
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, no. 3, March-April 2004

Cite this article as follows: Shih-Chien Chou: “LnRBAC: A Multiple-Levelled Role-Based Access
Control Model for the Protecting Privacy in Object-Oriented Systems”, in Journal of Object
Technology, vol. 3, no. 3, March-April 2004, pp. 91-120.
http://www.jot.fm/issues/issue_2004_03/article2

LnRBAC: A Multiple-Levelled Role-
Based Access Control Model for
Protecting Privacy in Object-Oriented
Systems

Shih-Chien Chou, Department of Computer Science and Information
Engineering, National Dong Hwa University, Taiwan

Abstract

Role-based access control (RBAC) is useful in information security. It is a super set of
discretionary access control (DAC) and mandatory access control (MAC). Since DAC
and MAC are useful in information flow control (which protects privacy within an
application), RBAC can certainly be used in that control. Our research reveals that
different control granularity is needed in different cases when controlling information
flows within an application. An information flow control model should thus
simultaneously offer different levels of control granularity. We designed a multiple-
leveled RBAC model to offer multiple levels of control granularity, in which a level of
RBAC controls a level of granularity. We called the model LnRBAC (n-leveled RBAC),
which offer the following features: (1) it allows different control granularity in different
cases, (2) it solves the covert channel problems caused by abnormal program stopping,
(3) it adapts to dynamic object state change, (4) it controls method invocation through
argument sensitivity (5) it allows purpose-oriented method invocation, (6) it controls
write access precisely, and (7) it avoids Trojan horses. We implemented a prototype for
LnRBAC and evaluated it. This paper presents LnRBACL.

1 INTRODUCTION

Privacy protection within an application is essential for an application that manages
sensitive data. The protection can be achieved by information flow control, which
prevents information in high security levels from flowing to subjects in low security
levels (i.e., the control block non-secure information flows). Many information flow
control models have been developed, among which some applied mandatory access
control (MAC) [Bell 1976] [Denning 1976] [Denning 1977], some applied discretionary
access control (DAC) [Samarati 1997] [Ferrari 1997], some applied the label approach

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_03/article2

LnRBAC: A MULTIPLE-LEVELLED ROLE-BASED ACCESS CONTROL MODEL FOR THE

PROTECTING PRIVACY IN OBJECT-ORIENTED SYSTEMS

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

[Myers 1998] [Myers 2000] [McCollum 1990] [McIlroy 1992], and some applied role-
based access control (RBAC) [Izaki 2001]. Our research applies RBAC. Below we
briefly introduce RBAC and then back to the discussion of RBAC on privacy protection.

A RBAC model is primarily composed of users, roles, sessions, permissions, various
assignment relationships among the previous components, and constraints. A role is a
collection of permissions [Sandhu 1996a]. Within a session, a user possesses the
permissions of the role he plays. Role assignment is based on user responsibilities. That is,
the role assigned to a user should possess permissions to facilitate finishing the user’s
responsibility. When a user finishes his responsibility, the role assignment will be
removed, which results in revoking permissions from the user. Users can change role
during his responsibility if necessary. This facilitates providing no extra privileges (i.e.,
enforcing the need-to-know principle) [Sandhu 1996a]. A major advantage of RBAC is
that permissions are bound to roles instead of users. With this, dynamic adjustment of user
permissions can be achieved through role assignment.

The research in [Osborn 2000] [Sandhu 1996a] proved that RBAC is a super set of
DAC and MAC. Since DAC and MAC are useful in information flow control, RBAC can
certainly be used in that control. Currently we identify the research in [Izaki 2001] applied
RBAC in that control. We involved for years in the research of applying RBAC to control
information flows within object-oriented systems. From the research, we experienced a
problem related to the control granularity of security as described below.

In the original design of RBAC, users are human beings or agents [Sandhu 1996a].
Permissions are access rights from users to objects (an object can be a table in a relational
database or an object in an object-oriented database). In this case, the control granularity
is detailed to the table/object level. This level of control granularity is insufficient in
controlling information flow within an application, because information within an object-
oriented system is generally stored in object attributes or method variables (we
collectively call them variables in the rest of this paper). In this regard, the control
granularity should detail to the variable level (and therefore information in variables can
be protected). Contradicting to this control granularity is detailing the control granularity
to objects [Samarati 1997] or methods [Izaki 2001] [Yasuda 1997]. Below we use a
man/woman example to explain why detailing the granularity to objects or methods is
insufficient.

Suppose that a man and a woman may be strangers, friends, or husband and wife. If
they are strangers, no information flow among them is allowed. If they are friends, they
can read each other’s general information, such as name, address, e-mail address, and so
on. If they are married, a marriage certificate should exist. In this case, they can read and
write each other’s general information, and can read each other’s personal information,
such as birthday, health condition, and so on. Moreover, they can read the information of
their marriage certificate, which cannot be accessed by persons other than the couple.

In the above example, if the control granularity is detailed to objects only, we can
only control the woman that can be accessed by a man, but cannot control the woman’s
methods and variables that can be accessed by the man. In this regard, if a man “m1” can

INTRODUCTION

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 93

access his female friend “w1”, “m1” can access both the general and personal information
of “w1” by invoking the methods of “w1”. With this control granularity, the control
requirements mentioned above cannot be achieved. On the other hand, if the control
granularity is detailed to methods only, we can only control the methods of a man/woman
that can be invoked by a woman/man, but cannot control the variables that can be
accessed by a method. In this regard, if a man’s method “m1.md1” can invoke his female
friend’s method “w1.md1”, both the general and personal information of “w1” can be
offered to “m1” through “w1.md1”. This control granularity, again, cannot achieve the
control requirements mentioned above.

According to the description above, detailing control granularity to variables is
necessary. However, there are cases that coarser grained of control granularity are needed.
For example, as described in the man/woman example, no information flow is allowed
among strangers, whereas information flows among friends or between husband and wife
are allowed. In this case, a control mechanism that details the control granularity to
objects is needed to determine the legality of information flows among objects. As
another example, a man can invoke methods of his female friends to handle information
flows between friends. Moreover, he can invoke other methods of his wife to handle
information flows between husband and wife. In other words, a woman’s methods that
can be invoked by her friends and those that can be invoked by her husband are generally
different. In this case, a control mechanism that details the control granularity to methods
should be available to determine the legality of method invocations (this feature is also
called purpose-oriented method invocation in [Yasuda 1997]).

In addition to the above cases of control granularity, an information flow control
model should better offer a much coarser grained of control granularity to solve the covert
channel problems [Focardi 1997] induced by abnormal program stopping. We explain this
case below. When a program is abnormally stopped, the operating system will dump the
memory space used by the program to a file. The debugger then helps programmer to
debug the program using the dumped file. If the dumped file is accessed by an
unauthorized user or application, private information within the program may be leaked.
To prevent this, a model should control the human beings or applications that can access a
file or run a program. In this regard, a control granularity details to just programs or files
is needed.

As a summary, four types of control granularity should be simultaneously offered
by an information flow control model. In the past years, we developed an RBAC-based
information flow control model called OORBAC [Chou in press]. OORBAC details the
control granularity to variables. Moreover, it incorporates complex mechanisms to detail
control granularity to objects and methods. According to the experiences of using
OORBAC, the control in OORBAC is too complicated. Moreover, OORBAC fails to
solve the problems induced by covert channels. We thus revised OORBAC. The basic
consideration of this revision is using multiple-leveled RBACs, in which one level of
RBAC offers one level of control granularity. An information flow should fulfill every
level of RBAC for the flow to be secure. Currently, the revised model is composed of the
following four levels of RBAC.

LnRBAC: A MULTIPLE-LEVELLED ROLE-BASED ACCESS CONTROL MODEL FOR THE

PROTECTING PRIVACY IN OBJECT-ORIENTED SYSTEMS

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

1. Level 0 RBAC (L0RBAC). It solves the covert channel problems mentioned

above by detailing the control granularity to programs and files.
2. Level 1 RBAC (L1RBAC). It details the control granularity to objects, which

determines the legality of information flows among objects.
3. Level 2 RBAC (L2RBAC). It details the control granularity to methods, which

determines the legality of method invocations.
4. Level 3 RBAC (L3RBAC). It details the control granularity to variables, which

determines the security of information flows among variables.

