
Vol. 3, No. 2
Special issue: .NET: The Programmer’s Perspective: ECOOP Workshop 2003

Managing Code Dependencies in C#

Riccardo Casero, Dip. di elettr. e informazione, Politecnico di Milano, Italy
Mirko Cesarini, Dip. di elettr. e informazione, Politecnico di Milano, Italy
Mattia Monga, Dip. di informatica e comunicazione, Università degli studi di
Milano, Italy

Most modern object oriented programming languages do not offer constructs to specify
dependencies among members of a class. Public interfaces are written using member
types and method signatures only, which are not capable of expressing such kind of
relationships. We show that stating which dependencies exist between class members,
i.e. which methods could be affected by a change in the implementation of the others,
constitutes a relevant information to be shipped to inheritors in order to help them
in subclassing without inconsistencies. In this paper we present a tool that supports
developers in this task by exploiting C# attributes, that are annotations accessible
at runtime. The tool will be integrated in the popular developer environment Visual
Studio .NET.

1 INTRODUCTION

Object-oriented systems are built upon the information hiding principle: a class
is made by data and routines, but only a subset of them is available to external
programmers. What can be used of a class is stated within the module interface,
and access to private members is not granted. The module interface is a sort of use
contract between the class and its users. Two kind of users can be profiled: those
that simply need to employ the class as it is, and those that need to subclass it. We
will call hereafter clients the first set of users and inheritors the second one. The
module interface provided by most OOP languages is supposed to fulfil both the two
sets of users by using member types, methods signatures and visibility modifiers.
However, these linguistic constructs –if well suited for clients– are somehow not
enough for inheritors. In fact, the module interface states what can be used by
clients or inheritors as is and what they can adapt to their needs by providing
actual parameters or by overriding. Furthermore the semantic of a method can
be documented by stating under which conditions (preconditions) the method is
guaranteed to produce a well defined effect (postconditions). Method signatures
together with pre/post conditions provide enough information to statically catch
most of the type errors, even in the case of dynamic bounded languages. This helps
clients in writing their code, however, as far as inheritors are concerned, this provided
information is poor. In particular, it might happen that, in order to preserve a
correct semantics, the overriding of a method requires other methods to be rewritten
as well . For example suppose that we have the class MySet (shown in Fig. 1).

Cite this article as follows: Riccardo Casero, Mirko Cesarini, Mattia Monga: Managing
Code Dependencies in C# , in Journal of Object Technology, vol. 3, no. 2, Spe-
cial issue: .NET: The Programmer’s Perspective: ECOOP Workshop 2003, pages 47–55,
http://www.jot.fm/issues/issue 2004 02/article5

http://www.jot.fm/issues/issue_2004_02/article5


MANAGING CODE DEPENDENCIES IN C#

public class MySet{

private ArrayList hidden_rep;

public delegate void Action(object o);

public MySet(){

hidden_rep=new ArrayList();

}

public virtual void Add(object o){

hidden_rep.Add(o);

}

public virtual bool RemoveIfPresent(object o){

if(!hidden_rep.Contains(o))

return false;

hidden_rep.Remove(o);

return true;

}

public virtual void ForEach(Action a){

IEnumerator i=hidden_rep.GetEnumerator();

while(i.MoveNext()) a(i.Current);

}

public virtual void AddAll(MySet s){

Action a=new Action(this.Add);

s.ForEach(a);

}

public virtual void Remove(object o){

bool removed=RemoveIfPresent(o);

if(!removed)

throw new Exception("Object not present");

}

}

Figure 1: A MySet class

The methods AddAll and Remove rely on the other methods Add, ForEach and
RemoveIfPresent which in turn rely on the hidden representation (i.e. the set of
all fields declared in the class).

48 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 2



1 INTRODUCTION

Suppose now we derive a new class MyCountedSet from MySet (see Fig. 2).

public class MyCountedSet:MySet{

private int cardinality=0;

public override void Add(object o){

base.Add(o);

cardinality++;

}

public override bool RemoveIfPresent(object o){

if (base.RemoveIfPresent(o)){

cardinality--;

return true;

}

return false;

}

public int Cardinality{

get{ return cardinality; }

}

}

Figure 2: A MyCountedSet class

Since a new field cardinality is declared, the hidden representation of the class
is changed and potentially every method relying on it should be changed in order
to maintain a consistent behaviour. In this case only Add and RemoveIfPresent

requires overriding.

Another example is the further derived class MyEvenSet (see Fig. 3).

A general inheritor may think it is still possible to obtain an even set by using
the AddAll method, but since it relies on Add it would add at most only one element.
Instead an inheritor informed about the dependency link between AddAll and Add

would consider to change both. Hence, we advocate the need to specify in the
inheritors interface the dependencies among different members of a class.

This paper is organised as follows: Section 2 illustrates how we choose to specify
dependencies and the rationale behind that. Section 3 describes the tool that we
built, that is able to extract and show such information to developers. In Section 4
future work and final remarks are listed.

