
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, no. 3, March-April 2004

Cite this article as follows: Alecia E. Acosta, Nancy Zambrano: “Patterns and Objects for User
Interface Construction”, in Journal of Object Technology, vol. 3, no. 3, March-April 2004, pp. 75-
90. http://www.jot.fm/issues/issue_2004_03/article1

Patterns and Objects for User Interface
Construction

Alecia Eleonora Acosta and Nancy Zambrano, Central University of
Venezuela, Venezuela

Abstract
Nowadays, computers play a very important role, that is to say, as a communication tool
between people. This introduces the interface between human and machines as a key
player, therefore the importance of these interfaces. The existing software development
processes recognize this importance but do not establish precise guidelines for the
construction of the user interface as an activity within the system life cycle. This article
describes a method for constructing user interfaces based upon interaction patterns.
This method can be incorporated to an object-oriented software development process
which fulfills certain characteristics. Interaction patterns describe interface design
solutions favoring the development of a user interface prototype.

1 INTRODUCTION

This paper presents a method for constructing user interfaces based upon interaction
patterns. This method is intended to reduce time spent in developing user interface. This
method can be introduced into an object-oriented software development process that
embodies the remaining stages of software life cycle, which benefits the integration of the
areas of Software Engineering and Human-Computer Interaction.

The method is engraved within the context of software development based upon
prototyping and supported by the reuse of components: interaction patterns. An
interaction pattern captures essential information relative to a recurrent problem, shows a
successful solution and describes the context of this solution. A pattern is written to
communicate the experience and to allow designers to reuse it.

Among other things, these interaction patterns are used to generalize a solution
regarding interaction designs, to record knowledge or experience and to reuse it, and to
facilitate communication among people involved in software development, mainly from
different areas (software engineer, interface experts, problem domain expert, user, etc.).
Section 2 of this article deals with the essential aspects related to interaction patterns.
Section 3 describes the user interface prototype construction method, where interactions

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_03/article1

PATTERNS AND OBJECTS FOR USER INTERFACE CONSTRUCTION

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

patterns are used; and the third section will explain the integration of this method within a
software development process.

2 GENERAL ASPECTS OF INTERACTION PATTERNS

Knowledge reuse is a technique used by experts of any area; when solving a problem,
they make use of their own experience - as well as of others- to verify whether they have
successfully solved a similar problem and then apply that solution with the required
modifications (if any).

Generally speaking, experienced designers almost never solve every new problem
since the beginning, they reuse solutions that have been successfully applied before and
that are part of their expertise. This expert knowledge is translated into components that
are going to be used by others to solve similar problems. In the area of Software
Engineering a way of recording this knowledge is by using software design patterns
[Gamma97] and this practice allows designers to reduce development costs and time.
This same technique is applied to Human-Computer Interaction, where the experience of
interface design is recorded in interface design patterns – or interaction patterns-which
are reusable components that describe a successful solution within a given context to a
recurrent problem regarding user interface design.

Figure 1. An interaction pattern, Author: Marjtin van Welie
URL: http://www.welie.com/patrones/searcharea.html [Welie03]

http://www.welie.com/patrones/searcharea.html

GENERAL ASPECTS OF INTERACTION PATTERNS

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 77

Software design patterns and interaction patterns, even though they express
solutions, are two very different concepts. Interaction patterns are closer, as far as
objectives are concerned, to the original pattern concept developed by Alexander in the
field of architecture [Alexander77], in the sense that they are oriented towards the
creation of comfortable environment for end users.

An interaction pattern works as a communication tool between people working in a
software development team (generally a multidisciplinary team made up by specialist in
user interface design, software domain specialists and users, etc.). Figure 1 shows a part
of an interaction pattern from Martijn van Welie’s collection, available in
http://www.welie.com/patterns [Welie03].

