
JOURNAL OF OBJECT TECHNOLOGY 
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004 

 
Vol. 3, No. 10, November-December 2004 

 
 
 
 

 
Cite this column as follows: Conrad Bock: “UML 2 Composition Model”, in Journal of Object 
Technology, vol. 3, no. 10, November-December 2004, pp. 47-73. 
http://www.jot.fm/issues/issue_2004_11/column5 

UML 2 Composition Model 
Conrad Bock, U.S. National Institute of Standards and Technology 

 
The composition model in the Unified Modeling Language, version 2 (UML 2), is a 
major upgrade to the familiar “black diamond” composition of earlier versions. It 
supports connections between parts at the same level of decomposition, in addition to the 
usual part-whole associations. Complex networks of entities can be represented within a 
single class, inherited to subclasses, with links maintained between objects playing parts 
at runtime. The model also supports connections between parts of parts (ports), enabling 
more detailed structural modeling and message forwarding, which increases 
independence of reused applications and provides better plug-compatibility for 
components. 

1 INTRODUCTION 

UML 2 composite structures add new concepts and a new diagram to conventional class 
modeling [1]. To justify this, it is important to show existing techniques are not adequate. 
Section 2 demonstrates some major difficulties in using the UML 1.x composition model 
on a simple example. It is possible with significant effort to achieve the same effect as 
UML 2 composition with UML 1.x constructs, but the extent of the effort justifies the 
new features. Showing a mapping from new to existing constructs also ensures the new 
ones are well understood. 

Section 3 introduces the most basic aspects of UML 2 composition, and shows it is 
much simpler and more powerful than UML 1.x. Section 4 describes some computational 
services supported by the new model and interprets some of these as constraint 
maintenance. Section 5 covers the model for parts of parts (ports), and Section 6 shows 
how they are used to provide better encapsulation of components with message 
forwarding. Section 7 covers inheritance of composition models. Section 8 summarizes 
the article1. 

                                                           
1 The exposition happens to start with purely structural aspects, using physical examples, and proceeds to 
communication, with software examples, in the usual fashion of building behavior on structure. However, 
UML 2 composition supports communication with more independence from structure than UML 1.x (see 
Section 6), so other expositions might take the opposite path. The article also begins with class modeling, 
since it is probably most familiar to readers, and shows how role modeling extends it. Other explanations 
might begin with role modeling and show how class modeling is created from that. 

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_11/column5


 
UML 2 COMPOSITION MODEL 

 
 
 
 

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10 48

2 CLASSES AND ASSOCIATIONS NOT ENOUGH 

UML 1.x composition is familiar to users as the black diamond notation on associations 
(called composite aggregation, or informally “strong composition”) [2], for example as 
shown in Figure 1. The figure says that boats and cars have engines, that cars have 
wheels, boats have propellers, and engines are similarly decomposed. The black 
diamonds mean the same instance of ENGINE cannot be used simultaneously in an 
instance of CAR and an instance of BOAT, even though the class ENGINE is shared 
between the classes CAR and BOAT. This is why the multiplicities from ENGINE to BOAT 
and CAR are optional. The black diamond also means that an instance of ENGINE is 
destroyed when its containing instance of CAR or BOAT is destroyed. UML 2 is 
backwardly compatible with this model2. 

 
Figure 1: UML 1.x Composition 

 
While the UML 1.x model is fine for hierarchical decomposition, as in Figure 1, it has 
significant limitations when connecting elements at the same level of decomposition, for 
example, as attempted in Figure 2. The additional associations are trying to say that 
engines power wheels in cars, and engines power propellers in boats. However, the 
associations are defined globally for all engines and boats, not in the context of individual 
cars and boats. This means: 
 

1. The engine in one car can power the wheels in another, instead of just the wheels 
in the car that has the engine. The composition associations from CAR and BOAT 
do not limit the POWERS association (which is not legal UML anyway, see 
discussion of Figure 4 in this section). 

                                                           
2 Classes in the physical examples of this article only describe information records of real or imagined 
physical objects. In particular, destruction in UML refers to the deletion of information instances, not 
necessarily physical ones [3]. UML does not specify whether destroying the information instance causes 
the destruction of the physical object, or whether the UML semantics for destruction applies to physical 
objects. For example, an insurance company may view a “totaled” car as destroyed, even though the engine 
is not affected. UML does not address these and other issues of composition [4]. 

Wheel Propeller

Car

4

1

4

1
Boat

1..4

1

1..4

1

Crankshaft Piston

Engine

1

0..1

1

0..1

1

0..1

1

0..1

1

1

1

1 4..8

1

4..8

1

Wheel Propeller

Car

4

1

4

1
Boat

1..4

1

1..4

1

Crankshaft Piston

Engine

1

0..1

1

0..1

1

0..1

1

0..1

1

1

1

1 4..8

1

4..8

1



 
 
 
 
 
 

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY  49

 
2. Each engine is required to power both propellers and wheels, without regard to 

whether the engine is in a car or a boat. The multiplicity is mandatory from 
ENGINE to PROPELLER and WHEEL.3 

 
3. An engine can power the two right wheels of the car, instead of the front wheels. 

The POWERS association does not indicate which two of the four wheels should 
receive power. 

 
Figure 2: Antiexample for Associations at the Same Level of Decomposition 

 
The problems above are shown by the instance model in Figure 3, which is allowed under 
the class model of Figure 2. The names of instances are given to the left of the colons, 
and the classes they are instances of to the right. Links between instances are notated the 
same way associations are, except multiplicity does not apply, because links always have 
one instance on each end. The E1 instance of ENGINE is contained by MYCAR, but 
powers wheels contained by YOURCAR. The engine E2 is powering the correct propeller 
P1, but also powers wheels RIGHTFRONT1 and RIGHTBACK1. Finally, the right two 
wheels of YOURCAR receive power instead of the front two. 

                                                           
3 The multiplicities of POWERS from ENGINE could be made optional, but then cars and boats could have 
engines that do not power anything. 

Car Boat

Wheel

4

1

4

1

Propeller

1..4

1

1..4

1

Engine

1

0..1

1

0..1

1

0..1

1

0..1

12

powers

11 11

powers

Car Boat

Wheel

4

1

4

1

Propeller

1..4

1

1..4

1

Engine

1

0..1

1

0..1

1

0..1

1

0..1

12

powers

11 11

powers



 
UML 2 COMPOSITION MODEL 

 
 
 
 

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10 50

 
Figure 3: Instance Model Allowed under Figure 2  

 
We might address these issues with generalized classes and associations as shown in 
Figure 4. The generalized classes POWERSOURCE, POWERTRANSMITTER, are marked as 
abstract, which means instances can only be created from their subtypes, not from 
themselves directly. However, the instances of the subtypes are still instances of 
POWERSOURCE and POWERTRANSMITTER indirectly. For example, boat engines are still 
power sources, even though POWERSOURCE cannot have direct instances4. A generalized 
POWERS association is introduced between the generalized classes POWERSOURCE and 
POWERTRANSMITTER. It is abstract and its links (instances) are derived as the union of 
links of the specialized associations in the subtypes. Instances cannot be linked with the 
abstract POWERS association, only by the specialized associations. Moving the mandatory 
multiplicities in Figure 2 to a more general POWERS association resolves the problem that 
Figure 2 requires engines to power both wheels and propellers (which is not legal UML 
anyway, because binary associations relate exactly two classes5). 