We call the revised model LnRBAC (n-leveled RBAC), which offers the following
features:

1. It allows different control granularity in different cases
The need for this feature is the motivation of LnRBAC, in which different level
RBAC provides different control granularity.

2. It solves the covert channel problems caused by abnormal stopping of program.
This feature is offered by L0RBAC. In the level, users are human beings or
programs, and permissions are access rights from human beings or programs to
programs or files. With the permissions, unauthorized human beings and
applications cannot access dumped files when a program is abnormally stopped.

3. It adapts to dynamic object state change.
During program execution, objects may be dynamically instantiated or deleted.
Moreover, object relationships may be dynamically established or removed. We
call a snapshot of objects and object relationships at a time point an object state.
Information flow control model should adapt to dynamic object state change. For
example, if initially a man and a woman are strangers, no information flow is
allowed between them. When they become friends at a time point, information
flows for friends should be allowed between them. When they get married at
another time point, information flows for husband and wife should be allowed
between them. This feature is achieved by L1RBAC and L2RBAC.

4. It allows purpose-oriented method invocation.
The research in [Yasuda 1997] identified the needs for purpose-oriented method
invocation. With this, the legality of method invocations should be ensured. This
consideration is correct because methods may be in different secure levels and
therefore should be protected independently [Varadharajan 1990]. For example, if
a man and a woman are friends, he can invoke a method that retrieves her general
information but cannot invoke a method that retrieves her personal information.
This feature is achieved by L2RBAC.

5. It controls method invocation through argument sensitivity.
This feature is useful, although the models we surveyed did not emphasize it. For
example, suppose a man “m1” can change his wife’s general information using
“m1.others_new_general_info” as an argument. Then, using other variables such

INTRODUCTION

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 95

as the man’s general information as an argument in the invocation should be
denied. The rationale is that different variables carry different information and
therefore should be used for different purposes. This feature is achieved by
L3RBAC.

6. It controls write access precisely.
According to our survey, most existing models paid poor attention to write access
control. They merely obeyed the “no write down” rule [Bell 1976] to control write
access. Nevertheless, write access is destructive and therefore should be controlled
precisely. Otherwise, data corruption may occur according to intentional or
accidental mistakes. We propose that only the data sources trusted by a variable
can write the variable. This feature is achieved by L3RBAC.

7. It avoids Trojan horses.
Avoiding Trojan horses [Myers 1998] [Myers 2000] is the basic feature that
should be offered by every information flow control model. This feature is
achieved by the join operation [Myers 1998] [Myers 2000].

This paper presents LnRBAC. Since every level RBAC of LnRBAC is an adaptation
of RBAC96, we introduce RBAC96 briefly before describing LnRBAC. We also describe
the features of LnRBAC.

Figure 1: RBAC 96

LnRBAC: A MULTIPLE-LEVELLED ROLE-BASED ACCESS CONTROL MODEL FOR THE

PROTECTING PRIVACY IN OBJECT-ORIENTED SYSTEMS

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

2 RBAC96

This section briefly introduces RBAC96. Details of it can be found in [Sandhu 1996a].
Figure 1 shows RBAC96, which is composed of the following components:

a) A set of permissions (P). A permission approves a mode of access on an object.
b) A set of roles (R). A role is composed of a set of permissions.
c) A many-to-many permission to role assignment (PA). A permission may be

assigned to multiple roles and a role may be assigned multiple permissions.
d) A partially ordered role hierarchy (RH). Roles are structured using the “ ≥ ”

relationship. If a relationship “x ≥ y” exists, “x” possesses all the permissions of
“y”.

e) A set of users (U), which is a human being or an agent. Users play roles. A user
playing a role possesses the permissions of the role.

f) A set of sessions (S). A user establishes a session during which he plays one or
more roles.

g) A many-to-many user to role assignment (UA). A user may play many roles
within a session, and may establish multiple sessions simultaneously. Moreover,
multiple users may play the same role. In addition, users can change role to
facilitate providing no extra privileges in a session [Sandhu 1996a].

h) A function that maps a session to a single user (SU). Using the function, users in a
session can be identified.

i) A function that maps a session to a set of roles (SR). Using this function, the
permissions of a session can be identified.

j) A collection of constraints limiting the model elements.

3 LnRBAC

The most challenge work in designing LnRBAC is adapting to dynamic object state
change (remember that an object state is a snapshot of objects and object relationships at
a time point). We use the man/woman example mentioned in section 1 and the object
states in Figure 2 to explain this. Figure 2(a) depicts two men and two women. It also
shows a marriage relationship among the man “m1”, the woman “w1”, and the certificate
“cer1”, and shows three friendship relationships between men and women. Figure 2(b)
depicts one newly added man “m3” and one newly added woman “w4”. It also shows that
“m1” and “w1” get divorced and then become strangers (in this case, the certificate
“cer1” should be deleted). Moreover, the figure shows various marriage and friendship
relationships between men and women. Figure 2(c) shows that “w3” is past away. Since
“m2” does not marry another woman, the marriage between “m2” and “w3” is still legal
and therefore the certificate of the marriage, “cer3”, need not be deleted.

LnRBAC

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 97

In the object state shown in Figure 2(a), information flows among “m1”, “w1” and
“cer1” should obey the rules for a marriage because a “married” relationship exists among
them. In addition, information flows between “m1” and “w2”, those between “m2” and
“w2”, and those between “m2” and “w3” should obey the rules for friends because a
“friends” relationship exists between the pairs of man and woman. Moreover, information
flows between “m2” and “w1” are disallowed because they are strangers (i.e., no
relationship exists between them). The allowed and disallowed information flows in
Figures 2(b) and 2(c) will be different from those in Figure 2(a) because of different
object states. As a summary of the above description, the allowed and disallowed
information will change according to object state change.

Figure 2: Object state change

Our research reveals that objects relationships [Rumbaugh 1999] can be used to
determine whether an information flow is secure or not. We thus use them to regulate
information flows among objects. We call a relationship an association, and give the
following definition:

An association exists among classes if information may directly flow among the
instances of the classes. Each association is associated with a security policy for class
instances to obey. If multiple security policies must be obeyed by class instances, more
than one association should be defined among the classes, in which an association
enforces a security policy.

In the above definition, an association is a relationship among classes, which can be
instantiated to link objects of the classes. Objects linked by an association coexist in an

LnRBAC: A MULTIPLE-LEVELLED ROLE-BASED ACCESS CONTROL MODEL FOR THE

PROTECTING PRIVACY IN OBJECT-ORIENTED SYSTEMS

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

association group (AG) according to the association. For example (see Figure 2(a)),
“m1”, “w1”, and “cer1” coexist in an AG according to the association “married”. Direct
information flows are allowed among objects coexisting in an AG but disallowed among
objects not coexisting in an AG. Since information cannot directly flow among sessions,
an AG should be established for objects that may communicate. Although information
cannot directly flow among sessions, it may indirectly flow among AGs. For example, if
“obj1” and “obj2” are in an AG and “obj2” and “obj3” in another, information from
“obj1” may indirectly flow to “obj3” via “obj2”.

LnRBAC model

This section defines the four level RBACs in LnRBAC, in which only L0RBAC does not
use the concept of association. L0RBAC regulates the access rights from human beings
or programs to programs or files. It is defined below:

L0RBAC = (U0, S0, P0, R0, RH0, PA0, UA0, SU0, SR0), in which “U0” is the set of

users; “S0” is the set of sessions; “P0” is the set of permissions; “R0” is
the set of roles; “RH0” is the set of role hierarchies; “PA0” is the set of
permission to role assignment; “UA0” is the set of user to role assignment;
“SU0” is the set of functions that map a session to users, and “SR0” is the
set of functions that map a session to roles. The definition of L0RBAC’s
components are shown below:

U0 = {u | u is a human being or a program}
S0 = {s | s is a time period during which a person runs a program or a program

accesses a file}
P0 = {(u, o, a) | u∈U0, o is a program or a file, a∈{r, w, e}, and u is allowed to

access o in which the allowed access is indicated by a}. P0 defines the
access rights from users to programs or files, in which an access may be a
read, a write, or an execute.