Pattern Structure

In literature we can find several ways to write an interaction pattern, all of them having
basic components in common even thought names can change, for example
[Mahemoff98], [Tidwell03], [Usability03]. Currently there is no standard structure for
writing an interaction pattern. In this paper we propose a pattern structure using a
metapattern, this is to say, a pattern that allows describing patterns. Figure 2 represents
this metapattern.

Name, author
Classification and
range.

Name: states the central idea. Author: the name of the creator of the pattern.
Classification: states the pattern type. Range: states the qualification of the pattern.

Problem Describes the problem to be solved from the user point of view.

Solution Describes, in a descriptive and graphic form, the solution of the problem.

Context Presents the conditions under which this pattern is used.

Forces Points out the conflicts that could restrain the solution.

Usability Describes the impact of the use of the pattern from the usability point of view.

Consequences Describes the result of applying the pattern.

Examples/
Counterexamples

Shows examples and counterexamples of the proposed solution.

Related Patterns Enumerates other patterns related to this pattern.

Figure 2. Metapattern. Components of an interaction pattern

This metapattern is aimed at defining a notation that can be easily understood by the
complete development team. It is not always necessary to describe each component for
all patterns, with the exception of obligatory ones as: name, problem, solution, context,
and usability.

Figure 3 shows an interaction pattern from van Welie‘s collection [Welie03],
expressed using the metapattern of Figure 2.

http://www.welie.com/patterns

PATTERNS AND OBJECTS FOR USER INTERFACE CONSTRUCTION

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

Name Simple Search
Author Martijn van Welie
Problem The users need to find an item or specific information.
Usability Action minimization
Context Any web site that already has primary navigation. User may want to search for an item in a category. User

might want to further specify a query.
Forces By using this setup the whole search becomes a sentence that reads like the search query.
Solution Offer a search

* The search interface
Offer search functionality consisting of a search label, a keyword field, a filter if applicable and a "go"
button. Pressing the return key has the same function as selecting the "go" button. Also provide Search
Tips and examples in a seperate page. A link to that page is placed next to the search functionality. The
edit box for the search term is large enough to accomodate 3 typical user queries (typically around 20
characters). If the number of filters is more than 2, use a combobox for filterselection, otherwise a
radiobutton.
Search -- editbox -- for/in -- filter -- Go button
or just...
-- editbox -- Go button
* Presenting search results
The search results are presented on a new page with a clear label containing at least "Searchresults" or
similar. The search function is repeated in the top-part of the page with the entered keywords, so that the
users know what the keywords were.
The number of "hits" is reported and the list of search results is organized; sorted or rated with the best
matches at the top. When there are more than 10 results use a Paging mechanism. Each search result
shows a link to the item itself and a snibbet of text to explain the item. Preferably that would a summary or
abstract but can also be the first lines of text of the resulting item. The structure of a "result" typically
shows:
1. Page Title
2. Description
3. Categorization
4. URL, Size, Date
* Keyword matching
If more than one search term is used the search engine must handle them as follows: if no special
separators are used (not including the space), the search is interpreted as an OR function, the results that
match both terms are listed first. If special separators are used the search engine must be able to handle
more than one convention. For example, sometimes the "AND/OR" separators are used but using a "+" or
a "-", include and exclude, must also be handled correctly. The engine must also be able to handle spelling
mistakes of at least one character.

Example From www.tucows.com

In this example from tucows, the designers actually were able to make the search read like a sentence.

Users can "download sotware package X for Win2000"....

This example from Google shows how each result is presented

Related
Patterns

Consider the Paging or List Browser patterns for navigating through a large set of results. However, users
will not check more than one or two pages of search results; instead they will edit the search terms again.

Figure 3. Simple Search Pattern expressed by the Metapattern

GENERAL ASPECTS OF INTERACTION PATTERNS

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 79

Taxonomy of interaction patterns

Taxonomy permits classifying patterns as to facilitate its creation and usage. Patterns can
be classified based on certain characteristics; some authors have presented different
classifications [Coram03] [Mahemoff98].