To ensure that car engines only power car wheels, and boat engines only power 
propellers, the abstract classes and associations in Figure 4 must be specialized [5], using 
the association specialization capabilities introduced in UML 2. The REDEFINES property 
on association ends indicates that the association is restricted to the class at that end, and 
renamed for that purpose. For example, the redefinitions on SOURCE and TRANSMITTER 
between CARENGINE and FRONTWHEEL mean that car engines can only power front car 

                                                           
4 If wheels were used in other classes besides cars, or propellers used in other classes besides boats, they 
would need to be specialized also. Specialized cars would also be needed to model rear-wheel drive cars. 
5 UML supports multiple associations of the same name, but in Figure 2 we assume the modeler is 
attempting to use the same association twice. 

B1 : Boat

YourCar : CarMyCar : Car

RightBack1 : Wheel

P1 : Propeller

E1 : Engine

powers

powers

E2 : Engine

powers

powers

RightFront1 : Wheel
powers

powers

B1 : Boat

YourCar : CarMyCar : Car

RightBack1 : Wheel

P1 : Propeller

E1 : Engine

powers

powers

E2 : Engine

powers

powers

RightFront1 : Wheel
powers

powers



 
 
 
 
 
 

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY  51

wheels, which can only be powered by car engines6. Similar redefinitions are used to 
ensure that only boat engines power propellers, and vice versa. Multiplicities not 
specified are inherited from the more general association, for example, for the INCAR 
ends. The composition associations must also be specialized, as shown in Figure 5. These 
limit the power sources of cars and boats to car engines and boat engines respectively, 
and limit the transmitters to front wheels and propellers respectively.7 

 

 
Figure 4: Specialized Classes and Associations at Same Level of Decomposition 

                                                           
6 However, links of the abstract POWERS association can still be read. This preserves substitutability. For 
example, suppose a program generated from this model referred to a variable with type POWERSOURCE, 
understanding that it actually was an instance of CARENGINE or a BOATENGINE at runtime. The program 
could read the TRANSMITTER association on the variable, because this is the same on all the subtypes, but 
cannot change it, because the specific subtype is not known at programming time. 
7 The composition associations of Figure 5 can be generalized to a single compositional association, which 
is useful in sketching composition hierarchies, sometimes informally called the “has a” relation. This 
technique is used in the UML 2 metamodel at the top of the class hierarchy, where the metaclass ELEMENT 
owns itself. It supports the containment hierarchy needed for interchange file formats. 

PowerSource PowerTransmitter
1..*1

/transmitter

1..*

{union}
/source

1

{union}

/powers

Vehicle

1

1

/powerSource
1{union}

/inVehicle 1{union}

1..*

1

/powerTransmitter1..*
{union}

/inVehicle1
{union}

BackWheel

Engine Propeller

BoatEngine

transmitter
{redefines
transmitter}source

{redefines
source} powers

Wheel

FrontWheelCarEngine
2

transmitter

2

{redefines
transmitter}

source
{redefines source}

powers

PowerSource PowerTransmitter
1..*1

/transmitter

1..*

{union}
/source

1

{union}

/powers

Vehicle

1

1

/powerSource
1{union}

/inVehicle 1{union}

1..*

1

/powerTransmitter1..*
{union}

/inVehicle1
{union}

BackWheel

Engine Propeller

BoatEngine

transmitter
{redefines
transmitter}source

{redefines
source} powers

Wheel

FrontWheelCarEngine
2

transmitter

2

{redefines
transmitter}

source
{redefines source}

powers



 
UML 2 COMPOSITION MODEL 

 
 
 
 

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10 52

 
Figure 5: Specialization of Composition Associations from Figure 4 

 
However, even the cumbersome class models of Figure 4 and Figure 5 do not prevent an 
engine in one car from powering wheels in another. This requires each individual car to 
have classes for its particular wheels and engine, so the association can be further 
specialized in each car [6]. Although this is theoretically correct, it is obviously 
impractical, showing that classes and associations cannot model composite structure 
efficiently. 

 
Figure 6: Specialized Classes and Associations for Each Instance 

Vehicle

BoatEngine

Boat

powerSource
{redefines
powerSource}

inBoat
{redefines
inVehicle}

CarEngine FrontWheelBackWheel

Car

powerSource
{redefines
powerSource}

inCar
{redefines
inVehicle}

2

powerTransmitter

2
{redefines
powerTransmitter}

inCar
{redefines
inVehicle}

22

inCar
{redefines
inVehicle}

powerTransmitter
{redefines
powerTransmitter}

Propeller

powerTransmitter
{redefines
powerTransmitter}

inBoat
{redefines
inVehicle}

Vehicle

BoatEngine

Boat

powerSource
{redefines
powerSource}

inBoat
{redefines
inVehicle}

CarEngine FrontWheelBackWheel

Car

powerSource
{redefines
powerSource}

inCar
{redefines
inVehicle}

2

powerTransmitter

2
{redefines
powerTransmitter}

inCar
{redefines
inVehicle}

22

inCar
{redefines
inVehicle}

powerTransmitter
{redefines
powerTransmitter}

Propeller

powerTransmitter
{redefines
powerTransmitter}

inBoat
{redefines
inVehicle}

CarEngine

FrontWheel

MyFrontWheel

MyCarEngine

powerTransmitter
{redefines
powerTransmitter}

powerSource
{redefines
powerSource}

YourFrontWheel

YourCarEngine

powerTransmitter
{redefines
powerTransmitter}

powerSource
{redefines
powerSource}

CarEngine

FrontWheel

MyFrontWheel

MyCarEngine

powerTransmitter
{redefines
powerTransmitter}

powerSource
{redefines
powerSource}

YourFrontWheel

YourCarEngine

powerTransmitter
{redefines
powerTransmitter}

powerSource
{redefines
powerSource}



 
 
 
 
 
 

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY  53

3 ASSOCIATIONS IN CONTEXT 

UML 2 addresses the problems of using class diagrams for composition by introducing a 
new diagram specifically for composite structure, as shown in Figure 7. The basic 
principle is to define usages of classes and associations in a context, rather than 
associating classes globally. The contexts are also classes, like CAR and BOAT, while the 
usages of other classes are shown as rectangles inside the containing classes, and the 
usages of associations are shown as line segments. The rectangles are labeled with a 
colon notation to distinguish classes being used, such as WHEEL, to the right of the colon, 
from how they are used, such as FRONT, to the left of the colon. The rectangles are 
distinguished from instances by not having underlined labels. The colon notation is used 
on the line segments also, where the association being used is shown to the right of the 
colon, and how it is used to the left, which may be anonymous. The numbers inside the 
rectangles specify the number of instances that will be used, for example, two front 
wheels in a car. 

 
Figure 7: UML 2 Composition 

Figure 7 means8: 
In each car: 

1. There will be one engine, two front wheels, and two back wheels. 
2. The engine will power the front wheels in the same car as the engine. 
3. The engine will not power anything else in the car, other cars, or boats. 