R0 = {r | r is a set of permissions}
RH0 = {r0≥ r1 | r0, r1∈R0 and r0 possesses all permissions of r1}
PA0 = {(r, p) | r∈R0 and p∈P0 and p is assigned to r}
UA0 = {(u, r) | u∈U0 and r∈R0 and u is assigned to r}
SU0 = {f | f is a function, f(s) = U in which s∈S0 and U⊆U0, and every user u in

U is in the session s}
SR0 = {f | f is a function, f(s) = R in which s∈S0 and R⊆R0, and every role r in

R is within the session s}

L1RBAC determines whether information flows between two objects are allowed. It is

defined below:

L1RBAC = (C, A1), in which “C” is the set of classes in an application and “A1” is the

set of associations in the application. Remember that an association can be

LnRBAC

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 99

instantiated to produce AGs for objects to coexist. The component “A1” is
defined below:

A1 = (U1, S1, P1, R1, RH1, PA1, UA1, SU1, SR1, CT1), in which “U1”, “S1”,
“P1”, “R1”, “RH1”, “PA1”, “UA1”, “SU1”, “SR1” are similar to “U0”,
“S0”, “P0”, “R0”, “RH0”, “PA0”, “UA0”, “SU0”, “SR0” in L0RBAC.
Moreover, “CT1” is the constraints of L1RBAC. Components in “A1” are
defined below:

U1 = {u | u is an object instantiated from a class, i.e., from a member of C}
S1 = {s | s is an AG according to an association, i.e., s is an instance of an

association}
P1 = {(o0, o1) | o0, o1∈U1 and information flows among o0 and o1 are

allowed}
R1 = {r | r is a set of permissions}
RH1 = {r0≥ r1 | r0, r1∈R1 and r0 possesses all permissions of r1}
PA1 = {(r, p) | r∈R1 and p∈P1 and p is assigned to r}
UA1 = {(u, r) | u∈U1 and r∈R1 and u is assigned to r}
SU1 = {f | f is a function, f(s) = U in which s∈S1 and U⊆U1, and every user u in

U is in the session s}
SR1 = {f | f is a function, f(s) = R in which s∈S1 and R⊆R1, and every role r in

R is within the session s}
CT1 = {ct | ct is a cardinality constraint or a modality constraint}

From the above description, security policies of L1RBAC are embedded within

associations. Note that L1RBAC also defines cardinality and modality
constraints among classes [Pressman 2001].

L2RBAC determines whether an invocation between two methods is allowed. It is
defined below:

L2RBAC = (C, A2), in which “C” is the set of classes and “A2” is the set of

associations. The component “A2” is defined below:
A2 = (U2, S2, P2, R2, RH2, PA2, UA2, SU2, SR2), in which “U2”, “S2”, “P2”,

“R2”, “RH2”, “PA2”, “UA2”, “SU2”, “SR2” are similar to “U0”, “S0”,
“P0”, “R0”, “RH0”, “PA0”, “UA0”, “SU0”, “SR0” in L0RBAC.
Components in “A2” are defined below:

U2 = U1
S2 = S1
P2 = {(m1, m2) | m1 and m2 are object methods and m1 is allowed to invoke

m2}
R2 = {r | r is a set of permissions}
RH2 = {r0≥ r1 | r0, r1∈R2 and r0 possesses all permissions of r1}
PA2 = {(r, p) | r∈R2 and p∈P2 and p is assigned to r}
UA2 = {(u, r) | u∈U2 and r∈R2 and u is assigned to r}
SU2 = SU1

LnRBAC: A MULTIPLE-LEVELLED ROLE-BASED ACCESS CONTROL MODEL FOR THE

PROTECTING PRIVACY IN OBJECT-ORIENTED SYSTEMS

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

SR2 = {f | f is a function, f(s) = R in which s∈S2 and R⊆R2, and every role r in
R is within the session s}

L3RBAC determines whether an information flow is secure. It is defined below:

L3RBAC = (C, A3), in which “C” is the set of classes and “A3” is the set of

associations. The component “A3” is defined below:
A3 = (U3, S3, P3, R3, RH3, PA3, UA3, SU3, SR3, DSOURCE), in which “U3”,

“S3”, “P3”, “R3”, “RH3”, “PA3”, “UA3”, “SU3”, “SR3” are similar to
“U0”, “S0”, “P0”, “R0”, “RH0”, “PA0”, “UA0”, “SU0”, “SR0” in
L0RBAC. As to DSOURCE, it records the data source of a variable. For
example, suppose the attribute “attName” is derived from the variable
“var1” and “var2”, and “var1” and “var2” are respectively written by the
methods “mdx” and “mdy”. Then, the DSOURCE of “attName” is the set
“{mdx, mdy}” after the derivation. A DSOURCE is set empty initially. It
will obtain contents during program execution through the join operation
(see section 3.3). DSOURCEs facilitate controlling write access (see
section 3.3). Components in “A3” are defined below:

U3 = U1
S3 = S1
P3 = {(v, RACL, WACL) | v is a variable, RACL = {m | m is a method that is

allowed to read v}, and WACL = {m | m is a method that is allowed to
write v}}

R3 = {r | r is a set of permissions}
RH3 = {r0≥ r1 | r0, r1∈R3 and r0 possesses all permissions of r1}
PA3 = {(r, p) | r∈R3 and p∈P3 and p is assigned to r}
UA3 = {(u, r) | u∈U3 and r∈R3 and u is assigned to r}
SU3 = SU1
SR3 = {f | f is a function, f(s) = R in which s∈S3 and R⊆R3, and every role r in

R is within the session s}
DSOURCE = {f | f is a function, f(v) = {m | m is a method and m is a data source of v},

and v is a variable}

Using LnRBAC

We embedded LnRBAC in the JAVA language to produce the LnRBACL language.
APPENDIX 1 shows the man/woman example mentioned in section 1 implemented in
LnRBACL. The object states shown in Figure 2 are implemented in the appendix. In the
implementation, we suppose that the class “example”, which contains the method “main”,
and the method “example.main” possesses every permission we needed because the class
“example” is not the focus of this example.

The appendix shows that an LnRBACL program is composed of two parts, namely
the RBAC part and the original JAVA program. Moreover, the RBAC part consists of

LnRBAC

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 101

L0RBAC through L3RBAC, and two non-JAVA statements are used in the JAVA
program to define object states. They are “addAG” (line 15.4.4) to create an AG and
“removeAG” (line 15.4.21) to remove an AG.

L0RBAC defines the permissions of three roles. The role “operator” is allowed to
execute the program “a.exe” and “debugger.exe”. The role “program” is allowed to read
the file “file1.dat” and write “file2.dat”. The role “debugger” is allowed to read
“dump.core”. Here we suppose that the program in the appendix will be compiled into
“a.exe”, the debugger is “debugger.exe”, and the operating system dumps the memory
space used by “a.exe” to “dump.core” when “a.exe” is abnormally stopped. According to
L0RBAC, only the debugger can access the dumped memory and only an operator can
execute the debugger, this prevents the dumped file from being accessed by unauthorized
persons or applications.

L1RBAC in APPENDIX 1 will be enacted when “a.exe” is executed (i.e., when
L0RBAC initiates the session of executing “a.exe”). This level RBAC declares that man
objects can access woman objects and vice versa under an AG according to the
association “friends”. It also declares that man (woman) objects can access woman (man)
objects and certificate objects under an AG according to the association “married”.
Information flows among objects of the classes not appear in L1RBAC is not allowed.
L1RBAC also declares the cardinality and modality constraint of an association. For
example, line 3.1.1 indicates that a man can have multiple female friends (i.e., the
cardinality is “*”) and a man need not have a female friend (i.e., the modality is “O”). As
another example, line 3.3.3.1 indicates that a marriage should exist for a certificate (i.e.,
the modality is “M”) and one certificate can be associated with only one marriage (i.e., the
cardinality is “1”).

L2RBAC in APPENDIX 1 will be enacted when L0RBAC initiates the session of
executing “a.exe”. This level RBAC declares the allowed method invocations. For
example, line 5.3.2.2 declares that the method “m1.change_others_general_infor” can
invoke the method “w1.change_self_general_info” within an AG according to the
association “married”. Here “m1” is a man and “w1” is a woman. The role hierarchy in
line 5.3.1 says that a permission possessed by the association “friends” is also possessed
by the association “married”.