This article defines the following interaction pattern types and their corresponding
symbols:

• Domain Patterns: describe aspects of the interface that are related to a
specific software domain (for example, Electronic Commerce, Virtual
Courses, etc.).

• System Patterns: capture aspects of user interface concerning a specific
application, for example usability attributes that must be guaranteed,
purpose of the system, etc.

• Task Patterns: describe interface aspects referenced to the interaction with
software functionalities.

• Complex Element Patterns: state interaction styles between user and the
interface made up by interface elements.

• Single Element Patterns: describe atomic elements of user interface.
• User Patterns: describe user profiles relevant for the application.

Interaction pattern organization

Isolated patterns are not very important. The link between patterns is as important as the
pattern itself, and its organization is the basis for defining collection of patterns. It is
possible to have a pattern with a higher level than other (for example, domain and simple
element patterns) and generate a hierarchy among them. Also, it is possible to relate
patterns from the same level. Last but not least, it is possible to establish a multiple link
structure where patterns reference other patterns. The notion of a pattern implies the
creation and/or manipulation of pattern groups related among each others, describing a
design of a complex interactive system.

After determining a structure to describe a pattern and defining interaction pattern
taxonomy, it is necessary to establish how these patterns will be organized within a
collection, as to facilitate its creation, reuse and maintenance.

Patterns will be organized in a collection depending on how they will be used on the
practice; this means that the final goal of any organization of patterns is to support an
iterative design process where links among patterns would lead the designer towards the
next logical step in the process of user interface construction.

One of the workshop INTERACT99 results, presented on [Borchers99], is the
usefulness of interface pattern languages, having established that the goal of pattern
language is to share successful interaction design solutions among professionals and to
supply a common language available to any one involved in the analysis, design,

PATTERNS AND OBJECTS FOR USER INTERFACE CONSTRUCTION

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

development, evaluation and use of interactive systems. There are also other experiences
on the definition of pattern languages proposed by [Bayle97], [Casaday97], [Erickson01]
and [Coram03].

An interaction pattern language is a collection of structured patterns which serves
designers as guidelines for constructing a user interface. A pattern at one level can
reference a great number of other patterns located at a lower level in order to complete
the solution. When a pattern references other pattern it means that the first needs the
solution described by the second to complete the solution. The patterns so connected
provide an informal grammar for design: a pattern language in a certain domain.

The next definition of a pattern language, using the metapattern presented in Figure
2, is based on the definition provided by [Borchers01]:

1. A pattern language is a directed acyclic graph PL= (P, R) with nodes
P = {P1,..,Pn} and edges R = {R1,…Rm}.

2. Each node P ∈ P represents a pattern.
3. For two patterns P and Q ∈ P it is said that P reference Q if and only if there is a

directed edge R ∈ R leading from P to Q.
4. The set of edges coming from a pattern P ∈ P is called its references and the set

of edges coming to a pattern is called its environment.
5. Each pattern P ∈ P is a n-uple:

P = (n, a, c, co, p, s, ctx, f1,…fn, e1,..ej, ce1,…cem, p1,…pn) where:
n name a author c classification
co confiability p problem s solution
ctx context f1,..,fi forces u usability
con consequences e1,..,ej examples ce1,..,cem counterexamples
 p1,..,pn related patterns

On advantages of using pattern languages is that development team speaks the same
language, which establishes an organizational principle that facilitates the use of
interaction patterns.

Figure 4 is an abstract and simplified example of pattern language, made up from
different related pattern types. It can be observed a domain pattern D which references a
system pattern S, the latter at the same time references task patterns T1 and T2, and the
representation of task T2 in the user interface is a menu described through a complex
element pattern called Menu.

The user interface construction method that will be explained in the next section is
based upon the creation of an Interaction Pattern Language, which together with an
Interface Object Model, is the starting point for the construction of a user interface
prototype.

