
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 4 (April 2004)

Special issue: TOOLS USA 2003

Cite this article as follows: Haitham Hamza, Mohamed E. Fayad: “Applying Analysis Patterns
through Analogy: Problems and Solutions”, in Journal of Object Technology, vol. 3, no. 4, April
2004, Special issue: TOOLS USA 2003, pp. 197-208.
http://www.jot.fm/issues/issue_2004_04/article11

Applying Analysis Patterns Through
Analogy: Problems and Solutions

Haitham Hamza, University of Nebraska-Lincoln, U.S.A
Mohamed E.Fayad, PhD, San Josè State University, U.S.A.

Abstract
Traceability and generality are among the main qualities that determine the
effectiveness of developed analysis patterns. However, satisfying both qualities at the
same time is a real challenge. Most of the analysis patterns are thought of as templates,
where they can be instantiated, and hence reused through an analogy between the
original pattern and the problem in hand. Developing analysis patterns as templates
might maintain the appropriate level of generality; however, it scarifies patterns’
traceability once they are applied in the developed system. In this paper, we illustrate
the main problems with developing analysis patterns as templates and reusing them
through analogy. In addition, we demonstrate, through examples, how stable analysis
patterns [Hamza, 2002a,Hamza and Fayad 2002a] can satisfy both the generality and
traceability, and hence, enhance the role of analysis patterns in software development.

1 INTRODCUTION

In the last decade, patterns have emerged as a promising technique for improving the
quality and reducing the cost and time of software development [Schmidt et al., 1996,
Gamma et al., 1995]. A pattern can be generally defined as: “An idea that has been useful
in one practical context and will probably be useful in others” [Fowler, 1997].

The obscurity of doing accurate analysis along with the fact that analysis is a tedious
and time-consuming activity both makes the development of effective and reusable
analysis artifacts of great interest. Analysis patterns form a promising base for facilitating
and improving the quality of performing analysis. Some essential quality factors an
analysis pattern should maintain in order to contribute effectively to the development
process.

In this paper we focus on two of these qualities: traceability and generality.
Generality means that the pattern that analyzes a specific problem can be successfully
reused to analyze the same problem whenever it appears, even within different
applications or across different domains. This quality factor is essential due to the fact

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_04/article11

APPLYING ANALYSIS PATTERNS THROUGH ANALOGY: PROBLEMS AND SOLUTIONS

198 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

that the analysis of a specific problem is the same if the problem remains the same. There
is little sense in having different analysis models for the same exact problem. If analysis
patterns fail to model the exact same problem when it appears in different applications,
then the goal of developing patterns as reusable artifacts is diminished.

Traceability means that a pattern that is used in the development of a specific system
can be successfully traced back to the original analysis pattern that has been used.
Untraceable patterns will disappear once the developer instantiate them in their system,
the fact that imposes further complications in the maintainability of the system.

Satisfying both generality and traceability is a factual challenge in current analysis
patterns. This challenge is due to the fact that most current techniques for developing
analysis patterns are based on viewing patterns as templates that form a general model for
the problem. These templates can be reused through analogy [Fernandez and Yuan, 1999,
Fernandez and Yuan, 2000, Fernandez, 2000, Vaccare et al., 1998]. As we will discuss in
the following section, this approach may maintain patterns’ generality to some extent;
however, it may scarify their traceability.

In this paper, we illustrate the main problems in developing analysis patterns as
templates and reusing them through analogy. As a remedy to these problems, we propose
the use of the concept of Stable Analysis Patterns [Hamza, 2002a, Hamza, 2002b, Hamza
and Fayad 2002a, Hamza and Fayad 2002b]. Stable analysis patterns are analysis patterns
that are built based on the software stability concepts [Fayad and Altman 2002].

The paper is organized as follows: Section 2 describes the use of analysis patterns
through analogy; Section 3 illustrates the problems associated with this approach; Section
4 provides an overview of stable analysis patterns; and Section 5 provides examples of
using stable analysis patterns. The conclusions are presented in Section 6.