                                                           
8 Figure 7 also establishes rules on communication between entities, which are constrained to follow 
connectors. See Section 6. 

Car

back : Wheel

front : Wheele : Engine
: powers

Boat

1 2

2

p : Propellore : Engine
: powers

1 1..4

Car

back : Wheel

front : Wheele : Engine
: powers

Boat

1 2

2

p : Propellore : Engine
: powers

1 1..4



 
UML 2 COMPOSITION MODEL 

 
 
 
 

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10 54

In each boat: 
1. There will be one engine and one or more propellers. 
2. The engine will power the propellers in the same boat as the engine. 
3. The engine will not power anything else in the boat, other boats, or cars. 

 
To enforce the above rules, the model must provide a way to identify the objects 
contained by individual cars and boats, so the engine in one car can be distinguished from 
the engine in another, and front wheels distinguished from back wheels, and so on. This 
is done through association ends, which can represent navigation (mappings) from 
individual cars and boats to the particular objects they contain. For example, Figure 8 
elaborates Figure 1 and the top portions of Figure 4 and Figure 5, to define the 
association ends E, P, FRONT, and BACK. The SUBSETS property on association ends is 
another association specialization capability in UML 2. It indicates the association is 
specialized and renamed at that end, but does not restrict the inherited association to the 
class at that end (compare to REDEFINES). For example, the INCAR end from ENGINE to 
CAR is subsetted from INVEHICLE, which means other vehicles besides cars can use 
engines, such as boats. The INCAR end can be navigated to find the car that a particular 
engine is in, if any, or INVEHICLE can be navigated to find whatever vehicle an engine is 
in, regardless of the type of vehicle9. 

 
Figure 8: Composition Associations for Figure 7 

The embedded rectangles in Figure 7 are another notation for the association ends 
opposite CAR and BOAT in Figure 8 (or properties in general, see Section 4 and the 
example in Figure 17). This is why the ends have the same names and multiplicities as 
the usages in Figure 7. Names of the usages are shown just to the left of the colon, 
namely, E, FRONT, and BACK. Embedded rectangles do not represent classes, as rectangles 
do in class diagrams, to avoid the problems of using classes for composition cited in 
Section 2. 

                                                           
9 The INCARASBACK end could be specialized from INVEHICLE if INVEHICLE was generalized to all parts of 
CAR. See footnote 7. 

Propeller

Boat

p
{redefines

powerTransmitter}

inBoat
{subsets
inVehicle}

Engine

0..1

e
{redefines
powerSource}

inBoat

0..1

{subsets
inVehicle}

Wheel

Car

e
{redefines

powerSource}

inCar
{subsets
inVehicle}

2

front

2
{redefines

powerTransmitter}

inCarAsFront
{subsets
inVehicle}

2back 2

inCarAsBack

Propeller

Boat

p
{redefines

powerTransmitter}

inBoat
{subsets
inVehicle}

Engine

0..1

e
{redefines
powerSource}

inBoat

0..1

{subsets
inVehicle}

Wheel

Car

e
{redefines

powerSource}

inCar
{subsets
inVehicle}

2

front

2
{redefines

powerTransmitter}

inCarAsFront
{subsets
inVehicle}

2back 2

inCarAsBack



 
 
 
 
 
 

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY  55

Figure 9 shows example instances of CAR and BOAT, with links from an individual car 
MYCAR to its individual engine, front wheels, and back wheels, and similarly for 
YOURBOAT. Figure 10 is an alternate notation for Figure 9, where the instance name is 
given to the left of the slash, the association end name to the left of the colon, and the 
class being reused to the right of the colon. Navigation occurs by starting with MYCAR, 
traversing associations along their ends, and arriving at the objects that are contained by 
MYCAR in specific ways. The results of navigation, such as E1:ENGINE, W1:WHEEL, and 
W2:WHEEL are related by POWERS links according to the composite structure defined in 
Figure 7 (compare to Figure 3). Notice that two association ends can have the same name 
in different composite structures, but are treated separately. In this example, two 
association ends named E are used by CAR and BOAT, but are distinguished by the 
context. 

 
Figure 9: Instance Model Allowed under Figure 7 and Figure 8 

 

YourBoat : Boat

P1 : Propeller

p

inBoat

E2 : Engine

e

inBoat

powers

W3 : Wheel

W4 : Wheel

MyCar : Car

back

back

inCarAsBack

W1 : Wheel

front

inCarAsFront

W2 : Wheel

front

inCarAsFront

E1 : Engine

e

inCar

powers

powers

inCarAsBack

YourBoat : Boat

P1 : Propeller

p

inBoat

E2 : Engine

e

inBoat

powers

W3 : Wheel

W4 : Wheel

MyCar : Car

back

back

inCarAsBack

W1 : Wheel

front

inCarAsFront

W2 : Wheel

front

inCarAsFront

E1 : Engine

e

inCar

powers

powers

inCarAsBack



 
UML 2 COMPOSITION MODEL 

 
 
 
 

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10 56

 
Figure 10: Another Notation for Figure 9 

 
In UML 2 the composite (strong composition) association ends opposite context classes 
are called parts, as in part in a play, rather than part as an object10. For example, in Figure 
8 the ends E, FRONT, and BACK are parts. This term applies to composite association ends 
in a class diagram as well as embedded rectangles in composite diagrams. Informally, an 
object playing a part is sometimes called a “part”, but this makes it difficult to understand 
that composite structures connect objects based on how they participate in the context 
object, not based on the individual objects themselves. For example, the conversation in a 
play is determined by the parts performed by the actors, not by the actors themselves, 
which change over the many performances of the play11. 

The line segments in Figure 7 are notation for a new concept in UML 2 called 
connector. Connectors are usages of associations, and relate parts (composite association 
ends) of a context class. They relate parts, rather than classes, to navigate to objects 
contained by instances of the context class, and link the resulting objects together. For 
example, in Figure 7, the connector between the E and FRONT parts of CAR means that 
instances of the POWERS association (links) are established between the objects playing 
those parts in each individual car. Connectors can also relate non-composite associations 
and attributes, as discussed below. 

The use of association ends and connectors can be understood as shorthand for the 
very specialized classes and associations in Figure 6 [6]. Instances of the specialized 
classes, such as MYCARENGINE and MYFRONTWHEEL, are the same as the result of 
                                                           
10 The composition model also supports noncomposite associations and attributes as well. See Section 4. 
11 The term “role” might also be used informally, but it is equally overloaded. UML 1.1 called association 
ends “roles”, but this was not always used in the above sense of navigating from one end object to another. 
UML 1.3 changed the term to association end. 

YourBoat : Boat

MyCar : Car

W3 / back : Wheel

W4 / back : WheelW2 / front : Wheel

W1 / front : WheelE1 / e : Engine

powers

powers

P1 / p : PropellerE2 / e : Engine
powers

YourBoat : Boat

MyCar : Car

W3 / back : Wheel

W4 / back : WheelW2 / front : Wheel

W1 / front : WheelE1 / e : Engine

powers

powers

P1 / p : PropellerE2 / e : Engine
powers



 
 
 
 
 
 

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY  57

navigating association ends from individual cars and boats to the participating objects, for 
example E1:ENGINE, W1:WHEEL, and W2:WHEEL in Figure 9. The specialized 
associations have mandatory multiplicities that establish links between the specialized 
classes, which are the same links established by connectors between the objects that 
result from navigating association ends. 