GENERAL ASPECTS OF INTERACTION PATTERNS

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 81

D

S

T2T1

Menu

Figure 4. Example of interaction pattern language.

3 A USER INTERFACE CONSTRUCTION METHOD

User interface construction method (UIC) proposed here can be integrated to an object-
oriented software development process. Moreover, this method is inscribed in the
development models that incorporate prototyping since the first stages of the software life
cycle; in this case we propose to construct a user interface prototype starting from
interaction patterns and interface objects. The patterns are produced while applying the
method or they are selected from a pattern repository.

The UIC method states a process for constructing user interface based upon
interaction patterns and interface objects. The method is aimed at developing a user
interface prototype that can be evaluated by the end user; in this way the prototype could
evolve up to satisfy user requirements.

As it can be seen, this paper is not intended to create a new software development
method, but any object-oriented process based on functionalities of the system, supported
by different architectures, interactive and incremental, can be extended by the
incorporation of the UIC method.

In order to construct the user interface prototype we started from known models,
models defined in UML (Unified Modeling Language) [Rumbaugh99]. They are:

• Use Case Model which allows identifying functionalities of a system from the
point of view of the user interaction sequences.

• Domain Object Model allows identifying objects pertaining to the domain of the
system and the relationships among them.

Here it must be emphasized that the method only takes into consideration the aspects
relative to user interface construction, and as a consequence it should be incorporated to a
software development process which takes into account the remaining stages of software
life cycle.

PATTERNS AND OBJECTS FOR USER INTERFACE CONSTRUCTION

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

Artifacts used during a user interface construction

Figure 5 shows a diagram of the artifacts used and created during the user interface
construction: Use Case Model, Domain Object Model, User Interface Model (UI)
consisting of a Pattern Language and an Object Interface Model, and a User Interface
Prototype.

It is worth reminding that a Use Case Model describes all user interaction sequences
with the system that are required to carry out its functionalities, and each Use Case
represents one unit of interaction between the user and the system [Sparks02] Therefore,
a Use Case Model shows all possible scenarios from user interaction and represents the
behavior of the system.

The Domain Object Model, as any other object oriented process, is created by
identifying the objects located within the domain of the problem, its characteristics,
(attributes and operations) and the existing relationships among them. This model is
based on Use Case Model allowing to integrate these two visions of the system.

Modelo deCasos deUse Cases Model Domain Object Model

Prototype

UI Model

Pattern Language Interface Object Model

Figure 5. Artifacts of UIC method.

The User Interface Model can be built based on the two aforementioned models. This
model embraces all the aspects related to the interface, that is to say, the representation of
tasks that the user needs to perform while using the software. This model is formed by an
Interaction Pattern Language and an Interface Model Object, described as follows:

• The Interaction Pattern Language is formed by a domain pattern which describes
the domain to which the system that is being developed belongs to. A system can
belong to one or more domains. Then, a domain pattern should reference a system
pattern which describes its purpose, as well as usability aspects that must be taken
into account for the user interface design. This system pattern will reference all
resulting patterns from use cases analysis.

A USER INTERFACE CONSTRUCTION METHOD

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 83

• The Interface Object Model is formed by objects which belong to the Domain
Object Model and also are going to be represented in the user interface (not all
domain objects must be represented in the interface). Moreover, Interface Object
Model can include new objects as a result of interaction instruments associated to
operations, defined as such in the Domain Model (for example, in an editor
cutting operation is generally represented by a scissor object). In both cases the
result is obtained by applying a process denominated reification, that is to say,
conversing elements from one model to another model of lower abstraction level.

User Interface Model is the basis for constructing a User Interface Prototype. This is a
high fidelity prototype which is drawn from a horizontal and evolutive prototyping, as to
embrace the whole user interface.

User Interface Construction Process

Once we have established Use Case and Domain Object models (which are basically a
part of the analysis activity of software development process) it is time to construct the
User Interface Model and the User Interface Prototype, incorporating prototyping since
the first stages of an interactive software life cycle.