VOL 3, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 49



MANAGING CODE DEPENDENCIES IN C#

public class MyEvenSet:MyCountedSet{

public override void Add(object o){

if (this.Cardinality % 2 == 0)

(MyCountedSet)this.Add(o);

}

}

Figure 3: A MyEvenSet class

2 INTRODUCING DEPENDENCY INFORMATION IN THE MODULE
INTERFACE

Adding Dependency Information

Inheritors should know about the dependencies among methods. In order to cope
with this problem Lamping [4] proposed to enrich module interfaces with informa-
tion reporting the dependencies among class features. The rationale behind this
suggestion is to provide inheritors with enough information about how the features
of a class combine to produce its overall behaviour, so that programmers fully un-
derstand the consequences of overriding.

The commonly used approach is to insert comments expressing dependencies
directly in source code [2] [6]. In this case a lexical-analyser would read source
code and recognise comments expressing dependencies. The main drawback of this
approach is that it relies on the availability of source code, while the usefulness of
dependency checking arises mainly when the programmers want to evolve binary
components of which they know only the interface information [8]. Several compo-
nent frameworks (JavaBeans, COM) owe their success to the ability of deploying
binary, third party developed objects, about which users knows only public member
signatures.

In a previous work [3], we proposed to exploit a new opportunity offered by
the .NET [9] runtime platform. Such a platform provides support for attributes,
which are annotations associated with syntactic elements of a program: classes,
members, method parameters, etc.. Attributes in the .NET platform are metadata
bound to and directly shipped with the assembly, without the need of exchanging
source code1. Custom defined attributes can be added and can be easily retrieved
at runtime through the reflection services provided by the .NET framework (the
typical way of retrieving attributes is to fetch the object that represent the entity

1In the .NET jargon an assembly is the unit of deployment, containing one or more binary
modules. Each assembly contains virtual machine instructions (data) and information related to
them (metadata): version numbers, character set used in strings, etc..

50 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 2



2 INTRODUCING DEPENDENCY INFORMATION IN THE MODULE INTERFACE

we are interested in and to invoke the GetAttributes() method on it).

Using C# Attributes to store Dependencies

Since the inheritor interface is composed of public and private methods and proper-
ties, we defined a Dependency attribute, that can be applied there. The syntax of
the attribute is the following:

[Dependency (type , called method name , params type ,type of call)]

This line, inserted just before a method M declaration, states that inside the
body of M there is a call on an object of static type type towards the method
called method name with parameters of types specified in the array params type.
The last argument specifies the type of call. We define three type of call:

• SELF denotes that the receiver of the invocation is the same object which
performs it.

• FORCED denotes that the dynamic type of the receiver is forced to be the one
specified (e.g. through a cast operation).

• OTHER denotes all other types of call.

The rationale behind this distinction is to help narrowing the possible execution
paths to be computed. For instance knowing that a call is a SELF call could allow
the tree-generator cut some branches. For example, consider the classes A1 and A2

in Fig. 4.

Method3 influences Method1, that in turn influences Method2, that in turn again
influences Method4. However, if one overrides Method3 in a class A3 –derived from
A2– she does not need to override Method4 since the dependency-chain is SELF and
Method1, that was overridden in A2, does not call Method3 anymore. Suppose that
instead of being a SELF call the call from Method2 to Method1 were FORCED: the
other branch should have been considered. In the general case both branches should
have been added to the invocation tree since we statically do not know the type of
the object on which Method2 will be invoked.

In the case of a direct dependency on the hidden representation of a class (i.e.
the set of all variables declared in the class) the syntax is simply:

[Dependency (type , special hidden dependency, type of call)]

VOL 3, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 51



MANAGING CODE DEPENDENCIES IN C#

Figure 4: An example of method calls (straight lines represent dependencies and the
dashed line the path computed from Method4).

3 CODING THE IDEA: AN ADD-IN FOR THE VISUAL STUDIO IDE

Visual Studio .NET is the primary IDE2 for the .NET platform. It provides an add-
in framework to build tools that easily integrates with the environment. Independent
software vendors (ISVs) can implement new features (e.g. groupware, profiling tools,
work flow, or life-cycle tools) that fit into Visual Studio .NET as seamlessly as if
they were built in.

We exploited this feature to build our tool, that is able to retrieve and show
the dependency attributes relevant for the code currently displayed. Even if it is
fully integrated with Visual Studio, the tool is portable and it can be used as a
stand-alone application.

Suppose the MySet class shown in Fig. 1 has been created and annotated with
Dependency Attributes. A programmer who wants to inherit it will have to declare
and build the derived class, in the example the MyCountedSet class. Before over-
riding any method, she can check dependencies using our DependencyAddin (see
Fig. 5(a)). A window showing all members of the newly created subclass will ap-
pear (see Fig 5(b)). Inherited members are correctly showed, their complete names
tell also the base class they were declared in.