However, the UML 2 composition model does not automatically define the 
specialized classes in Figure 4 or Figure 6, such as CARENGINE. The specialized classes 
of Figure 4 are useful in applications that add characteristics to classes when they are 
used in composing others [7]. For example, an employee is a kind of person who is in an 
employment relationship with a company. The employee class may introduce new 
associations, for example to benefits. These “role classes” provide some useful 
contextualization, for example to place additional constraints on contained objects, see 
discussion of Figure 12 below. 

Connectors can have multiplicities different from the association ends (parts) they 
relate. For example, a more general model of cars that covers both front-wheel drive and 
rear-wheel drive is shown in Figure 11. It uses a new association end W that navigates to 
all the wheels in a car, as a generalization of FRONT and BACK in Figure 7. The new end 
has a multiplicity of 4, but the POWERS connector to it has a multiplicity of 2 on that end. 
This means for each car, two of the four wheels in the car will be powered. Unlike Figure 
2, the model intentionally does not specify which two wheels are powered, with the 
expectation that CAR will be specialized for front and rear-wheel drive cars (see Section 7 
about inheritance of composite structure). When connector multiplicities are not 
specified, they are the same as the parts being connected, as in Figure 7. 

 
Figure 11: Connector End Multiplicity 

 
Composite structure can also model software artifacts, for example, dialog boxes. When a 
dialog box comes up on a screen, it can be an instance of a class with composite structure. 
It contains controls such as text boxes, menus, and so on, which are instances of other 
classes, and that have specific attribute values for their position, labels, and so on. 
Tabbing relations link controls together. An example composite class for a dialog is 
shown in Figure 12. It uses a suggested presentation option that is not defined in UML 2, 
but would be intuitive for modelers, to show the initial values for the various control 
attributes. For example, the objects playing the NAME part are text boxes, and the initial 
attributes values for objects playing parts are listed in the attribute compartments, which 
can be omitted for compactness of display, of course. Connectors are usages of the 

Car

1
w : Wheele : Engine

: powers
421

Car

1
w : Wheele : Engine

: powers
421



 
UML 2 COMPOSITION MODEL 

 
 
 
 

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10 58

TABTO association defined between controls generally, not shown, and give the tabbing 
order for this particular dialog. The UML repository model for contextualized attribute 
values is not as simple as it could be, requiring additional parts for each value, and 
connectors from the dialog control parts to the value parts, or using specialized part types 
such as those in Figure 5 with default values for attributes. Hopefully this will be 
addressed in future revisions. 

 
Figure 12: Composite Structure for a Dialog Box 

 
A repository model for portions of Figure 7 and Figure 8 is shown in Figure 13. The 
context class CAR:CLASS owns the properties E:PROPERTY and FRONT:PROPERTY, which 
have values of type ENGINE:CLASS and WHEEL:CLASS, respectively. These properties are 
also the ends for the composition associations between CAR:CLASS and ENGINE:CLASS 
and WHEEL:CLASS, through the MEMBEREND associations. This unification of attributes 
and associations is new to UML 212. The properties are related by an anonymous 
:CONNECTOR, which corresponds to the connector labeled :powers in Figure 7. 
Connectors have connector ends, to support multiplicities when they are different from 
the association ends being connected. The type of the connector is POWERS:ASSOCIATION, 
which will be instantiated to link the values of E:PROPERTY and FRONT:PROPERTY when 
they have values in an instance of CAR:CLASS. 

                                                           
12 An attribute in UML 2 has the same semantics as a unidirectional association. The only difference in the 
repository model is whether a property is an end for an association or not. 

BuySellDialogClass

okCancel : OKCancelButton
position = (75, 75)

buySellMenu : DropDownMenu
label = "Instruction: "
position = (25, 50)
options = ("Buy", "Sell")

: tabTo

name : TextBox
label = "Name: "
position = (25, 25)

: tabTo

BuySellDialogClass

okCancel : OKCancelButton
position = (75, 75)

buySellMenu : DropDownMenu
label = "Instruction: "
position = (25, 50)
options = ("Buy", "Sell")

: tabTo

name : TextBox
label = "Name: "
position = (25, 25)

: tabTo



 
 
 
 
 
 

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY  59

 
Figure 13: Repository Model for Portions of Figure 7 and Figure 8 

4 COMPOSITION SERVICES 

The UML 2 composition model enables useful runtime services, including: 
 

1. Maintenance of links between objects playing parts 
When an object begins to play a part in an instance of a composite class, links can 
be established to the object according to the connectors of the composite structure. 
For example, based on Figure 7, when an engine is added to a car, it is linked to 
the wheels already in that car. Likewise, when the car is created, the engine and 
wheels used in the creation are linked. 
When an object stops playing a part in an instance of a composite class, links can 
be destroyed if they were established by the connectors of the composite structure. 
For example, when an engine is removed from a car, it is unlinked from the 
wheels of that car. Likewise, when the car is destroyed, the links between engine 
and wheels in the car are destroyed13. 

 

                                                           
13 UML 2 finalization has not yet provided an option on CreateLinkAction, AddStructuralFeatureAction, 
DestroyLinkAction, and RemoveStructuralFeatureAction for creating and destroying links based on 
connectors, but this can be done with CreateLinkAction and DestroyLinkAction. 

1 : LiteralInteger

1 : LiteralInteger 2 : LiteralInteger

2 : LiteralInteger

: ConnectorEnd : ConnectorEnd

powers : Association

: Association

Engine : Class

e : Property
aggregation = composite

memberEnd

association

type

end

role

upperValue

lowerValue

front : Property
aggregation = composite

lowerValue

upperValue

end

role

: Connector

end end

type

inCar : Property

memberEnd

association

ownedAttribute

class

Wheel : Class

type

: Association

memberEnd

association

Car : Class

ownedAttribute

class

ownedAttribute

class

ownedConnector

type

inCarAsFront : Property

ownedAttribute

class

association

memberEnd

type

1 : LiteralInteger

1 : LiteralInteger 2 : LiteralInteger

2 : LiteralInteger

: ConnectorEnd : ConnectorEnd

powers : Association

: Association

Engine : Class

e : Property
aggregation = composite

memberEnd

association

type

end

role

upperValue

lowerValue

front : Property
aggregation = composite

lowerValue

upperValue

end

role

: Connector

end end

type

inCar : Property

memberEnd

association

ownedAttribute

class

Wheel : Class

type

: Association

memberEnd

association

Car : Class

ownedAttribute

class

ownedAttribute

class

ownedConnector

type

inCarAsFront : Property

ownedAttribute

class

association

memberEnd

type



 
UML 2 COMPOSITION MODEL 

 
 
 
 

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10 60

2. Creation propagation 
When an instance of a composite class is created, objects playing parts with 
minimum multiplicity greater than zero can be created to satisfy the multiplicity. 
For example, when an instance of CAR is created, four wheels can be created, two 
playing FRONT part and two playing the BACK. Automatic creation is not required, 
because UML does not dictate when multiplicities are enforced. For example, a 
car can be created using existing wheels, or can be created without wheels, and 
new or existing wheels added later. Tools can provide their own options for this. 