Figure 6 shows an activity diagram reflecting user interface construction process.
Next we describe the activities that take place during this process.

Use Case Model (UCM)

Domain Object Model (DOM)

UI designer Analyze
UCM and DOM

Interaction
Points and
Objects

Construct User
Interface Model
(UIM)

Construct
Pattern
Language (PL)

Construct
Interface Object
Model (IOM)

Construct User
Interface Prototype
(UIP)

PL IOM

UI Prototype

UIM

Figure 6. User interface construction process.

Constructing a User Interface Model implies constructing an Interaction Pattern
Language and an Interface Object Model. It appears that these two activities are carried
out one after the other but in the practice they can be carried out at the same time. The
next part describes this model construction in two steps:

The first step is the creation of an Interaction Pattern Language from use cases
analysis, this allows detecting interaction points that the user has with the software; each
point (or points) is translated into a pattern that associates to it the interaction problem to

PATTERNS AND OBJECTS FOR USER INTERFACE CONSTRUCTION

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

be solved, all this from the user point of view. These patterns can be completed by
referencing to other interaction patterns. At the end we will have a set of related patterns
that form the pattern language, which describes the user interface.

Once the interaction problem to be solved has been determined (a problem caused by
one or several points of interaction), pattern construction consists in describing this
problem as a component of the pattern and finding the appropriate solution. This solution
can come from reusing an existing pattern or, on the other hand, creating a new pattern. If
the solution is very complex, it should not be written in a single pattern, we just describe
the essential elements and use other patterns to complete the solution; this will be
reflected in the component: related patterns. In addition, another important factor to be
underlined is that the activity of user interface prototype construction will depend on the
way the solution is described. This means that if the solution is written in a descriptive
and graphic way, the prototype construction will be easer because it will go from a low
fidelity prototype to a high fidelity prototype.

Once the solution has been described, it is necessary to establish the context in which
the proposed solution will be appropriated and the forces that will have an impact on that
solution. Moreover, you must associate a mnemothecnic identification to the pattern
(name) and an initial confidence (range) with a minimum value (in this case is 0).

In the case of interaction patterns it is important to describe the usability impact,
which must reflect the usability aspects guaranteed by the pattern application. Also, the
system answer should be described after the pattern is applied, which corresponds to the
consequences, and last, we will illustrate a proposed solution using examples or
counterexamples from existing software showing a good or bad usage of this pattern.
Here is worth mentioning that the construction order of each pattern component is not
rigorous, moreover, sometimes it would not be necessary to describe some of the
components, except the compulsory ones.

The second step corresponds to Interface Object Model construction. In order to do
so we take as basis the Domain Object Model and we apply reification of domain objects
establishing its representation on user interface and creating new objects through
reification of operations; in order to do this, it is necessary to define an interaction
instrument [Beaudouin00]. An interaction instrument is simply a mediator between user
and interface object. The number of objects from Interface Object Model could be greater
than those from the Domain Object Model because objects in the Interface Object Model
are drawn from reification of domain objects as well as from its operations.

Figure 7 shows an example of reification of a domain object denominated document
and two of its operations: cut and properties. The left side of the figure shows the class
Document with some of its attributes and operations. The right side shows the
corresponding representation on the user interface of the object document as well as the
interaction instruments associated to their operations. It is to be noted that on the first
case a simple interface object is generated (cut) and the second case corresponds to a
complete window (see viewProperties), which is described on a task pattern that belongs
to a pattern language which describes the user interface of this software.

A USER INTERFACE CONSTRUCTION METHOD

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 85

Document

name
large

creationDate

...
cut
open

copy
paste

viewProperties
...

...

Figure 7. An example of object and operations reification.

The starting point for User Interface Prototype Construction is a User Interface Model
analysis, that is, a Pattern Language and an Interface Object Model analysis which can be
carried out at the same time.