L3RBAC in APPENDIX 1 will be enacted when L0RBAC initiates the session of
executing “a.exe”. A permissions in this level RBAC declares the object methods that can
read and write a variable. The permission related to a variable is an ACL of the variable,
which composed of a RACL (read access control list) and a WACL (write access control
list). See line 7.1.1.1 for an example, which defines the ACL of the variable
“man.self_general_info” in the association “friends”. RACLs, WACLs, and DSOURCEs
ensure secure information flows.

Information flow security in LnRBAC

When executing an application, the operating system checks the information in L0RBAC
to ensure that the execution is legal. During the execution of an application, the

LnRBAC: A MULTIPLE-LEVELLED ROLE-BASED ACCESS CONTROL MODEL FOR THE

PROTECTING PRIVACY IN OBJECT-ORIENTED SYSTEMS

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

corresponding L1RBAC, L2RBAC, and L3RBAC are created. To check the security of
an information flow, we first check the type of information flow. If the flow is induced by
method invocation, L1RBAC down to L3RBAC should be involved to check the flow’s
security. If the flow is not induced by method invocation (i.e., the information flow is
within a method), only L3RBAC is invoked in the checking. Below we describe the use
of the three levels of RBAC.

1. If an information flow is induced by a method invocation, e.g., “obj1.md1”
invokes “obj2.md2”, L1RBAC is first involved to check whether information
flows between “obj1” and “obj2” are allowed. If the answer is negative, the
information flow is non-secure.

2. If the above answer is positive, L2RBAC is involved to check whether the
invocation from “obj1.md1” to “obj2.md2” is allowed. If the answer is negative,
the information flow is non-secure.

3. If an information flow is induced by method invocation and both the above
checking passes, the ACLs and DSOURCEs of arguments should be copied to the
corresponding parameters. The copying is secure because a parameter receiving
the value of an argument inherits the security level of the argument. Note that if an
object is passed as an argument, the copying is bypassed because ACLs and
DSOURCEs of the object’s variables are already defined.

4. After the above copying, every information flow in the invoked method should
fulfill the following secure flow conditions. The conditions are established using
ACLs in L3RBAC based on the following assumption: (a) a value derived from
the variables “var1”, “var2”, “varn”, and so on is assigned to the variable “d_var”,
(b) the assignment appears in the method “md1”, (c) the original ACL of “d_var”
is “{RACLd_var; WACLd_var}”, (d) the ACL of the ith variable that derives
“d_var” is “{RACLvari; WACLvari}”, and (e) the DSOURCE of “vari” is
“DSOURCEvari”.

First secure flow condition: (RACLd_var⊆ (RACLvar1 ∩ RACLvar2 ∩ ... ∩ RACLvarn))

∧ (md1∈(RACLvar1 ∩ RACLvar2 ∩ ... ∩ RACLvarn))
Second secure flow condition: WACLd_var ⊇ (DSOURCEvar1 ∪ DSOURCEvar2 ∪ ...∪

DSOURCEvarn ∪ {md1})

The first secure flow condition controls read access. The requirement
“RACLd_var⊆ (RACLvar1 ∩ RACLvar2 ∩ ... ∩ RACLvarn)” requires that “d_var” must be
the same restricted as or more restricted than “var1”, “var2”, “varn”, and so on. The
requirement “md1∈ (RACLvar1 ∩ RACLvar2 ∩ ... ∩ RACLvarn)” is necessary because
the variables “var1”, “var2”, “varn”, and so on are read by the method “md1”.

The second secure flow condition controls write access. It requires that the data
sources of “var1”, “var2”, “varn”, and so on should be within “WACLd_var”, because the
data derived from the variables are written to “d_var”. The requirement also requires that

LnRBAC

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 103

the method “md1” must be within “WACLd_var” because the write operation is performed
by the method.

After the derived data is assigned to the variable “d_var”, the ACL of “d_var” should
be changed by the join operation [Myers 1998] [Myers 2000]. This change is to avoid
Trojan horses. We use the symbol “ ⊕ ” to represent the join operator. With join,
“ACLd_var” will be changed to be “ACLvar1 ⊕ ACLvar2 ⊕ . . . ⊕ ACLvarn” after the
derived data is assigned to the variable “d_var”. The join operation is defined below:

ACLvar1 ⊕ ACLvar2 ⊕ ... ⊕ ACLvarn = {RACLvar1 ∩ RACLvar2 ∩ ... ∩ RACLvarn ;

WACLvar1∪WACLvar2∪ ...∪WACLvarn}

The join operation trusts less or the same readers. Therefore, join will not lower down
security level. On the other hand, the operation trusts more writers. This is reasonable
because a writer that can write a variable should be regarded as a trusted data source for
the data derived from the variable. In addition to joining ACLs, the DSOURCE of
“d_var” will be adjusted as follows:

DSOURCEd_var = DSOURCEvar1∪DSOURCEvar2∪ ...∪DSOURCEvarn∪ {md1}

“DSOURCEd_var” is set the union of “DSOURCEvar1”, “DSOURCEvar2”,

“DSOURCEvarn”, “{md1}”, and so on. The union of the DSOURCEs is obvious because
all data sources deriving the computation result should be considered data sources of the
result. The method “md1” is also a data source because the computation result is written
by “md1” to “d_var”.

4 FEATURES

APPENDIX 1 to show that LnRBAC does offer the feature mentioned in section 1. Note
that avoiding This section use the man/woman example mentioned in section 1 and the
corresponding code in Trojan horse can be achieved by the join operation (see [Chou in
press]). Moreover, offering different control granularity in different cases is an implicit
feature of LnRBAC.

Solve the covert channel problems caused by abnormal stopping of
program

This feature is achieved by L0RBAC. In APPENDIX 1, L0RBAC declares that the
dumped file can be accessed by the debugger only and the debugger can be executed by
the operator only. With this, the operating system can prevent unauthorized persons and
applications from accessing the dumped file. This solves the covert channel problems
caused by abnormal program stopping.

LnRBAC: A MULTIPLE-LEVELLED ROLE-BASED ACCESS CONTROL MODEL FOR THE

PROTECTING PRIVACY IN OBJECT-ORIENTED SYSTEMS

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

Adapt to dynamic object state change

This feature is achieved by L1RBAC and L2RBAC. For example, the statements between
line 15.4.1 and 15.4.7 establish the object state of Figure 2(a). The statements between
lines 15.4.8 through 15.4.12 are allowed because they pass the security requirements of
the three levels of RBAC. The statement in line 15.4.14 is non-secure because “mm[2]”
and “ww[1]” are strangers at that time point (i.e., they do not coexist in an AG). In this
case, L1RBAC will block the statement. The statement in line 15.4.15 is also non-secure
because “mm[2]” and “ww[3]” are within an AG according to the association “friends”.
In this association, there is no permission for “mm[2].get_others_personal_info” to
invoke “ww[3].get_self_personal_info” (see lines 5.1 through 5.2). Therefore, the
statement will be blocked by L2RBAC.

The object state in Figure 2(b) is established by the statements between lines 15.4.19
and 15.4.30. That in Figure 2(c) is established by the statements in line 15.4.43.
Moreover, some secure and non-secure statements follow the establishment of the object
states. To show that LnRBAC adapts to dynamic object state change, let’s check the
statement in line 15.4.9 and that in line 15.4.40. The former statement is secure because in
the object state of Figure 2(a), “mm[1]” and “ww[1]” are married. Nevertheless, the latter
statement is non-secure because “mm[1]” and “ww[1]” get divorced in the object state of
Figure 2(b). L2RBAC will screen out the latter statement. From the above description,
LnRBAC does adapt to dynamic object state change.

Allow purpose-oriented method invocation

This feature is achieved by L2RBAC. For example, line 5.3.2.2 in APPENDIX 1 shows
that the method “change_others_general_info” of a man can invoke the method
“change_self_general_info” of a woman if the man and the woman are within an AG
according to the association “married”.