2 ANALYSIS PATTERNS AS TEMEPLETES

Most of analysis patterns are thought of as templates [Fernandez and Yuan, 1999,
Fernandez and Yuan, 2000, Fernandez, 2000, Vaccare et al., 1998]. In [Coad et al.,
1995], Code has defined patterns in general as follows: “A pattern is a template of
interacting objects, one that may be used again and again by analogy”. That is, the
pattern that is extracted from a specific project can be put into an appropriate abstract
level such that it can be used to model the same problem in a wide range of applications
and domains. The abstracted pattern is then considered to be a template, by which it could
be used through an analogy. Developing patterns as templates, while providing an
appropriate level of generality, it sacrifying their traceability when they are used by the
means of analogy.

As an example of this approach, Figure 1 shows the class diagram of the Resource
Rental pattern taken from [Vaccare et al., 1998], which forms the abstract template of the
Resource Rental problem. The objective of the pattern is to provide a model that can be
reused to model the problem of renting any resource; therefore, the class diagram does
not tie the renting to a specific recourse. Figure 2 shows an example of using the

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 199

Resource Rental pattern in the application of the library service taken from [Vaccare et
al., 1998]. Simply through an analogy, one can apply the original abstract pattern into a
specific application.

Fig. 1: Resource Rental pattern

Fig. 2: Instantiation of Resource Rental pattern for a library service

TypeOfResorce
code
description

set()
get()

Resource
code
description
qtyOfInstancesAvailable

set()
get()
listByType()
getBookingsByResource()

Payment
dueDate
paymentDate
installmentNumber
value
situation

comingInstallments()
overduePayments()
paymentsDone()

ResourceBooking
bookingDate
period
bookingFee
observations

book()
cancelBooking()

Customer
code
name

Set()
get()
getBookingsByCustomer()
getRentalsByCustomer()

ResourceRental
bookingDate
expiringDate
rentalRate
observations

rentResource()
checkOutResorce()
calculateEarnings()

ResourceInstance
number
location
status

set()
get()
getRentalsByInst.()

1

*

1

*

*
1

1..*

* 0..1

*

*

1 *0..1 0..1

1

1
1..*

*

*

TypeOfBook
code
description

set()
get()

Fine
paymentDate
value

finesDone()

Reader
code
name

set()
get()
getBookingsByReader()
getRentalsByReader()

Book
ISBN
title
qtyOfInstancesAvailable
author

set()
get()
listByType()
getReservationsByBook()

BookReservation
reservationDate
observations

reserve()
cancelReservation()

BookCopy
number
rackPosition
status

set()
get()
getLendingByCopy()

BookLending
lendingDate
returningDate
observations

rentBook()
ReturnBook()

* *

*

1

1..*

* 0..1

*

*

1 *0..1 0..1

1

1
1..*

*

*

APPLYING ANALYSIS PATTERNS THROUGH ANALOGY: PROBLEMS AND SOLUTIONS

200 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

3 PROBLEMS WITH USING ANALYSIS PATTERNS THROUGH
ANALOGY

Though using analysis pattern through analogy might appear to be an appealing approach
for maintaining a good level of pattern’s generality; however, this technique raises some
problems. Some of these problems are summarized below:

• Generate untraceable systems. Once analysis patterns templates have been
instantiated in the developed system, the original patterns are no longer
extractable. For example, consider the instance of the Resource pattern shown in
Figure 2 and imagine it as part of a complete library service system; it would be
hard to extract the original pattern after such instantiation. This complication
increases as the size of the developed system increases.

• Complicate system maintainability. Software maintenance is considered to be one
of the most costly phases in the development life cycle. Therefore, complicating
system maintainability is expected to further increase such cost. One can imagine
a very simple situation where we need to update the developed system
documentation due to some modification in system requirements. Since the
developed system is using several patterns, identifying which patterns to be
updated will be tedious and time consuming task.

• Trivialize classes’ roles of the pattern To better discuss this issue we will use an
example from [Fernandez and Yuan, 2000], where a class diagram for designing a
computer repair shop is used, by an analogy, to build the class diagram of a
hospital registration project. Thus, instead of shop that fixes broken computers we
have a hospital that fixes sick people. We can simply replace the class named
computer in the first project by the new class named patient in the next project.
Even though such an analogy seems doable, it is impractical. There is a big
difference between the computer as a machine and the patient as a human. These
two classes might looks analogous since they both need to be fixed; however,
their behaviors within the system are completely different. The role of the
computer class is completely different from that of the patient. Therefore, such
analogy is inaccurate. There would be even more differences if we try to generate
the dynamic behavior of these two system using an analogy as suggested in
[Vaccare et al., 1998].