 
3. Destruction propagation 

When an instance of a composite class is destroyed, the objects playing strongly 
composed parts are destroyed. For example, destroying an instance of CAR will 
destroy the objects playing the E, FRONT, and BACK parts. Any objects that had 
been removed from the instance of CAR beforehand are not destroyed, including 
weakly composed or uncomposed objects, see below14. 

 
Contrary to the name, the composite structure model provides link maintenance with 
noncomposite associations and attributes. Connectors can relate: 
 

• Shared aggregate (“weakly composed”) association ends. The values of these 
association ends can be contained by more than one object at the same time. There 
is no destruction propagation required15. 

• Regular, noncomposed association ends. These do not require destruction 
propagation. 

• Attributes with any kind of composition of their values, strong, weak, or none 
(composite, shared, or none). 

 
The above are notated in a composite structure diagram with dashed line rectangles, as 
described later in Figure 17. Link maintenance applies to the these constructs, because it 
only depends on being able to identify objects related to the context object at runtime. 
This can be done by any kind of association end, as long as it is navigable from a context 
class to another, and any kind of attribute. For example, in Figure 17, establishing the link 
between computers uses the VISITOR and HOST association ends or attributes on instances 
of FTPSESSION (the composite structure diagram does not differentiate between attributes 
and association ends). Creation propagation can also apply to the above constructs, if the 

                                                           
14 The finalization of UML 2 extended DestroyObjectAction with an option to destroy strongly composed 
objects using a single action. This is convenient for tools implementing strong composition (composite 
aggregation) semantics. Finalization has not yet provided an option on DestroyObjectAction for destroying 
links between non-strongly composed objects established by connectors, but this can be done with 
DestroyLinkAction. 
15 UML states that strong and weak composition are transitive, but this can only work for associations from 
a class to itself, and even then it would violate the single-owner rule for strong composition. 



 
 
 
 
 
 

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY  61

minimum multiplicity is greater than zero. Destruction propagation can apply to them if 
the minimum multiplicity on the context end is greater than zero, but is not required. 

Link maintenance can be understood as an effect of enforcing constraints implied by a 
composite structure. For example, Figure 7 provides link maintenance equivalent to 
enforcing the constraint shown in  

Expression 1, written in UML's Object Constraint Language (OCL) [8]. The 
context reserved word indicates the constraint holds for all instances of the class CAR, 
and the names used in the constraint refer to association ends and attributes of the same 
instance of CAR. The inv reserved word means the constraint holds over the lifetime of 
each instance. The constraint body follows, requiring a POWERS link between the value of 
the E property of each car and the values of the FRONT property. Equality means the 
constraint specifies all the POWERS links between the engine and front wheels, so they 
cannot participate in any other POWERS links. In particular, if there are no values in one of 
the properties on either side of the equality, there will be no powers link in the value of 
the other property. This reflects the third rule for cars implied by Figure 716. 
 

context Car inv: 
(e->notEmpty implies e.transmitter = front) 
  and (front->notEmpty implies front.source = e) 

 
Expression 1: Constraint Implied by Figure 7 

 
Additional composition services are enabled by ports, see Section 6. 

                                                           
16 This is a technique in OCL for a limited form of closed world, that is, if the constraint cannot establish a 
POWERS link between the engine and front wheels in a car, then the link does not exist. In pure first-order 
logic languages closure must be spelled out explicitly. 



 
UML 2 COMPOSITION MODEL 

 
 
 
 

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10 62

5 PORTS 

Many applications require connections between parts of parts. For example, the 
simplified composite structure for a car in Figure 7 might be elaborated to model the parts 
of axles and wheels, as shown in Figure 14. The specification of the POWERS association 
in this example is changed to relate moving parts, as shown in Figure 15. Parts that are 
available for connection from outside of a composite are called ports. 

 
Figure 14: Ports 

 
Figure 15: Classes and Associations Used in Figure 14 

MovingPart

*

*
powerTo

*

powers

powerFrom *

TireUniversalJoint AxleOutputShaft HubMainAxleShaft

MovingPart

*

*
powerTo

*

powers

powerFrom *

TireUniversalJoint AxleOutputShaft HubMainAxleShaft

Car

fa : Axle front : Wheel

h : Hubos : AxleOutputShaft

t : Tire

: powers: powers

ms : MainAxleShaft

uj : UniversalJoint

: powers

: powers

Car

fa : Axle front : Wheel

h : Hubos : AxleOutputShaft

t : Tire

: powers: powers

ms : MainAxleShaft

uj : UniversalJoint

: powers

: powers



 
 
 
 
 
 

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY  63

 
Connecting ports requires double navigation to find the objects to be linked. For example, 
to find instances to link according to the connector between OS:OUTPUTSHAFT and H:HUB 
requires navigation from an instance of CAR to the object playing the FA:AXLE part, and 
from that object to the object playing the OS:OUTPUTSHAFT part. The output shaft found 
this way is linked to the result of navigating from an instance of CAR to the object playing 
the FRONT:WHEEL part, and from that object to the object playing the H:HUB part17. 

Association ends require connectors to provide double navigation. For example, if 
Figure 14 did not have connectors, navigating across the association end FRONT:WHEEL 
identifies a wheel, but nothing prevents the second navigation of H:HUB from starting 
from some other wheel entirely. Double navigation requires that navigations of 
association ends are chained together, with the second end navigating from the results of 
the first. Connectors ensure that double navigation is used to establish links. This is 
important for applications that use the same type of part more than once in a composite 
structure. For example, there are multiple wheels on a car, so the single navigation 
provided by H: HUB is ambiguous about which wheel the hub is on. 

Since ports are a special kind of part, the runtime effects of ports are inherited from 
parts: link maintenance, creation propagation, and destruction propagation. In particular, 
creation and destruction propagation recurs across multiple level of decomposition. For 
example, creating an instance of CAR optionally creates an instance of AXLE, which in 
turn creates instances of OUTPUTSHAFT, UNIVERSALJOINT, and MAINAXLESHAFT. Link 
maintenance applies to ports, for example when instances of OUTPUTSHAFT and HUB start 
and stop playing the parts OS and H, links between these are created and destroyed. Link 
maintenance between ports in this example is equivalent to enforcing the implicit 
constraint shown in Expression 2. 
 

context Car inv: 
fa->notEmpty and front->notEmpty 
  implies  
    (fa.os->notEmpty implies fa.os.powerTo = front.h  
     and front.h->notEmpty implies front.h.powerFrom = fa.os) 

 
Expression 2: Constraint Implied by Figure 14 

 
The metamodel for ports is very similar to parts, but the metamodel for connectors is 
extended to specify which parts the connected ports are on (double navigation). Figure 16 
shows a portion of the repository model for Figure 14. Most of it is the same as Figure 
13, except that: 

• ports such as OS:PROPERTY and H:PROPERTY are identified by the OWNEDPORT 
metaassociation end. This is a specialization of OWNEDATTRIBUTE. 