Control method invocation through argument sensitivity

This feature is achieved by L3RBAC. We use an example to explain this. As described in
section 1, a man “m1” can change the general information of his wife “w1”. This change is
accomplished by the method “m1.change_others_general_information” (line 9.8), which
invokes the method “w1.change_self_general_info” (line 11.10) using the attribute
“m1.others_new_generl_info” (line 9.8.2) as an argument. According to the ACLs in lines
7.3.1.3 and 7.3.3.1, both secure flow conditions are true in the above invocation (remember
that DSOURCEs are initially empty). Therefore, the information flow induced by the above
invocation is secure. Suppose another attribute of “m1”, such as “m1.self_general_info” is
used in that invocation, the information flow induced by the invocation will be non-secure.
Let’s trace the invocation below:

When “m1.change_others_general_information” (line 9.8) invokes the method
“w1.change_self_general_info” (line 11.10) using the attribute “m1.self_generl_info” as

FEATURES

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 105

an argument, the ACL of the argument, which is “{m1.get_self_general_info,
w1.get_others_general_info, m1.change_self_general_info;
m1.change_self_general_info, w1.change_others_general_info}” (line 7.3.1.1), is copied
to the parameter “new_general_info” of the method “w1.change_self_general_info”.
When executing the statement “self_general_info = new_general_info;” (line 11.10.1)
within the method, the above ACL is compared with the ACL of “w1.self_general_info”,
which is “{w1.get_self_general_info, m1.get_others_general_info,
w1.change_self_general_info; w1.change_self_general_info,
m1.change_others_general_info}” (line 7.3.3.1). The comparison shows that the first
secure flow condition is false and therefore the information is non-secure.

Control write access precisely

This feature is achieved by L3RBAC. We use an example to explain this. As described in
section 1, a man “m1” can change the general information of his wife “w1”. This change
is accomplished by the method “m1.change_others_general_information” (line 9.8),
which invokes the method “w1.change_self_general_info” (line 11.10). If the method
“m1.get_others_general_info” (line 9.2)” tries to invoke the method
“w1.change_self_general_info”, the invocation will be blocked (i.e., the change is not
allowed). The rationale is that the invocation fails to fulfill the second secure flow
condition because the method “m1.get_others_general_info” is not within the WACL of
the variable “w1.self_general_info” (line 7.3.3.1).

5 RELATED WORK

This section surveys related work according to the features mentioned in section 1.
Covert channel problem is not discussed because we cannot identify a model that solves
the problem.

The simplest information flow control approach is DAC. Since DAC fails to avoid
Trojan horses, MAC [Bell 1976] [Denning 1976] [Denning 1977] was proposed. An
important milestone of MAC is the model proposed by Bell&LaPadula [Bell 1976],
which categorizes the security levels of objects and subjects. Information flows in the
model follow the “no read up” and “no write down” rules [Bell 1976]. Bell&LaPadula’s
model was generalized into the lattice model [Denning 1976] [Denning 1977] (see
[Sandhu 1993] for a survey of lattice models). In the typical lattice model proposed in
[Denning 1976] [Denning 1977], a lattice (SC,→ , ⊕) is constructed using “SC”, which
is the set of security classes, the symbol “→”, which is the “can flow” relationship, and
the symbol “ ⊕ ”, which is the join operator. The “can flow” relationship controls
information flows and the join operator avoids Trojan horses. Relationships between the
features mentioned in section 1 and MAC are described below. First, MAC cannot detail
the control granularity to different levels in different cases. The control granularity is
decided by nodes in the lattice. For example, if nodes in the lattice are variables, the
control granularity is detailed to variables. Second, MAC cannot adapt to dynamic object

LnRBAC: A MULTIPLE-LEVELLED ROLE-BASED ACCESS CONTROL MODEL FOR THE

PROTECTING PRIVACY IN OBJECT-ORIENTED SYSTEMS

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

state change because the lattice in a MAC is fixed during program execution. Therefore,
object state change should be predicted before program execution. Third, purpose-
oriented method invocation can be achieved if nodes in the lattice are object methods.
Nevertheless, the control granularity will only be detailed to methods in this case. Fourth,
controlling method invocation through argument sensitivity was not considered in the
MACs we surveyed. Fifth, MAC failed to offer the feature of allowing only trusted
sources to write a variable. The rationale is that MAC follows the “no write down”
principle to control write access, with which the information in a node can be written to
another node if the security level of the former is the same or lower than the latter.

The model in [Samarati 1997] uses access control lists (ACLs) of objects to compute
ACLs of executions (which are composed of one or more methods). A message filter is
used to filter out possibly non-secure information flows. Interactions among executions
are categorized into five modes. Different modes result in different security policies,
which loosens the restriction of MAC. More flexibility is added by allowing exceptions
during or after method execution [Ferrari 1997]. Relationships between the features
mentioned in section 1 and the model in [Samarati 1997] are described below. First, it
cannot detail the control granularity to different levels in different cases. In fact, it details
the control granularity to objects only because ACLs are established among objects.
Second, the model cannot adapt to dynamic object state change. The rationale is that
ACLs are established among existing objects and therefore ACLs cannot be changed
according to newly added objects during runtime. Third, purpose-oriented method
invocation cannot be achieved because the control granularity details to objects only.
Fourth, controlling method invocation through argument sensitivity and allowing only
trusted sources to write a variable were not considered.

The purpose-oriented model [Yasuda 1997] proposes that invoking a method may be
allowed for some methods but disallowed for others, even when the invokers belong to
the same object. Relationships between the features mentioned in section 1 and the
purpose-oriented model are described below. First, it cannot detail the control granularity
to different levels in different cases. In fact, it details the control granularity to methods
only. Second, the model cannot adapt to dynamic object state change. The rationale is
that the model uses existing objects to create a flow graph, from which non-secure
information flows can be identified. The flow graph is thus fixed during program
execution. Third, purpose-oriented method invocation can be achieved. Fourth,
controlling method invocation through argument sensitivity and allowing only trusted
sources to write a variable were not considered.

The decentralized label approach [Myers 1998] [Myers 2000] marks the security
levels of variables using labels. A label is composed of one or more policies, which
should be simultaneously obeyed. A policy in a label is composed of an owner and zero
or more readers that are allowed to read the data. Both owners and readers are principals,
which may be users, group of users, and so on. Principals are grouped into hierarchies
using the act-for relationships. A principal possesses all access rights of the principals it
acts for. Join operation is used to avoid Trojan horses. Write access is controlled [Myers

RELATED WORK

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 107

2000]. Relationships between the features mentioned in section 1 and the decentralized
label model are described below. First, it cannot detail the control granularity to different
levels in different cases. In fact, it details the control granularity to variables because
labels are attached to variables. Second, the model cannot adapt to dynamic object state
change. The rationale is that, although principle hierarchies can be dynamically changed,
principals seem fixed during runtime, which causes trouble when new objects are
instantiated. Third, purpose-oriented method invocation was not considered. Fourth,
controlling method invocation through argument sensitivity can be achieved but the
author did not mention this. Fifth, the model controls write access more precise than
other models [Myers 2000].

The approach in [McIlroy 1992] proposed a labeling system in UNIX. Every file,
device, pipe, and process is attached with a label. Join operation is used to avoid Trojan
horses. The approach also provides ceilings, which disallows processes to get into too
sensitive locations. This avoids possible information leakage by the processes. The
approach controls information flows among files, devices, and pipes. As to those among
program variables, it does not control. Relationships between the features mentioned in
section 1 and the model in [McIlroy 1992] are described below. First, it cannot detail the
control granularity to different levels in different cases. In fact, it details the control
granularity to objects only. Second, the model does not offer the features of adapting to
dynamic object state change, purpose-oriented method invocation, controlling method
invocation through argument sensitivity, and allowing only trusted sources to write a
variable.

RBAC can also be used to control information flows. RBAC defines the roles a user
can play. Users playing a role are generally human beings or intelligent agents [Sandhu
1996a]. A role is a collection of permissions [Sandhu 1996b]. When a user instantiates a
session and plays a role in the session, the user possesses the permissions of the role.
Permissions are revoked from the user when the user does not play the role or the session
ends. A user can play multiple roles [Sandhu 1996a] and even change role during a
session [Sandhu 1996b]. Inheritance and other relationships can be established among
roles to structure them [Tari 1997] [Sandhu 1996b]. Moreover, constraints, such as two
specific roles should be mutually exclusive, can be attached to roles [Ferraiolo 2001]
[Giuri 1996] [Nyanchama 1999]. Relationships between the features mentioned in
section 1 and RBAC are described below. First, it cannot detail the control granularity to
different levels in different cases. In fact, it details the control granularity to only one
level. Second, the model cannot adapt to dynamic object state change. The rationale is
that users are the subjects that create sessions [Sandhu 1996b] and therefore users and
sessions cannot be automatically managed by an application (i.e., the management of
users and sessions cannot be programmed). Third, purpose-oriented method invocation
can be achieved if permissions are defined as the legality of method invocation.
Nevertheless, since the original design of RBAC regards users as human beings or agents
[Sandhu 1996a], we cannot say that RBAC allows purpose orientation. Fourth, the
features of controlling method invocation through argument sensitivity and allowing only
trusted sources to write a variable are not offered.