The chance is given to programmer to view dependencies in a flat fashion (the
set of all members directly or indirectly influenced) or to view all possible paths of
execution toward a given member. In the example all possible paths down to the
hidden representation are shown (see Fig. 6). Checked members are the ones the
programmer wants to override (or augment in case of the hidden representation).
She can copy signatures to the source document in the environment and implement

2Integrated Development Environment

52 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 2



4 CONCLUDING REMARKS AND FURTHER WORK

(a) (b)

Figure 5: DependencyAddin command(a) and tool window(b).

desired changes.

Figure 6: A view of possible paths, calls are to be read bottom-up

4 CONCLUDING REMARKS AND FURTHER WORK

Reusability of components is a central issue in achieving quality and productivity of
software development. Specifying dependencies among features could help program-
mers to correctly use and adapt components to their needs. In particular inheritors

VOL 3, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 53



MANAGING CODE DEPENDENCIES IN C#

of classes could use such information to infer how far a modification to a method
would propagate and prevent undesired behaviours. On the other hand there is a
fast-growing need of easy deployment of binary components, about which only public
interface is known. The .NET framework permits to ship dependencies informa-
tion directly with the binaries exploiting attributes. In this paper we showed how
to specify these attributes and a tool is presented that extracts attributes-defined
dependencies from components and help programmers in sub-classing.

We are currently working in two directions. While useful, documenting the code
with dependency attributes can be boring and error prone for programmers, mainly
because the number of dependencies can be huge even in medium size source codes.
However, most of them might be retrieved by a suitable tool. This tool will behave
very similarly to a compiler in recording the syntax-tree of the code and in visiting
it to resolve methods invocations and fields accesses. We’re working to adapt part
of the open source code of the Mono compiler [1] to reach this objective. Code will
be then semiautomatically instrumented.

The actual set of dependencies cannot be statically computed, due to the features
of OO languages, and C# in particular: the dynamic binding mechanism, delegates3

and the capability to invoke methods whose names are dynamically build at runtime.
Dependencies of these kinds of invocations cannot be retrieved statically. However,
it is possible to compute sensible suggestions to programmers.

We are also investigating another approach using dependency attributes (see
also [7] [5]): instead of being code-retrieved, dependencies could express imposed
design decisions, thus realizing strong data abstraction. Investigation on this path
is still needed.

Our experience shows that the new features provided by the .NET platform
could be used to support developers in writing and reusing existing components.
We think that our approach could be a step to make design by contract even more
popular among developers, hence improving the average quality of the code.

REFERENCES

[1] Mono: an open source common language infrastructure implementation.
http://www.go-mono.com.

[2] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass - Java with asser-
tions. In Workshop on Runtime Verification held in conjunction with the 13th
Conference on Computer Aided Verification, CAV’01, 2001. Published in Elec-
tronic Notes in Theoretical Computer Science, K. Havelund and G. Rosu (eds.),
55(2), 2001. Available from www.elsevier.nl.

3C# name for typed function pointers

54 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 2

http://www.go-mono.com
www.elsevier.nl


4 CONCLUDING REMARKS AND FURTHER WORK

[3] C. Ghezzi and M. Monga. Fostering component evolution with c# attributes. In
Proceedings of the International Workshop on Principles of Software Evolution
IWPSE 2002, Orlando, Florida, May 2002. ACM.

[4] J. Lamping. Typing the specialization interface. ACM SIGPLAN Notices, pages
201–214, 1993. OOPSLA’93.

[5] K. R. M. Leino and G. Nelson. Data abstraction and information hiding. ACM
Transactions on Programming Languages and Systems (TOPLAS), 24(5):491–
553, 2002.

[6] C. Ruby and G. Leavens. Safely creating correct subclasses without seeing su-
perclass code. In OOPSLA 2000, Minneapolis, Minnesota, Oct. 2000. ACM.

[7] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse contracts: Managing the
evolution of reusable assets. In OOPSLA ’96 Conference on Object-Oriented Pro-
gramming Systems, Languagges and Applications, pages 268–285. ACM Press,
October 1996.

[8] C. Szyperski. Component Software — Beyond Object-Oriented Programming.
Addison Wesley Longman Limited, 1998.

[9] E. TC39/TG3. Common language infrastructure. Technical report, ECMA,
2001.

Riccardo Casero is a master student at the “Politecnico di Milano”, Italy. He can
be reached at vant@inwind.it.

Mirko Cesarini is a PhD student at the “Politecnico di Milano”, Italy. He can be
reached at cesarini@elet.polimi.it. See also http://www.elet.polimi.it/upload/cesarini.

Mattia Monga is an Assistant Professor at Milan University, Italy (DICO, De-
partment of Computer Science and Communication). He can be reached at mat-
tia.monga@unimi.it. See also http://homes.dico.unimi.it/ monga/

VOL 3, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 55

mailto:vant@inwind.it
mailto:cesarini@elet.polimi.it
http://www.elet.polimi.it/upload/cesarini
mailto:mattia.monga@unimi.it
mailto:mattia.monga@unimi.it
http://homes.dico.unimi.it/~monga/