                                                           
17 The double navigation requirement makes class models even more infeasible for composite structures, 
because a class would be needed for every part of part on every instance of the context class. 



 
UML 2 COMPOSITION MODEL 

 
 
 
 

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10 64

• connectors ends for ports have an additional metaassociation end PARTWITHPORT, 
which identifies the parts that the ports are on (double navigation). 

The second aspect above means that a connector between ports of sibling parts actually 
refers to two navigations down from the owner of the parts, rather than one navigation 
from an instance of the port owner. For example, the connector in Figure 14 that has 
H:HUB on one end actually refers to a double navigation from an instance of CAR, 
through FRONT:WHEEL, not a single navigation from an instance of WHEEL. This is why 
the connector is owned by CAR:CLASS18. 
 

 
Figure 16: Repository Model for Portion of Figure 14 

                                                           
18 The UML 2 metamodel does not support navigation to levels deeper than two. This is addressed in an 
extension of UML 2 for systems engineering [10] by extending connector ends to refer to an ordered list of 
properties of unlimited length. However, two levels of navigation are usually enough if associations are 
modeled as having composite structure [11]. Unfortunately, the UML 2 metamodel does not support this 
either, because it does not model navigation from links (instances of associations) to the objects at the end 
of the links as OWNEDATTRIBUTE. Structured associations are useful in many applications, for example, 
phones communicating over a complex network of objects and associations that are contained in a single 
association between the phones. They also enable a unification of objects and associations based on how 
many contained connectors refer outside the composite, zero for objects, more than zero for associations 
[11]. This will be addressed in a revision of UML or in the systems engineering extension. 

AxleOutputShaft : Class

Axle : Class

os : Property

type

ownedPort

class

fa : Property
aggregation = composite

type

powers : Association

: ConnectorEnd

end

role

partWithPort

Hub : Class

Car : Class

ownedAttribute

class

Wheel : Class

: Connector

type

end
ownedConnector

h : Property

type

ownedPort

class

front : Property
aggregation = composite

ownedAttribute

class

type

: ConnectorEnd

end

end

role

partWithPort

AxleOutputShaft : Class

Axle : Class

os : Property

type

ownedPort

class

fa : Property
aggregation = composite

type

powers : Association

: ConnectorEnd

end

role

partWithPort

Hub : Class

Car : Class

ownedAttribute

class

Wheel : Class

: Connector

type

end
ownedConnector

h : Property

type

ownedPort

class

front : Property
aggregation = composite

ownedAttribute

class

type

: ConnectorEnd

end

end

role

partWithPort



 
 
 
 
 
 

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY  65

6 MESSAGE-FORWARDING ACROSS PORTS 

Ports can be used primarily for communication, rather than linking objects, as shown in 
Figure 17. Connectors define the channels along which messages may be sent19. 
Messages sent to a port from outside a composite object are forwarded to the composite 
object or to internal objects, based on how the port is connected to them, while messages 
sent to the port from the inside are forwarded to the connected external objects. For 
example, in Figure 17, in an instance of FTPSESSION (which only exists logically), a link 
is created between ports of the computers playing the VISITOR and HOST parts. The visitor 
sends requests for gets and puts to its FTPIN port, which are forwarded to the FTPOUT port 
at the host computer on the other end of the session link, then to the FTPHOST process. 
Likewise, replies from the host are sent from the FTPHOST process to the host port, 
forwarded across the link to the visitor port, and then to the FTPVISITOR process. 

When the session is closed, the host and visitor process instances are destroyed, along 
with the links to their ports, and the session instance is destroyed, which destroys the 
connection link between the computers. Destruction propagation does not apply to the 
visitor and host computers, because they are not strongly composed by the session, as 
indicated by the dashed lines (see earlier discussion on destruction propagation). Message 
forwarding stops when a connector reaches a port that has no connector on the other side 
leading to an internal part. Messages to this kind of port, called behavior ports, are 
handled by the object owning the port20. 

 
Figure 17: Ports for Message-passing 

                                                           
19 This generalizes the usual object-oriented approach that objects can only communicate with other objects 
they are directly related to. 
20 This can be notated explicitly with an internal connector from the behavior port to a small rounded 
rectangle in the owning class. 

FTPSession

host : Computer

ftpIn : FTPVisitorPort

ftpOut : FTPHostPort

1

visitor : Computer

ftpHost: Process

hostFTPConnection

ftpVisitor : Process

FTPConnectionvisitorFTPconnection

1

1

FTPSession

host : Computer

ftpIn : FTPVisitorPort

ftpOut : FTPHostPort

1

visitor : Computer

ftpHost: Process

hostFTPConnection

ftpVisitor : Process

FTPConnectionvisitorFTPconnection

1

1



 
UML 2 COMPOSITION MODEL 

 
 
 
 

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10 66

Messages sent to a port must be supported either by: 
 objects that are values of the port. These are called port objects.  
 the object owning the port, if there is no value for the port. 
 or both of the above if the port object forwards messages to the owning object. 

 
Messages are either: 

 calls to operations, which are usually dispatched to methods on the receiving 
object. 

 or sending of signals, which are buffered on the receiving object and handled by 
behaviors in the objects. 

 
The messages an object sends and receives are declared on its class (its type). This 
applies to both composite objects and port objects. Specifically, messages are declared on 
interfaces supported by the class, as operations and signal receptions, collectively called 
behavioral features. Since messages might be sent across a port from outside or inside, a 
class can declare its interfaces as provided or required, which are notated in various ways 
as shown in the class diagram fragments in Figure 18 and Figure 19. Provided interfaces 
declare messages sent from outside the containing object. These are modeled with a 
realization dependency from the class to the interface. This is same model used for 
conventional interfaces supported by classes. Notations for provided interfaces include a 
dashed line with hollow arrowhead, or a dashed line with stick arrowhead and 
«realize» keyword. The “lollipop” or “ball” notation option can be used on port 
classes, or directly on ports shown on the owning class, COMPUTER in this example, as 
shown in Figure 19. Required interfaces declare the messages sent from inside the 
composite object. These are modeled with a uses dependency from the class to the 
interface. One notation for this is a dashed line with stick arrowhead and «uses» 
keyword. Another is the “socket” notation on port classes, or directly on the ports notated 
on the owning class21. Provided and required interfaces are modeled this way to support 
the same interface provided by one port and required by another. 

                                                           
21 Ball and socket notations are useful on the composite structure diagram, attached to port symbols, even 
though UML does not define this presentation option explicitly. The ball and socket can even be joined as a 
substitute notation for a connector, although this requires the connections to be shown twice in some cases, 
one of each direction of communication. Some might find the ball and socket notation confusing, since the 
ball indicates incoming messages and the socket indicates outgoing messages. 