LnRBAC: A MULTIPLE-LEVELLED ROLE-BASED ACCESS CONTROL MODEL FOR THE

PROTECTING PRIVACY IN OBJECT-ORIENTED SYSTEMS

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

The model in [Izaki 2001] uses RBAC to control information flows. It classifies
object methods and derives a flow graph from method invocations. From the graph, non-
secure information flows can be identified. Relationships between the features mentioned
in section 1 and the model in [Izaki 2001] are described below. First, it cannot detail the
control granularity to different levels in different cases. In fact, it details the control
granularity to methods only. Second, the model cannot adapt to dynamic object state
change because it uses predictable objects and methods to construct the flow graph. The
flow graph thus cannot be changed during runtime. Third, purpose-oriented method
invocation can be achieved because users in the model can be object methods. Fourth, the
features of controlling method invocation through argument sensitivity and allowing only
trusted sources to write a variable are not offered.

6 CONCLUSIONS

Role-based access control (RBAC) can be applied to control information flows (to protect
privacy) within an application. The rationale is that RBAC is a super set of discretionary
access control (DAC) and mandatory access control (MAC), which are useful in
information flow control. Our research reveals that different control granularity is needed
in different cases when controlling information flows. Currently we identify four levels of
control granularity that should be offered simultaneously by an information flow control
model, including the granularity that details to programs and files, that details to objects,
that details to objects methods, and that details to variables. In the past years, we
developed an RBAC-based information flow control model called OORBAC (object-
oriented RBAC). It simultaneously details control granularity to the latter three levels.
Nevertheless, the control mechanism in OORBAC is complicated. We thus revised
OORBAC using the multiple-leveled RBAC approach, in which one level of RBAC
offers one level of control granularity. We called the revised model LnRBAC (n-leveled
RBAC). Currently, LnRBAC is composed of four levels. The first level (L0RBAC)
controls the access rights from human beings or programs to programs or files. This level
RBAC solves the covert channel problems induced by abnormal program stopping. The
second level (L1RBAC) regulates the allowed and disallowed information flows among
objects. The third level (L2RBAC) controls the legality of method invocations. And, the
fourth level (L3RBAC) controls information flows among variables. LnRBAC offers the
following features:

1. It allows different control granularity in different cases
This feature is a consequence of multiple-leveled RBAC, in which different level
RBAC controls different granularity.

2. It solves the covert channel problems caused by abnormal program stopping
This feature is achieved by L0RBAC. In that level, users are human beings or
programs, and permissions are access rights from human beings or programs to

CONCLUSIONS

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 109

programs or files. With the permissions, unauthorized human beings and
applications cannot access dumped files when a program is abnormally stopped.

3. It adapts to dynamic object state change
This feature is achieved by L1RBAC and L2RBAC. When object state changes,
L1RBAC decides whether information flows among objects are allowed and
L2RBAC decides whether a method invocation is legal.

4. It controls method invocation through argument sensitivity
This feature is achieved by L3RBAC, in which variables are independently
assigned ACLs. With ACLs of variables, whether an argument is legal in an
invocation can be checked by ACL comparison.

5. It allows purpose-oriented method invocation
This feature is achieved by L2RBAC, which decides whether a method invocation
is legal or not.

6. It controls write access precisely
This feature is achieved by WACLs (write access control lists) and DSOURCEs
(data sources) in L3RBAC.

7. It avoids Trojan horses
This feature is achieved by the join operation.

REFERENCES

[Bell 1976] Bell D. E. and LaPadula, L. J., “Secure Computer Systems: Unified
Exposition and Multics Interpretation,” Technique report, Mitre Corp., Mar.
1976. http://csrc.nist.gov/publications/history/bell76.pdf

[Chou in press] Chou, S. -C., “Embedding Role-Based Access Control Model in Object-
Oriented Systems to Protect Privacy,” to appear in Journal of Systems and
Software.

[Denning 1976] Denning, D. E., “A Lattice Model of Secure Information Flow,” Comm.
ACM, vol. 19, no. 5, pp. 236-243, 1976.

[Denning 1977] Denning D. E. and Denning, P. J., “Certification of Program for Secure
Information Flow,” Comm. ACM, vol. 20, no. 7, pp. 504-513, 1977.

[Ferraiolo 2001] Ferraiolo, D. F., et al., “Proposed NIST Standard for Role-Based Access
Control,” ACM Trans. Information and System Security, vol. 4, no. 3, pp.
224-274, 2001.

[Ferrari 1997] Ferrari, E., et al., “Providing Flexibility in Information Flow Control for
Object-Oriented Systems,” Proc. 13’th IEEE Symp. Security and Privacy, pp.
130-140, 1997.

[Focardi 1997] Focardi R. and Gorrieri, R., “The Compositional Security Checker: A
Tool for the Verification of Information Flow Security Properties,” IEEE
Trans. Software Eng., vol. 23, no. 9, pp. 550-571, 1997.

http://csrc.nist.gov/publications/history/bell76.pdf

LnRBAC: A MULTIPLE-LEVELLED ROLE-BASED ACCESS CONTROL MODEL FOR THE

PROTECTING PRIVACY IN OBJECT-ORIENTED SYSTEMS

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

[Giuri 1996] Giuri L. and Iglio, P., “A Formal Models for Role-Based Access Control
with Constraints,” Proc. 9’th IEEE Computer Security Foundations
Workshop, pp. 136-145, 1996.

[Izaki 2001] Izaki, K., et al., “Information Flow Control in Role-Based Model for
Distributed Objects,” Proc. 8’th International Conf. Parallel and Distributed
Systems, pp. 363-370, 2001.

[McCollum 1990] McCollum, C. J., et al., “Beyond the Pale of MAC and DAC -
Defining New Forms of Access Control,” Proc. 6’th IEEE Symp. Security
and Privacy, pp. 190-200, 1990.

[McIlroy 1992] McIlroy M. D. and Reeds, J. A., “Multilevel Security in the UNIX
Tradition,” Software - Practice and Experience, vol. 22, no. 8, pp. 673-694,
1992.

[Myers 1998] Myers A. and Liskov, B., “Complete, Safe Information Flow with
Decentralized Labels,” Proc. 14’th IEEE Symp. Security and Privacy, pp.
186-197, 1998.

[Myers 2000] Myers A. and Liskov, B., “Protecting Privacy using the Decentralized
Label Model,” ACM Trans. Software Eng. Methodology, vol. 9, no. 4, pp.
410-442, 2000.

[Nyanchama 1999] Nyanchama M. and Osborn, S., “The Role Graph Model and Conflict
of Interest,” ACM Tran. Info. Sys. Security, vol. 2, no. 1, pp. 3-33, 1999.

[Osborn 2000] Osborn, S., et al., “Configuring Role-Based Access Control to Enforce
Mandatory and Discretionary Access Control Policies,” ACM Trans. Info.
Sys. Security, vol. 3, no. 2, pp. 85-106, 2000.

[Pressman 2001] Pressman, R. S., Software Engineering, A Practitioner’s Approach, fifth
edition, pp. 305- 306, McGraw-Hill 2001.

[Rumbaugh 1999] Rumbaugh, J., et al., The Unified Modeling Language Reference
Manual, Addison-Wesley, 1999.

[Samarati 1997] Samarati, P., et al., “Information Flow Control in Object-Oriented
Systems,” IEEE Trans. Knowledge Data Eng., vol. 9, no. 4, pp.524-538,
Jul./Aug. 1997.

[Sandhu 1993] Sandhu, R. S., “Lattice-Based Access Control Models,” IEEE Computer,
vol. 26, no. 11, pp. 9-19, Nov. 1993.