Pattern Language analysis can present various cases depending on how the solution
is expressed on interaction patterns. These cases are:

1. If solutions are only expressed on a descriptive way, in order to produce a
prototype it is necessary to implement these solutions taking into consideration
examples presented on patterns as well as objects pertaining to Interface Object
Model.

2. If solutions contemplate windows layout, which are accomplished by using some
tools different from those to be used to develop the end product (for example,
diagram drawn by hand on paper), up to this point we have a low fidelity interface
prototype. So, starting from this prototype, a high fidelity prototype will be
constructed implementing solutions described on patterns and taking into account
the learning obtained by the evaluation of low fidelity prototypes and
incorporating objects pertaining to Interface Object Model.

3. If pattern solutions are graphically expressed, by means of an interface design
made using the tools to be used for the development of end product, then we
almost have ready a high fidelity prototype where we have incorporated objects
pertaining to the Interface Object Model. What is left is to integrate and
implement navigation between screens and the remaining details, so that this
artifact could be executed and could evolve up to become the end product.

Here it must be emphasized that this work is aimed at constructing a high fidelity
prototype, applying a horizontal and evolutionary prototyping, so that the prototype will
evolve to become a final product.

PATTERNS AND OBJECTS FOR USER INTERFACE CONSTRUCTION

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

Once the prototype has been constructed, it is necessary to continue developing the
software following any object-oriented process. The next section will describe the
insertion of UIC method within a Unified Process.

4 INCORPORATING THE METHOD TO AN OBJECT-ORIENTED
SOFTWARE DEVELOPMENT PROCESS

One of the manifestations of the lack of integration between Software Engineering and
Human-Computer Interaction is the absence of precise guidelines for the creation of user
interface in software development processes. One result of this research is the proposal of
a user interface construction method (UIC). It is also worth mentioning that there are
other results regarding this integration which constitute investigation guidelines in
Human-Computer Interaction, however at this moment there are no standards or proposal
generally accepted by the community. Some of these results can be seen on the edition
presented by Mark Van Harmelen, Object Modeling and User Interface Design
[Harmelen01].

As stated before, UIC method can be incorporated to an object-oriented software
development process, which is based upon functionalities, supported by architectures,
iterative and incremental. When we say that it is based on functionalities, it means that
the process starts by identifying the functionalities that the system will provide.
Supported by architecture means that it allows constructing several models which express
different perspectives of the system that is being developed; particularly it is required to
model the functionalities by means of a Use Case diagram and modeling objects that
make up the software domain by means of a Domain Object Model. On the other hand,
the development process should be iterative and also feasible to develop in an
incremental way as to become the final product.

Software Development Unified Process fulfils the aforementioned characteristics
because, among other factors, it includes the construction of a Use Case Model and a
Domain Object Model. Figure 8 shows activities as well as the stages belonging to the
Unified Process as they are presented in [Jacobson99]; where the user interface
construction is incorporated just as another activity within the software development
process.

As it can be seen in Figure 8, the greatest effort of user interface construction is
invested during the phases of Inception and Elaboration; this is because the prototype is
built after defining Use Case and Domain Object models.

Once the UIC method has been integrated to the Unified Process, what it is left is a
software development process characterized by the precise and clearly incorporation of
user interface construction, using two of the UML models and introducing the concept of
interaction pattern and interface object to a user interface construction.

One of the main advantages of using interaction patterns is the fact that you can
successfully reuse solutions to recurrent problems related to user interface construction.
In order to achieve its effectiveness it is convenient to use tools that facilitate the

INCORPORATING THE METHOD TO AN OBJECT-ORIENTED SOFTWARE DEVELOPMENT
PROCESS

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 87

handling of reusable components. In this way it is possible to storage patterns in a
repository and to recover them to be used for constructing a particular user interface.