4 STABLE ANALYSIS PATTERNS

Stable analysis patterns introduced in [Hamza, 2002a, Hamza, 2002b, Hamza, and Fayad
2002a], are analysis patterns constructed based on software stability concepts [Fayad and
Altman 2002]. Before we describe how stable analysis patterns can satisfy both the
generality and the traceability quality factors, a brief overview of software stability
concepts, and an example of stable analysis patterns are provided in this section.

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 201

Software stability paradigm

Software stability stratifies the classes of the system into three layers: the Enduring
Business Themes (EBTs) layer [Cline and Girou 2000, Fayad and Altman 2002], the
Business Objects (BOs) layer, and the Industrial Objects (IOs) layer [Fayad and Altman
2002]. Based on its nature, each class in the system model is classified into one of these
three layers. Figure 3 depicts the layout of the Software Stability Model (SSM) layers.
Figure 4 shows the relationship between the different layers of SSM. The properties that
characterize EBTs, BOs, and IOs are given in [Fayad 2002a, Fayad 2002b].

EBTs are the classes that present the enduring and core knowledge of the underlying
industry or business. Therefore, they are extremely stable and form the nucleus of the
SSM. BOs are the classes that map the EBTs of the system into more concrete objects.
BOs are semi-conceptual and externally stable, but they are internally adaptable. IOs are
the classes that map the BOs of the system into physical objects. For instance, the BO
“Agreement” can be mapped in real life as a physical “Contract”, which is an IO.

Fig. 3: SSM layers layout

Fig. 4: The relation between SSM layers

IndustrialObjects

EnduringBusinessThems BusinessObjects0..* 0..*

0..*

0..*

0..*
0..*0..*

0..*

System Core Knowledge- EBTs Layer

Concrete Objects- BOs Layer

Unstable Leafs- IOs Layer

Stable
Base

APPLYING ANALYSIS PATTERNS THROUGH ANALOGY: PROBLEMS AND SOLUTIONS

202 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

Stable analysis pattern example

To illustrate the concept of stable analysis patterns we use a simple example. We use the
Negotiation analysis pattern. Negotiation is a general concept that has many applications.
In our daily life, there are various situations where negotiation usually takes place. For
instance, buying or selling properties usually involves some sort of negotiation. In
software systems, negotiation also appears frequently in the development of different
applications. Developing software for online auctions and shopping might involve the
negotiation of the price and/or the negotiation of different product aspects.

More technically, negotiation becomes an essential part in the development of next
generation Web-based devices and appliances. Devices that need to access the Web
diverge greatly in their capabilities, and hence negotiation mechanisms between client
agent and the server play a fundamental role in deciding which representation of
information a device should be given. Therefore, having a stable pattern that can model
the basic aspects of a negotiation problem would make it easier for the developer to build
their system by reusing and extending this pattern. Figure 4 shows the stable object model
of the Negotiation pattern.

AnyContext

Negotiation

1..*

negotiates

usesAnyMedia AnyParty

AnyAgreementcontains enforces

generates

handels

1..*

1..*

1..*

1..* 1..*

Fig. 5: Negotiation pattern stable object model

As shown in Figure 5 above, the Negotiation pattern consists of the following
participants:

• Negotiation: Represents the negotiation process itself. This class contains the
behaviors and attributes that regulate the actual negotiation process.

• AnyAgreement: Represents the result of the negotiation. The ultimate goal of any
negotiation is to reach an agreement. Thus, this object presents a core element in
any negotiation. It is important to note that in many cases negotiation ends with

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 203

no agreement and thus it is considered to be failed (the seller of the car did not
agree on the price proposed by the buyer and vise versa), however, in this case we
expect that the agreement should provide this result by whatever mechanism. So
one can view the agreement object as the result of the negotiation, which is not
necessary a successful result.

• AnyParty: Represents the negotiation handlers. It models all the parties that are
involved in the negotiation process. Party can be a person, organization, or a
group with specific orientation.

• AnyMedia: Represents the media through which the negotiation will take place.
For instance, one can negotiate the price of a good over the phone. Others might
use an email or a mail to negotiate specific issues in their business.