[Sandhu 1996a] Sandhu, R., “Role Hierarchies and Constraints for Lattice-Based Access
Controls,” Proc. Fourth European Symposium on Research in Computer
Security, pp. 65-79, 1996.

[Sandhu 1996b] Sandhu, R. S., et al., “Role-Based Access Control Models,” IEEE
Computer, vol. 29, no. 2, pp. 38-47, 1996.

CONCLUSIONS

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 111

[Tari 1997] Tari Z. and Chan, S. -W., “A Role-Based Access Control for Intranet
Security,” IEEE Internet Computing, vol. 1, no. 5, pp. 24-34, 1997.

[Varadharajan 1990] Varadharajan V. and Black, S., “A Multilevel Security Model for a
Distributed Object-Oriented System,” Proc. 6’th IEEE Symp. Security and
Privacy, pp. 68-78, 1990.

[Yasuda 1997] Yasuda, M., et al., “Information Flow in a Purpose-Oriented Access
Control Model,” Proc. 1997 International Conf. Parallel and Distributed
Systems, pp. 244-249, 1997.

About the author
Shih-Chien Chou received a Ph. D. degree from the Department of
Computer Science and Information Engineering, National Chiao Tung
University, Hsinchu, Taiwan. He is currently an associate professor in
the Department of Computer Science and Information Engineering,
National Dong Hwa University, Hualien, Taiwan. His research interests
include software engineering, process environment, software reuse, and

information flow control. He can be contacted through the e-mail address
scchou@mail.ndhu.edu.tw .

mailto:scchou@mail.ndhu.edu.tw

LnRBAC: A MULTIPLE-LEVELLED ROLE-BASED ACCESS CONTROL MODEL FOR THE

PROTECTING PRIVACY IN OBJECT-ORIENTED SYSTEMS

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

APPENDIX 1. The man/woman example mentioned in section 1. The object states in
Figure 2 are used in the following implementation.

/*---------- Level 0 RBAC below ------------*/

1 L0RBAC {

1.1 role operator{ // John plays this role
1.1.1 a.exe(e), debugger.exe(e); // e: execution right

1.2 }
1.3 role program{ // a.exe plays this role

1.3.1 file1.dat(r), file2.dat(w); // r: read right, w:
write right

1.4 }
1.5 role debugger{ // debugger.exe plays this role

1.5.1 dump.core(r);
1.6 }

2 }

/*---------- Level 1 RBAC below ------------*/

3 L1RBAC {

3.1 association friends {
3.1.1 role man (O,*){

3.1.1.1 woman (O,*);
3.1.2 }
3.1.3 role woman (O,*){

3.1.3.1 man (O,*);
3.1.4 }
3.1.5 role example (1,M){

3.1.5.1 // the class example can access every other
class

3.1.6 }
3.2 }

3.3 association married {

3.3.1 role man (O,*){
3.3.1.1 woman (O,*), certificate(M, 1);

3.3.2 }
3.3.3 role woman (O,*){

3.3.3.1 man (O,*), certificate(M, 1);
3.3.4 }
3.3.5 role example (1,M){

3.3.5.1 // the class example can access every other
class

3.3.6 }

CONCLUSIONS

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 113

3.4 }
4 }

/*---------- Level 2 RBAC below ------------*/

5 L2RBAC {

5.1 association friends {
5.1.1 role man{

5.1.1.1 get_others_general_info:
woman.get_self_general_info;

5.1.2 }
5.1.3 role woman{

5.1.3.1 get_others_general_info:
man.get_self_general_info;

5.1.4 }
5.1.5 role example{

5.1.5.1 // example.main can invoke every methods in
other classes

5.1.6 }
5.2 }
5.3 association married {

5.3.1 rh: married≥friends // all the permissions in
the association “friends” are inherited by the
association “married”

5.3.2 role man{
5.3.2.1 get_others_personal_info:

woman.get_self_personal_info;
5.3.2.2 change_others_general_info:

woman.change_self_general_info;
5.3.2.3 get_certificate_info:

certificate.get_certificate_info;
5.3.3 }
5.3.4 role woman{

5.3.4.1 get_others_personal_info:
man.get_self_personal_info;

5.3.4.2 change_others_general_info:
man.change_self_general_info;

5.3.4.3 get_certificate_info:
certificate.get_certificate_info;

5.3.5 }
5.3.6 role example{

5.3.6.1 // example.main can invoke every methods in
other classes

5.3.7 }
5.4 }

6 }

LnRBAC: A MULTIPLE-LEVELLED ROLE-BASED ACCESS CONTROL MODEL FOR THE

PROTECTING PRIVACY IN OBJECT-ORIENTED SYSTEMS

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

/*---------- Level 3 RBAC below ------------*/

7 L3RBAC {

7.1 association friends {
7.1.1 role man{

7.1.1.1 self_general_info {get_self_general_info,
woman.get_others_general_info; example.main};

7.1.1.2 others_general_info
{get_others_general_info; get_others_general_info,
woman.get_self_general_info};

7.1.1.3 get_self_general_info.return
{woman.get_others_general_info; NONE}; // The
return value of the method
“man.get_self_general_info” can only be received
by the method woman.get_others_general_info”.

7.1.2 }
7.1.3 role woman{

7.1.3.1 self_general_info {get_self_general_info,
man.get_others_general_info; example.main};

7.1.3.2 others_general_info
{get_others_general_info; get_others_general_info,
man.get_self_general_info};

7.1.3.3 get_self_general_info.return
{man.get_others_general_info; NONE}; // The return
value of the method “woman.get_self_general_info”
can only be received by the method
man.get_others_general_info”.

7.1.4 }
7.2 }

7.3 association married {

7.3.1 role man{
7.3.1.1 self_general_info {get_self_general_info,

woman.get_others_general_info,
change_self_general_info;
change_self_general_info,
woman.change_others_general_info};

7.3.1.2 others_general_info
{get_others_general_info; get_others_general_info,
woman.get_self_general_info};

7.3.1.3 others_new_general_info
{change_others_general_info,
get_others_general_info,
woman.change_self_general_info,

CONCLUSIONS

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 115

woman.get_self_general_info;
change_others_general_info};

7.3.1.4 self_personal_info {get_self_personal_info,
woman.get_others_personal_info; example.main};

7.3.1.5 others_personal_info
{get_others_personal_info;
get_others_personal_info,
woman.get_self_personal_info};

7.3.1.6 get_self_general_info.return
{woman.get_others_general_info; NONE};

7.3.1.7 get_self_personal_info.return
{woman.get_others_personal_info; NONE};

7.3.2 }
7.3.3 role woman{

7.3.3.1 self_general_info {get_self_general_info,
man.get_others_general_info,
change_self_general_info;
change_self_general_info,
man.change_others_general_info};

7.3.3.2 others_general_info
{get_others_general_info; get_others_general_info,
man.get_self_general_info};

7.3.3.3 others_new_general_info
{change_others_general_info,
get_others_general_info,
man.change_self_general_info,
man.get_self_general_info;
change_others_general_info};

7.3.3.4 self_personal_info {get_self_personal_info,
man.get_others_personal_info; example.main};

7.3.3.5 others_personal_info
{get_others_personal_info;
get_others_personal_info,
man.get_self_personal_info};

7.3.3.6 get_self_general_info.return
{man.get_others_general_info; NONE};

7.3.3.7 get_self_personal_info.return
{man.get_others_personal_info; NONE};

7.3.4 }
7.3.5 role certificate{

7.3.5.1 certificate_info {man.get_certificate_info,
woman.get_certificate_infor; example.main};

7.3.5.2 get_certificate_info.return
{{man.get_certificate_info,
woman.get_certificate_infor; NONE};

7.3.6 }
7.4 }

LnRBAC: A MULTIPLE-LEVELLED ROLE-BASED ACCESS CONTROL MODEL FOR THE

PROTECTING PRIVACY IN OBJECT-ORIENTED SYSTEMS

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

8 }

/* --------- JAVA program below ---------------------*/

9 class man {

9.1 public String self_personal_info, self_general_info,
others_personal_info, others_general_info,
others_new_general_info, certificate_info;

9.2 public void get_others_general_info(woman w1){ // The
method gets a woman’s general information

9.2.1 others_general_info = w1.get_self_general_info();
9.3 }
9.4 public void get_others_personal_info(woman w1){ // The

method gets a woman’s personal information
9.4.1 others_personal_info =

w1.get_self_personal_info();
9.5 }
9.6 public void get_certificate_info(certificate c1){ // The

method gets the information of the man’s marriage
certification

9.6.1 certificate_info = c1. get_certificate_info();
9.7 }
9.8 public void change_others_general_info(woman w1){ // The

method changes a woman’s general information
9.8.1 /* set up new general information to

others_new_general_info for the change */
9.8.2 w1.change_self_general_info(others_new_general_in

fo);
9.9 }
9.10 public void change_self_general_info(String

new_general_info){ // The method changes the general
information of the man himself. It will be invoked by the
method “change_others_general_info” of the woman class

9.10.1 self_general_info = new_general_info;
9.11 }
9.12 public String get_sef_general_info(){ // The method gets

the general information of the man himself. It will be
invoked by the method “get_others_general_info” of the
woman class.