 
 
 
 
 
 

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY  67

 
Figure 18: Port Interfaces 

 
Figure 19: Other Notations for Figure 18 

 

FTPHostPort

FTPVisitorPort

FTPVisitorPortInterface
<<interface>>

openDataConnection()
closeDataConnection()
receiveData()
receiveRepyCode()

«use»

FTPHostPortInterface
<<interface>>

get()
put()
open()
close()
quit()

«realize»

«use»

FTPHostPort

FTPVisitorPort

FTPVisitorPortInterface
<<interface>>

openDataConnection()
closeDataConnection()
receiveData()
receiveRepyCode()

«use»

FTPHostPortInterface
<<interface>>

get()
put()
open()
close()
quit()

«realize»

«use»

FTPVisitorPortInterface FTPHostPortInterface

FTPHostPort

FTPHostPortInterfaceFTPVisitorPortInterface

FTPVisitorPort

Computer

ftpOut : FTPHostPortftpIn : FTPVisitorPort

FTPHostPortInterface

FTPVisitorPortInterfaceFTPHostPortInterface

FTPVisitorPortInterface

FTPVisitorPortInterface FTPHostPortInterface

FTPHostPort

FTPHostPortInterfaceFTPVisitorPortInterface

FTPVisitorPort

FTPVisitorPortInterface FTPHostPortInterface

FTPHostPort

FTPHostPortInterfaceFTPVisitorPortInterface

FTPVisitorPort

Computer

ftpOut : FTPHostPortftpIn : FTPVisitorPort

FTPHostPortInterface

FTPVisitorPortInterfaceFTPHostPortInterface

FTPVisitorPortInterface

Computer

ftpOut : FTPHostPortftpIn : FTPVisitorPort

FTPHostPortInterface

FTPVisitorPortInterfaceFTPHostPortInterface

FTPVisitorPortInterface



 
UML 2 COMPOSITION MODEL 

 
 
 
 

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10 68

Provided and required interfaces are defined with respect to messages arriving from 
outside a composite class or sent to the outside, but they also declare capabilities for 
messages arriving from the inside and sent to the inside. For example, in Figure 17, 
messages sent from the object playing the FTPVISITOR part to the port object of FTPIN are 
operations such as GET and PUT. These are defined in the required interface of FTPIN, 
FTPHOSTPORTINTERFACE, not the provided interface FTPVISITORPORTINTERFACE, even 
though the messages come into the port object of FTPIN. Normally messages sent to an 
object are defined in the provided interface, but port objects are treated specially in this 
regard. Similarly, messages sent from the FTPIN port to the FTPVISITOR part are 
operations such as OPENDATACONNECTION and RECEIVEDATA. These are defined in the 
provided interface of FTPIN, FTPVISITORPORTINTERFACE, not the required interface 
FTPHOSTPORTINTERFACE. Normally, messages sent out from an object are defined in the 
required interface, but again port objects are treated specially in this case. 

Ports can be implemented in a lightweight fashion, as pure interaction points, with no 
port object created at all at runtime. In these applications, messages are sent to the object 
owning the port with instruction that they are sent “through” a particular port22. For 
example, an invocation action in the host object of Figure 17 can have the host object 
itself as a target, with the instruction that the message is sent out through the FTPOUT 
port, to be forwarded to the visiting computer. A model compiler can calculate the 
ultimate targets for forwarding, and translate these actions to send to those targets. For 
example, in Figure 17, an invocation action in the HOST object that targets the host itself 
though the FTPOUT port can be translated to send messages to the object playing the 
FTPVISITOR part of the visitor object directly. Compilation is necessary in lightweight 
implementations, because there are no port objects at runtime that can be linked together 
and determine forwarding targets dynamically. 

Port classes, such as FTPVISITORPORT and FTPVISITORHOST, are still needed in 
lightweight implementations as the type of port properties, because the dependencies of 
port classes determine which interfaces are provided and which are required. Port classes 
are not instantiated in the lightweight implementation, however, so the lower multiplicity 
of the port property must be zero23. Since port classes are not instantiated, the connector 
has no association to instantiate either, and there is no association needed between the 
port classes or interfaces (compare to Figure 20). 

Ports can also be implemented in a heavyweight way with port objects created at 
runtime, to provide dynamic services. For these applications, invocation actions [9] call 
operations and send signals directly to port objects. When a port object receives a 
message, it can perform various functions, such as filtering messages, modifying them, or 
routing them dynamically, and can also keep state, for example, to count the number of 
messages passing through it. Messages can still be sent in the lightweight style to objects 
owning heavyweight ports, with instruction to go through the port, but the previously 
mentioned compilation cannot be performed, because the heavyweight port might not 
determine how to forward the message until runtime. The lightweight style of message 
                                                           
22 UML extends its invocation actions [9] to support sending messages through ports. 
23 It would be useful to set the upper multiplicity to zero also, but UML 2 does not support this currently. 



 
 
 
 
 
 

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY  69

passing is best in general, however, because it works regardless of whether the targeted 
port is heavy or light, as long as the model compiler is designed to tell the difference. 
Heavyweight ports can still implement forwarding as it would have been with the 
lightweight implementation, but the inefficiency of forwarding cannot be compiled away 
without special directives to the compiler. 

Port interfaces in heavyweight implementations are related by the same association 
that the connectors refer to, for example FTPCONNECTION, as shown in Figure 20. Each 
port class supports navigating associations to objects supporting the other end's interface. 
For example, the instances of the port class FTPHOSTPORT support navigating along the 
visitor association end to objects supporting the FTPVISITORPORTINTERFACE. 

 

Figure 20: Association between Port Interfaces 

 
Ports and message forwarding provide better insulation of message source and targets 
than typical object and component approaches, especially in lightweight implementations, 
which do not require associations between assembled subcomponents. Conventional 
approaches only support provided interfaces, so the sender must identify a target object 
directly, often by an explicit link to it, even to use its interfaces. The ports approach 
enables the sender to declare required interfaces, and to send messages to its own ports 
when communicating with the environment, rather than identifying an external target 
object directly. Classes defined this way are assembled by wiring them together with 
connectors. The resulting composite class is responsible for creating instances of its 
constituents, and either linking them together according to connectors, or enabling 
message compilation, depending on the implementation. Classes and components are 
defined more independently of their usage, providing better plug-compatibility24. 

7 INHERITANCE OF COMPOSITE STRUCTURE 

Connectors and association ends, including parts, inherit from class to subclass as all 
features do. Subclasses can specialize inherited parts and connectors, and introduce new 
ones. Figure 4 and Figure 5 show inheritance of composite association ends (parts) and 
specializing them, in particular, the association ends POWERSOURCE and 
POWERTRANSMITTER. Figure 21 is a combined class and composite structure diagram 
showing inheritance25, and specialization and addition of parts. The parts of the general 

                                                           
24 UML 2 defines further refinements and applications of composite structure for components and 
collaboration not covered in this article. 
25 This presentation option is not explicitly defined in UML, but it is useful for explanation of concepts and 
is a natural extension of defined diagrams. 

FTPHostPortInterface
«interface»

FTPVisitorPortInterface
«interface» 11

host

1

visitor
1 FTPConnection

FTPHostPortInterface
«interface»

FTPVisitorPortInterface
«interface» 11

host

1

visitor
1 FTPConnection



 
UML 2 COMPOSITION MODEL 

 
 
 
 

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10 70

structure defined by VEHICLE are specialized in ROADVEHICLE and BOAT, for example, 
the type of the VEHICLEFRAME association end is specialized from the class 
VEHICLEFRAME to CHASSIS and HULL (the redefinitions on parts, such as {redefines 
vehicleFrame}, are omitted for brevity). The inheritance continues down to TRUCK, 
which adds the part TRAILER:TRAILER and the :PULLS connector, specializes the type of 
POWERSOURCE, and the multiplicity of TRAILER. The class diagram for the part types is 
shown in Figure 22. 