• Context: Represents the matters to be negotiated. If we are buying a home, many
issues could be negotiated. For instance, the price of the home, the payment
procedure, etc. Defining what is the issue to be negotiated is an essential element
of any negotiation process, otherwise, negotiation will have no meaning.

The prefix ‘any’ that we used herein indicates that this is another pattern that provides an
abstract model for the notion it precedes. For instance, AnyParty is a stand-alone stable
pattern that models the party notation, and hence, can be used to model any party in any
applications.

5 APPLYING STABLE ANALYSIS PATTERNS

In order to illustrate how stable analysis patterns can maintain both the generality and
traceability quality factors, we use the Negotation pattern to model two different
applications: Negotiation of buying a car, and Content Negotiation using Composite
Capability/ Preference Profile (CC/PP). For simplicity, we give parts of the models in
both examples that help to demonstrate the usage of the proposed pattern, and hence,
these models are not complete. The full analysis (CRC- cards, use case diagrams, use
case descriptions, sequence diagrams, and state transition diagrams) of these two
examples is given in [Hamza, 2002a]. In the models given in Figures 6 and 8, we use the
black color to denote the EBT objects, gray color to denote BO objects, and while color
for IO objects.

Example 1: Negotiation to buy a car

In buying a car, a negotiation concerning the car’s price and warranty usually takes place.
This example models the simple negotiation that might be involved in buying a car.
Figure 6 shows the stability model of the negotiation used in buying a car.

APPLYING ANALYSIS PATTERNS THROUGH ANALOGY: PROBLEMS AND SOLUTIONS

204 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

Fig. 6: Stability model of the negotiation in buying a car example

Example 2: Content Negotiation using Composite Capability/Preference
Profile (CC/PP)

Today, very heterogeneous devices are required to access the World Wide Web; yet, each
device has its own set of capabilities. As a result, a negotiation between the client and the
server should take place in order for the server to know the capabilities of these devices
and provide the appropriate contents. One possible techniques of performing content
negotiation is called Composite Capability/Preference Profile (CC/PP) [W3C 2000]. A
possible scenario of CC/PP content negotiation is given in Figure 7. Figure 8 shows the
stability model of this example. Again, classes that are not in the original Negotiation
pattern are colored in gray.

1..*

negotiates

uses contains

enforces

generates

handels

0..*

1..*
1..*

1..*

1..*

Negotiation
1..*

Warranty

Phone

Customer

Price

AnyContext

Mail

AnyParty

Contract AnyAgreement

CarDealer

AnyMedia

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 205

Fig. 7: Possible scenario of content negotiation using CC/PP

Fig. 8: The stability model of the content negotiation example

As shown in the two examples, the use of the Negotiation pattern is not achieved through
an analogy. The pattern can be spotted easily and thus it is possible to trace it back in the
developed system. On the other hand, the developed pattern does not lose its generality,

1..*

negotiates

uses contains

enforces

generates

handels

0..*

1..*
1..*

1..*

1..*
1..*

Client

Internet

OriginServer

AdaptedContent

CC/PPRepository

1..*

1..*

1..*
places

AnyContext

HTTPRequest

AnyParty

AnyAgreement

Negotiation

AnyMedia

Request 1..*

transfers

Retrieve CC/PP profile

from repository

HTTP Response

HTTP Request

Client

Server

CC/PP Profile

Repository

Profiles

APPLYING ANALYSIS PATTERNS THROUGH ANALOGY: PROBLEMS AND SOLUTIONS

206 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

as we were able to apply it to model the same problem in two different applications.
Moreover, one can realize that each object in the Negotiation pattern has a clear role
independent of the application the pattern will be used in. For instance, AnyMedia as an
object still exists and it has the same role independent of the application; however, the
type of media might vary based on the application.

6 CONCLUSIONS

Stable analysis patterns introduce a new vision of developing and utilizing analysis
patterns in building software systems. Although current approaches of developing
analysis patterns as templates and utilizing them through an analogy maintain pattern
generality; it scarifies its traceability. This makes the developed systems harder and more
costly to maintain. Stable analysis patterns are developed and utilized so that they can
preserve both the generality and traceability. In addition, stable analysis patterns
guarantee the preservation of the classes’ roles within the pattern; thus, each class has the
same role independent of the application that the pattern will be deployed in. Therefore,
stable analysis patterns can form a more effective base for utilizing patterns in developing
software systems.