9.12.1 return self_general_info;
9.13 }
9.14 public String get_sef_personal_info(){ // The method gets

the personal information of the man himself. It will be
invoked by the method “get_others_personal_info” of the
woman class.

9.14.1 return self_personal_info;

CONCLUSIONS

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 117

9.15 }
10 } /* end of class "man" */

11 class woman {

11.1 public String self_personal_info, self_general_info,
others_personal_info, others_general_info,
others_new_general_info, certificate_info;

11.2 public void get_others_general_info(man m1){ // The
method gets a man’s general information

11.2.1 others_general_info = m1.get_self_general_info();
11.3 }
11.4 public void get_others_personal_info(man m1){ // The

method gets a man’s personal information
11.4.1 others_personal_info =

m1.get_self_personal_info();
11.5 }
11.6 public void get_certificate_info(certificate c1){ // The

method gets the information of the woman’s marriage
certification

11.6.1 certificate_info = c1. get_certificate_info();
11.7 }
11.8 public void change_others_general_info(man m1){ // The

method changes a man’s general information
11.8.1 /* set up new general information to

others_new_general_info for the change */
11.8.2 m1.change_self_general_info(others_new_general_in

fo);
11.9 }
11.10 public void change_self_general_info(String

new_general_info){ // The method changes the general
information of the woman herself. It will be invoked by
the method “change_others_general_info” of the man class

11.10.1 self_general_info = new_general_info;
11.11 }
11.12 public String get_sef_general_info(){ // The method

gets the general information of the woman herself. It
will be invoked by the method “get_others_general_info”
of the man class.

11.12.1 return self_general_info;
11.13 }
11.14 public String get_sef_personal_info(){ // The method

gets the personal information of the woman herself. It
will be invoked by the method “get_others_personal_info”
of the man class.

11.14.1 return self_personal_info;
11.15 }

12 } /* end of class "woman" */

LnRBAC: A MULTIPLE-LEVELLED ROLE-BASED ACCESS CONTROL MODEL FOR THE

PROTECTING PRIVACY IN OBJECT-ORIENTED SYSTEMS

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

13 class certificate {

13.1 public String certificate_info;
13.2 public String get_certificate_info(){

13.2.1 return certificate_info;
13.3 }

14 }

15 class example {

15.1 public man mm[]; // reserve an array for man
15.2 public woman ww[]; // reserve an array for woman
15.3 public certificate cer[]; // reserve an array for

certificate
15.4 public void main() {

// The following statements create the object state in Figure
2(a)

15.4.1 // instantiate two men “m1” and “m2”, and
respectively assign them to the variables “mm[1]” and
“mm[2]”

15.4.2 // instantiate three women “w1”, “w2”, and “w3”,
and respectively assign them to the variables “ww[1]”,
“ww[2]”, and ww[3]

15.4.3 // instantiate a certificate “cer1” and assign it
to the variable “cer[1]”

15.4.4 addAG(association friends, man mm[2], woman
ww[2]);

15.4.5 addAG(association friends, man mm[2], woman
ww[3]);

15.4.6 addAG(association friends, man mm[1], woman
ww[2]);

15.4.7 addAG(association married, man mm[1], woman
ww[1], certificate cer[1]);

// The following statements are allowed

15.4.8 mm[1].get_others_personal_info(ww[1]);
15.4.9 ww[1].change_others_general_info(mm[1]);
15.4.10 ww[1].get_certificate_info(cer[1]);
15.4.11 mm[2].get_others_general_info(ww[3]);
15.4.12 mm[2].get_others_general_info(ww[2]);
15.4.13 // . . .

// The following statements are disallowed

15.4.14 mm[2].get_others_general_info(ww[1]); // mm[2]
and ww[1] are strangers under the current object state

CONCLUSIONS

VOL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 119

15.4.15 mm[2].get_others_personal_info(ww[3]); // mm[2]
and ww[3] are not married under the current object
state

15.4.16 mm[1].get_others_general_info(ww[3]); // mm[1]
and ww[3] are strangers under the current object state

15.4.17 mm[1].change_others_general_info(ww[2]); // mm[1]
and ww[2] are not married under the current object
state

15.4.18 // . . .

// The following statements create the object state in Figure
2(b)

15.4.19 // instantiate a woman “w4” and assign her to the
variable “ww[4]”

15.4.20 // instantiate three certificate “cer2”, “cer3”,
and cer4”, and respectively assign them to the
variables “cer[2]”, “cer[3]”, “cer[4]”

15.4.21 removeAG(association friends, man mm[2], woman
ww[2]);

15.4.22 removeAG(association friends, man mm[2], woman
ww[3]);

15.4.23 removeAG(association friends, man mm[1], woman
ww[2]);

15.4.24 removeAG(association married, man mm[1], woman
ww[1], certificate cer[1]);

15.4.25 // de-allocate cer[1] // if cer[1] is not de-
allocated, the modality constraint will be violated

15.4.26 addAG(association married, man mm[1], woman
ww[2], certificate cer[2]);

15.4.27 addAG(association married, man mm[2], woman
ww[3], certificate cer[3]); // This statement is not
allowed because it violate the cardinality constraint

15.4.28 addAG(association married, man mm[2], woman
ww[3], certificate cer[3]);

15.4.29 addAG(association married, man mm[3], woman
ww[4], certificate cer[4]);

15.4.30 addAG(association friends, man mm[2], woman
ww[4]);

// The following statements are allowed

15.4.31 mm[2].get_others_personal_info(ww[3]); // mm[2]
and ww[3] are married under the current object state.
This statement in line 15.4.15 is illegal

15.4.32 mm[1].change_others_general_info(ww[2]); // mm[1]
and ww[2] are married under the current object state.
This statement in line 15.4.17 is illegal

15.4.33 ww[4].get_certificate_info(cer[4]);

LnRBAC: A MULTIPLE-LEVELLED ROLE-BASED ACCESS CONTROL MODEL FOR THE

PROTECTING PRIVACY IN OBJECT-ORIENTED SYSTEMS

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 3

15.4.34 mm[2].get_others_personal_info(ww[3]);
15.4.35 mm[2].change_others_general_info(ww[3]);
15.4.36 mm[3].get_others_general_info(ww[3]);
15.4.37 mm[2].get_certificate_info(cer[3]);
15.4.38 // . . .

// The following statements are disallowed

15.4.39 mm[1].get_others_personal_info(ww[1]); // this
statement in line 15.4.8 is allowed

15.4.40 ww[1].change_others_general_info(mm[1]); // this
statement in line 15.4.9 is allowed

15.4.41 ww[1].get_certificate_info(cer[1]); // this
statement in line 15.4.10 is allowed

15.4.42 mm[2].get_others_general_info(ww[2]); // this
statement in line 15.4.12 is allowed

// The following statements create the object state in Figure
2(c)

15.4.43 // de-allocate ww[3] // ww[3] passed away

// The following statements is still allowed in spite of ww[3]’s
passing away

15.4.44 mm[2].get_certificate_info(cer[3]);

// The following statements are disallowed because the object
“ww[3]” is not existing

15.4.45 mm[2].get_others_personal_info(ww[3]);
15.4.46 mm[2].change_others_general_info(ww[3]);
15.4.47 mm[3].get_others_general_info(ww[3]);

15.5 } // end of “main”
16 } // end of class “example”