 
Figure 21: Inheritance of Composite Structure (combined class/composite structure diagram) 

Vehicle

RoadVehicle Boat

powerTransmitter : 
PowerTransmitter

vehicleFrame : 
VehicleFrame

powerSource : 
PowerSource

: powers

: attached

powerTransmitter : 
Wheel

vehicleFrame : 
Chassis

powerSource : 
Engine

: powers

: attached

powerTransmitter : 
Propeller

vehicleFrame : 
Hull

powerSource : 
Engine

: powers

: attached

Truck

trailer : 
Trailer

vehicleFrame : 
Chassis

1..2: pulls

powerTransmitter : 
LargeWheel

powerSource : 
DieselEngine

: attached

: powers

Vehicle

RoadVehicle Boat

powerTransmitter : 
PowerTransmitter

vehicleFrame : 
VehicleFrame

powerSource : 
PowerSource

: powers

: attached

powerTransmitter : 
Wheel

vehicleFrame : 
Chassis

powerSource : 
Engine

: powers

: attached

powerTransmitter : 
Propeller

vehicleFrame : 
Hull

powerSource : 
Engine

: powers

: attached

Truck

trailer : 
Trailer

vehicleFrame : 
Chassis

1..2: pulls

powerTransmitter : 
LargeWheel

powerSource : 
DieselEngine

: attached

: powers



 
 
 
 
 
 

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY  71

 
Figure 22: Clases and Associations Used in Figure 21 

8 CONCLUSION 

This article covers the updated composition model in UML 2. It is first shown that 
conventional classes and associations are not sufficient for simple examples of 
composition. Earlier versions of UML did not properly support associations between 
classes at the same level of decomposition, allowing a number of undesired links to be 
created at runtime, sometimes between the contents of unrelated composite objects. The 
workarounds necessary to correct these problems require complex diagrams with many 
specialized classes and associations. 

The UML 2 composition model resolves these issues by recognizing that “parts” of an 
object are best identified by navigating from the containing object along association ends 
or attributes to the contained objects. Links between parts are modeled as connections 
between association ends or attributes of the containing object. This approach enables a 
class to model a network of objects playing the various parts defined by the class. Objects 
can play specific parts at some times and not others, with the links to other objects in the 
composite maintained automatically. Since the network structure is abstracted into a 
class, it is inherited to subclasses, where new connections and parts can be added and 
specialized. 

The model also supports connections between ports, which are accessible parts of 
parts. This requires double chains of navigation from the overall containing object to 
identify the proper objects to link at runtime. These links or connections can be used to 
forward messages sent from the internals of one object to the internals of another, within 
the context of an overall composite structure. The internal behaviors of an object can send 
messages to its own ports, which are forwarded along links or connections specified by 
the composite structure, eventually reaching the internal behaviors of other objects. This 
provides significantly better encapsulation and plug-compatibility of system components 
than conventional techniques. 

Wheel EnginePropeller

DieselEngineLargeWheel

Hull

PowerTransmitter VehicleFramePowerSource
11..* 11..*

powers

0..11 0..11

attached

Trailer

Chassis

0..2

1

0..2

1

pulls

Wheel EnginePropeller

DieselEngineLargeWheel

Hull

PowerTransmitter VehicleFramePowerSource
11..* 11..*

powers

0..11 0..11

attached

Trailer

Chassis

0..2

1

0..2

1

pulls



 
UML 2 COMPOSITION MODEL 

 
 
 
 

 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10 72

ACKNOWLEDGEMENTS 

Thanks to Evan Wallace, James Odell, Steve Cook, Bran Selic, and Doug Tolbert for 
their input to this article, to Robert Thompson for assistance with the FTP example, and 
to Michael Williams for the original Car/Boat example. 
 
Commercial equipment and materials might be identified to adequately specify certain procedures. In no case does such 
identification imply recommendation or endorsement by the U.S. National Institute of Standards and Technology, nor 
does it imply that the materials or equipment identified are necessarily the best available for the purpose. 

REFERENCES 

[1] Object Management Group, “UML 2.0 Superstructure Specification,” 
http://www.omg.org/cgi-bin/doc?ptc/04-10-02, October 2004. 

 
[2] Object Management Group, “OMG Unified Modeling Language,” version 1.5, 

http://www.omg.org/cgi-bin/doc?formal/03-03-01, March 2003. 
 
[3] Cook, S., Kent, S., Software Factories, Appendix B, Wiley, 2004. 
 
[4] Odell, J., “Six Different Kinds of Composition,” in Journal of Object-Oriented 

Programming, vol. 5, no. 8, January 1994. 
 
[5] Bock, C., Odell, J., “A Foundation for Composition,” in Journal of Object-Oriented 

Programming, vol. 7, no. 6, pp. 10-14, October 1994. 
 
[6] Mishelevich, D., et. al., “Representing Composites with Valueclass Enhancements 

and the Relation Form of Recursive Units,” in New Generation Knowledge System 
Development Tools, Phase 2 Interim Report, DARPA Contract F30602-85-C-0065, 
May 1988. 

 
[7] Bock, C., Odell, J., “A More Complete Model of Relations and Their 

Implementation, Part III: Roles,” Journal of Object-Oriented Programming, vol. 11, 
no. 2, pp. 51-54, May 1998. 

 
[8] Object Management Group, "UML 2.0 OCL Specification," 

http://www.omg.org/cgi-bin/doc?ptc/03-10-14, October 2003. 
 
[9] Bock, C., “UML 2 Activity and Action Models, Part 2: Actions,” in Journal of 

Object Technology, vol. 2, no. 5, pp. 41-56, September-October 2003, 
http://www.jot.fm/issues/issue_2003_09/column4. 

 

http://www.omg.org/cgi-bin/doc?ptc/04-10-02
http://www.omg.org/cgi-bin/doc?formal/03-03-01
http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.jot.fm/issues/issue_2003_09/column4


 
 
 
 
 
 

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY  73

[10] SysML Partners, “Systems Modeling Language: SysML,” http://www.omg.org/cgi-
bin/doc?ad/04-10-02, August 2003. 

 
[11] Bock, C., Odell, J., "A More Complete Model of Relations and Their 

Implementation Part IV: Aggregation,” Journal of Object-Oriented Programming, 
vol. 11, no. 5, pp. 68-70, 85, September 1998. 

 
 

About the author 
Conrad Bock is a Computer Scientist at the U.S. National Institute of 
Standards and Technology, specializing in process models and 
ontologies. He is responsible for several implementations of 
composition in frame-based systems, applied in a variety of domains, 
and contributed to the development of the UML 2 composition model. 
He can be reached at conrad.bock at nist.gov. 

http://www.omg.org/cgi-bin/doc?ad/04-10-02
http://www.omg.org/cgi-bin/doc?ad/04-10-02

