figure 2-1
(b), type intervenes between genre and “action”, name intervenes between actor and
“Jean Reno”, and yyyy intervenes between year and “1994”. Furthermore, in Figure 2-1
(c), genre, year, and actor are represented as attributes, while in Figure 2-1 (d), genre,
year, and actor are represented as elements but their values are represented as attribute
values. In general, there may be an arbitrary number of elements, even a subtree of
elements, between the element name and its corresponding value that match the search
predicate in a query. There can also be an attribute name-- only one attribute -- between
the element name and the corresponding value. As such, the query processor cannot
assume that once an element whose name matches that in a search predicate is found, the
child node of the element node is the data value of the element. This introduces
significant implementation difficulties to the query processor for structure-agnostic query
languages.

QUERY PROCESSING ISSUES

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 23

drama Leon

America

Luc
Besson

title country director

movie

name Natalie
Portman

actor

Jean
Reno

peoplebasic-info

genre

action

year

1994 actorgenre

(a)

Leon

America

Luc
Besson

title country director

movie

name

Natalie
Portman

name

Jean
Reno

peoplebasic-info

genre

action

year

1994 nametype type

drama

actoryyyy

(b)

Leondrama

detail_infogenre1 title

movie

people

Jean
Reno

year

1994

actorproduction country1country2

genre2

director

action

Luc
BessonAmericaFrance

(c)

Leon

action

genre type1

title

movie

actor

Jean
Reno

yyyy

1994

name1year name

countryname1name2 type2

name2

dramaFranceAmerica

Natalie
Portman

(d)

Figure 2-1 Representation Alternatives

Third, the fact that there may be intervening elements and/or an attribute between an
element and its corresponding value, as observed above, leads to “semantic uncertainty”
in the association between the element and the value. Let us consider the actor and “Jean
Reno” pair. Suppose that between actor and “Jean Reno”, there is an intervening name
family as follows: (There may in reality be an arbitrary number of intervening names.)

<actor>
<family>

<name>Jean Reno</name>
…

</family>
</actor>

In this example, “Jean Reno” is the value associated with the element or attribute
“family” of “actor”. However, if the query processor is to blindly navigate from actor
and, upon finding “Jean Reno”, declare that the search predicate “actor = Jean Reno” is
true, the semantic correctness of the result may be in question. This issue of semantic
correctness may arise even if there is no intervening element or attribute, since by actor
the user may have in mind a “theater actor” rather than a “movie actor”. In the following,
both the theater actor and the movie actor are matched.

ON QUERY-PROCESSING ISSUES FOR NON-NAVIGATIONAL QUERIES FOR XML

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

<actors>

<theater>
<actor>Jean Reno</actor>

</theater>
<movie>

<actor>Jean Reno</actor>
</movie>

</actors>

In any case, in environments where structure-agnostic queries are used, the semantic
correctness of the query result is in general in some doubt, and the query processor must
employ some means to attach a “confidence estimate” to each query result that it returns.

Fourth, for the purpose of query-processing optimization and of preventing
erroneous results, it is necessary to compute the nearest common ancestor (NCA) of all
element and attribute names that appear in the search predicates in the query. We note
that the problem of determining the NCA arises even in the processing of path-based
XML query languages, such as XQuery. However, the problem is more difficult in the
case of CXquery, since the structure of the XML hierarchy is not specified in CXquery.
In Figure 2-2 (a), the year element is the NCA of year, actor, and genre as actor and
genre are nested in year. If the location of genre and year is opposite, the result is genre.
In Figure 2-2 (b), the NCA of genre, year, and actor is a new, higher-level node (the
blank rectangle). There are two reasons for computing the NCA. One is to limit the scope
of navigation of the XML hierarchy, both when doing Step (a) and Step (c) of query
processing. Suppose that there are higher nodes to the “root” node in Figure 2-2. In
general, the query processor needs to start its search for the desired element or attribute
names from the root node of the XML tree, and possibly traverse the tree multiple times.
Once the query processor can determine the NCA, it can confine its subsequent traversal
of the tree to the subtree rooted at the NCA. For example, in Figure 2-2 (a), if the query
processor has determined that the NCA of genre and actor is year, in doing the result
clause processing, it can return year as the result of the AND-ing of genre, actor, and
year without subsequent traversal of the entire tree. Another reason is to prevent the tree
traversal of a single subtree from “over-flowing” into another subtree. For example,
suppose the root of an XML tree is named movies, and its child node is named movie as
follows.

QUERY PROCESSING ISSUES

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 25

<movies>
<movie>

<general_info>
<year>1994</year>
<genre>action</genre>

</general_info>
<detail_info>

<actors>
<actor>Jean Reno</actor>

</actors>
</detail_info>

</movie>
<movie>

<general_info>
<year>1994</year>
<genre>action</genre> ...

</movie>
</movies>

○

×

Then the query evaluation involving movies should be confined to within each movie
document instance, and, for example, the search predicate on actor in one movie
document should not be Boolean-combined with the search predicate on genre in another
movie document. Further, the result clause of a matching movie document should not be
computed against another movie document.

Leon

America

Luc
Besson

title country director

movie

name

Natalie
Portman

actor

name

Jean
Reno

name

year

genre

type

yyyy

1994

…

…

action

(a)

Leon

America

Luc
Besson

title country director

movie

name

genre

action

type

year

actor

name

yyyy

1994

…

Jean
Reno

actor

name

Natalie
Portman

(b)

Figure 2-2 Determining the Nearest Common Ancestor

3 CONCLUDING REMARKS

In this article, we identified four key issues that must be addressed in the query processor
for structure-agnostic XML queries, that is, queries that are formulated with only the
search conditions but not the search paths along the hierarchical representations of XML
documents. The purpose of the article is to encourage researchers in XML query
languages and XML query processing techniques to take on some of these issues in order
to improve on the techniques and algorithms that we have designed and implemented.
The details of our techniques and algorithms will be reported shortly elsewhere.

ON QUERY-PROCESSING ISSUES FOR NON-NAVIGATIONAL QUERIES FOR XML

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

REFERENCES

[Kim, Lee, and Yong 2004] Won Kim, Wol Young Lee, Hwan Seung Yong. “On
Supporting Structure-Agnostic Queries for XML”, in Journal of Object
Technology, vol. 3, no. 7, July-August 2004, pp. 27-35.
http://www.jot.fm/issues/issue_2004_07/column3

About the authors

Won Kim is President and CEO of Cyber Database Solutions
(http://www.cyberdb.com/) in Austin, Texas, USA. He is Editor-in-
Chief of ACM Transactions on Internet Technology
(http://www.acm.org/toit), and Chair of ACM Special Interest Group on
Knowledge Discovery and Data Mining (http://www.acm.org/sigkdd).
He is the recipient of the ACM 2001 Distinguished Service Award.

Wol-Young Lee is a Ph.D. candidate in the Department of Computer
Science and Engineering in Ewha Women’s University, Seoul, Korea.
Her research interests include XML, database systems, and
programming languages. Her email is wylee at ewha.ac.kr.

Hwan-Seung Yong is an associate professor with the Department of
Computer Science and Engineering in Ewha Women’s University,
Seoul, Korea. His research interests include multimedia database
systems, data mining and bioinformatics, and Internet computing. He
received a Ph.D. degree in computer engineering from Seoul National
University. His email is hsyong at ewha.ac.kr.

http://www.jot.fm/issues/issue_2004_07/column3
http://www.cyberdb.com/
http://www.acm.org/toit
http://www.acm.org/sigkdd