REFERENCES

[Cline and Girou 2000]

Cline, M., and Girou, M. “Enduring Business Themes”. Communications
of the ACM, Vol. 43, No. 5, pp. 101-106, 2000.

[Coad, et al. 1995]
Coad, P., North, D., and Mayfield, M. “Object models-strategies, patterns,
and applications”. Yourdon Press, Prentice-Hall, Inc. New Jersey, 1995.

[Fayad 2002a] Fayad, M. E. “Accomplishing software stability”. Communications of the
ACM, Vol. 45, No. 1, 2002.

[Fayad 2002b] Fayad, M. E. “How to deal with software stability”. Communications of
the ACM, Vol. 45, No. 4, 2002.

[Fayad and Altman 2002]
Fayad, M. E., and Altman, A. “Introduction to software stability”.
Communications of the ACM, Vol. 44, No. 9, 2002.

[Fernandez, 2000]
Fernandez, E. B. “Stock Manager: An analysis pattern for inventories”. In
7th Pattern Languages of Programs Conference (PLoP’2k), Monticello,
IL, USA, 2000.

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 207

[Fernandez and Yuan, 1999]
Fernandez, E. B., and Yuan, X. “An analysis pattern for reservation and
use of reusable entities”. In 6th Pattern Languages of Programs
Conference (PLoP’99), Monticello, IL, USA, 1999.

[Fernandez and Yuan, 2000]
Fernandez, E. B., and Yuan, X. “Semantic analysis pattern”. In 19th Int.
Conference on Conceptual Modeling ER2000, pp. 183-195, 2000.

[Fowler 1997] Fowler, M. Analysis patterns: reusable object models. Addison-Wesley,
1997.

[Gamma et al., 1995]
Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesely, 1995.

[Hamza, 2002a]
Hamza, H. “A foundation for building stable analysis patterns”. Master
Thesis. University of Nebraska, Lincoln, USA, 2002.

[Hamza, 2002b]
Hamza, H. “Building stable analysis patterns using software stability”. 4th
European GCSE Young Researchers Workshop (GCSE/NODE), Erfurt,
Germany, 2002.

[Hamza and Fayad 2002a]
Hamza, H., and Fayad, M. E. “Model-based software reuse using stable
analysis patterns”. In 12th Workshop on Model-based Software Reuse,
16th ECOOP 02”, Malaga, Spain, 2002.

[Hamza and Fayad 2002b]
Hamza, H., and Fayad, M. E. “A pattern language for building stable
analysis patterns”. In 9th Pattern Languages of Programs Conference
(PLoP’02), Monticello, IL, USA, 2002.

[Hay, 1996] Hay, D. Data model pattterns-conventions of thoughts. Dorset House
Publ., 1996.

[Schmidt et al., 1996]
Schmidt, D. C., Fayad, M. E., and Johnson, R. “Software Patterns”.
Communications of the ACM, Vol. 39, No. 10., 1996.

[Vaccare, et al. 1998]
Braga, R. T. V., Germano, F. S. R., and Masiero, P. C. “A confederation
of patterns for business resource management”. In 5th Pattern Languages
of Programs Conference (PLoP’98), Monticello, IL, USA, 1998.

[W3C 2000] Composite Capability/Preference Profiles (CC/PP): “A user side
framework for content negotiation”. W3C Note 21 July 2000.
http://www.w3.org/TR/NOTE-CC

http://www.w3.org/TR/NOTE-CC

APPLYING ANALYSIS PATTERNS THROUGH ANALOGY: PROBLEMS AND SOLUTIONS

208 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

About the authors
Haitham Hamza is a Ph.D. student at the University of Nebraska-Lincoln. He can be
reached at hhamza@cse.unl.edu

Mohamed E. Fayad is a Full Professor of Computer Engineering at Josè State
University http://www.engr.sjsu.edu/fayad. He can be reached at m.fayad@sjsu.edu or
fayad@activeframeworks.com

mailto:hhamza@cse.unl.edu
http://www.engr.sjsu.edu/fayad
mailto:m.fayad@sjsu.edu
mailto:fayad@activeframeworks.com