Fases

Requeryments Analysis

Inception Elaboration Construction TransitionActivities

Analysis

Design

Implementation

Test

User interface
construction

Figure 8. Unified Process and UI construction

5 CONCLUSION

This work shows interaction patterns as reusable components which, among other things,
capture knowledge. These patterns are simple, adaptable and recoverable components,
and combined with interface objects constitute the basis for defining a user interface
construction method.

As far as interaction patterns are concerned, we propose a simple and precise
structure to express these patterns which will help different professional groups to
understand them; groups who could take part of the development of current user
interfaces. Moreover, this work defines a taxonomy definition and a pattern organization
that supports its creation and usage by interface design specialist as well as other
specialists.

The user interface construction method represents a new step towards integration
between Software Engineer and Human-Computer Interaction, establishing precise
guidelines for user interface construction and incorporating this activity within system
life cycle systems.

The user interface construction method has been experimentally validated at the first
semesters of Computer Science at the Central University of Venezuela obtaining
satisfactory results. In addition, it has been successfully applied in geological modeling
software development as part of a master thesis [Reyes02]. These study cases allowed to
simplify and clean the method showing its applicability and effectiveness.

PATTERNS AND OBJECTS FOR USER INTERFACE CONSTRUCTION

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

ACKNOWLEDGEMENTS

The author of this paper would like to thank the Council of Scientific and Humanistic
Development of the Central University of Venezuela (CDCH) for financing this research.

REFERENCES

[Alexander77] Alexander, Ch.; Ishikawa, S.; Silverstein, M.; Jacobson, M.; Fiksdahl-King,
I. and Angel, S. “A Pattern Language: Towns, Buildings, Construction.”,
Oxford University Press, 1977.

[Bayle97] Bayle E, Bellamy R, Casaday G, Erickon T, Fincher S, Grinter B, Gross B,
Ledher D, Marmolin H, Moore B, Pott C, Skousen G, Thomas J. “Putting it
all together: Toward a Pattern Language for Interaction Design.” CHI97
WorkShop, 1997.

[Beaudouin00]Beaudouin-Lafon, M. y Mackay, W. “Reification, Polymorphism and
Reuse: Three Principles for Designing Visual Interfaces”. Proc. Advanced
Visual Interfaces, AVI2000, Italy, May 2000.

[Borchers01] Borchers, J. A Pattern Approach to Interaction Design. Wiley 2001.

[Borchers00] Borchers, J. “Breaking the interdisciplinary Limits of computer-human
Interaction Design: A Pattern Approach.”, SIGCHI vol 32 1, January 2000.

[Borchers99] Borchers, J.; Fincher, S.; Griffiths, R.; Pemberton, L and Siemon, E.
“Usability Pattern Language: Creating a community.” Report of workshop
at INTERACT’99 (Edinburgh, Scotland, Agosto 30-31, 1999).

[Carroll02] Carroll, John. Human-Computer Interaction, the New Millenium. Addison-
Wesley. USA,2002.

[Casaday97] Casaday, G. “Notes on a Pattern Lenguaje for Interactive Usability.”
CHI’97 Electronic Publications: Late-Breaking/Short Talks URL:
http://www.acm.org/sigchi/chi97/proceedign/short-talk/gca.html.

[Coram03] Coram, T. Y Lee, J. “Experiences – A Pattern Language for User Interface
Design.”, Visited June 2003. URL:
http://www.maplefish.com/todd/papers/Experiences.html

[Erickson01] Erickson, T. “Lingua Franca for Design: Sacred Places and Pattern
Languages.” DIS 2001. URL:
http://www.pliant.org/personal/Tom_Erickson/LinguaFranca_DIS2000.html

[Gamma97] Gamma, E.; Helm, R.; Johnson, R. y Vlissides, J. Design Patterns. Element
of Reusable Object-Oriented Software. Addison-Wesley. USA, 1997.

[Jacobson99] Jacobson, I, Booch, G; Rumbaugt, J . The Unified Software Development
Process. Addison Wesley, 1999.

http://www.acm.org/sigchi/chi97/proceedign/short-talk/gca.html
http://www.maplefish.com/todd/papers/Experiences.html
http://www.pliant.org/personal/Tom_Erickson/LinguaFranca_DIS2000.html

REFERENCES

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 89

[Mahemoff98] Mahemoff, M. Y Johnston, L. “Pattern Language for Usability: An
Investigation of Alternative Approaches.” Asia-Pacific Conference on
Human-Computer Interaction (APCHI’98) Proceedings, 25-31. Tanaka,
1998

[Nielsen93] Nielsen, J. Usability Engineering. Prentice-Hall. USA, 1993

[Reyes02] Reyes, A., Acosta, E, y Zambrano, N. “Patrones de Interacción: su uso en la
construcción de la Interfaz de una Aplicación de Modelación de Medios
Geológicos.” RT 2002-01. Lecturas en Ciencias de la Computación, ISSN
1316-6239. Escuela de Computación, U.C.V. Apartado 47002 Caracas,
Venezuela 2002.

[Rumbaugh99]Rumbaugh , James; Booch, Grady and Jacobson, Ivar. UML: Unified
Modeling Language. Version 1.3, June 1999. Rational Software Corporation
http://www.rational.com

[Sparks02] Sparks, G. “An Introduction to UML. The Use Case Model. Enterprise
Architect. UML Case Tool by Sparx Systems”. January, 2002.
http://www.sparxsystems.com.au

[Tidwell03] Tidwell, Jenifer. “Common Ground”. Visited June 2003. URL:
http://www.mit.edu/~jtidwell/common_ground.html

[Usability03] Usability Group University of Brighton. “The Brighton Usability Pattern
Collection”. Visited June 2003. URL: http://www.it.bton.ac.uk/
cil/usability/patterns/

[Harmelen01] Van Harmelen, M. Object Modeling and User Interface Design. Designing
Interactive Systems. Addison-Wesley. USA, 2001

[Welie00] Van Welie, M. y Troetteberg, H. “Interaction Patterns in User Interfaces”,
7th Pattern Lenguaje of Programs Conference, August 2000, Illinois, USA,
2000. URL: http://www.welie.com/patterns

[Welie03] Van Welie, Martijn. Amsterdan Collection of Patterns. Visited June 2003.
URL: http://www.welie.com

http://www.rational.com
http://www.sparxsystems.com.au
http://www.mit.edu/~jtidwell/common_ground.html
http://www.it.bton.ac.uk/cil/usability/patterns/
http://www.it.bton.ac.uk/cil/usability/patterns/
http://www.welie.com/patterns
http://www.welie.com

PATTERNS AND OBJECTS FOR USER INTERFACE CONSTRUCTION

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

About the authors

Alecia Eleonora Acosta is teacher and researcher at the Central
University of Venezuela from 0ctober, 1988. She did a D.E.A
d’Informatique at the Université Paris-Sud XI, France, September 1992.
Next, she obtained her Master in Computer Sciences at the Central
University of Venezuela in 1993. Currently she is working on her PhD.
in Computing Sciences and doing research around user interface design,

patterns, user interface design guidelines, web design, interface agents. She can be
reached at eacosta@strix.ciens.ucv.ve

Nancy Zambrano Rivas is teacher and researcher at the Central
University of Venezuela from 0ctober, 1976. She obtained her Master in
Computer Sciences at the Central University of Venezuela in 1989. She
obtained her PhD. in Computing Sciences, Informatique at the
Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud
XI, 1995. She is researching around Software Engineering (light

methods, heavy methods, object-oriented methods, Unified Process, software
development methods based on transformations) and Human-Computer Interaction
(interaction patterns, user interface construction methods). She can be reached at
nzambran@strix.ciens.ucv.ve

mailto:eacosta@strix.ciens.ucv.ve
mailto:nzambran@strix.ciens.ucv.ve

