
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 4 (April 2004)

Special issue: TOOLS USA 2003

Cite this article as follows: P. Wangmutitakul; T. Minoura, A. Maki: “WebGD: A Framework for
Web-Based GIS/Database Applications”, in Journal of Object Technology, vol. 3, no. 4, April
2004, Special issue: TOOLS USA 2003, pp. 209-225.
http://www.jot.fm/issues/issue_2004_04/article12

WebGD: A Framework for Web-Based
GIS/Database Applications

Paphun Wangmutitakul, Toshimi Minoura, and Alec Maki, Oregon State
University, U.S.A.

Abstract
We have developed a framework for Web-based GIS/database applications which allow
users to insert, update, delete, and query data with a map interface displayed by Web
browsers. The framework was designed so that a Web-based GIS application that uses
ArcIMS as a map server can be easily created, customized, and maintained. In order to
achieve this goal, we have created our framework as a collection of ASP.NET custom
server controls. In creating a Web-based GIS application, instances of our custom server
controls can be picked and placed on ASP.NET Web pages like standard Web controls.

1 INTRODUCTION

We designed and implemented a framework for creating Web-based GIS/database
applications. This framework, called WebGD, enables users to share spatial and non-
spatial data across the Internet. Using an interactive map interface, users can view any
particular area of the map. Also, information associated with geographical features on the
map can be accessed and manipulated. Due to their Web-based nature, WebGD
applications can be accessed from anywhere on the Internet using a standard Web
browser.

WebGD uses ArcIMS for providing interactive map images and ArcSDE for
managing spatial data. We developed WebGD as a foundation for rapid development of
Web-based GIS/database applications. WebGD includes a set of ASP.NET custom server
controls. A server control is a class that can be instantiated as a user interface component
and placed on an ASP.NET Web Forms page. When an instance of a server control is
added to an ASP.NET page, its look and behavior can be customized by setting property
values. We developed a collection of custom server controls that encapsulate
functionality needed for a Web-based map interface. These controls provide user
interface elements such as a map, a layer list, and a toolbar. Using WebGD server
controls, a map interface can be created by simple pick-and-place operations.

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_04/article12

WEB GD: A FRAMWORK FOR WEB-BASED GIS/DATABASE APPLICATIONS

210 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

The WebGD framework also uses our ArcSDE.NET assembly, which allows a .NET
application to access and modify ArcSDE-managed data. Since the .NET Framework
executes applications in a managed environment, it does not allow direct access to the
unmanaged C programming interface of ArcSDE. Managed code is executed within the
.NET environment, which provides such services as garbage collection and security
restrictions, whereas unmanaged code is executed without these services. To get around
this restriction, ArcSDE.NET was written in managed C++, which allows managed and
unmanaged code to be mixed. Thus, ArcSDE.NET enables WebGD applications to
perform operations not supported by ArcIMS, such as inserting, updating, and deleting
geographical features in a spatial database.

In this report, we focus on custom server controls we developed for use with the
ArcIMS ActiveX Connector. Section 2 provides an overview of the organization of
WebGD applications. In Section 3, we describe components of the WebGD interactive
map interface by using a sample WebGD application, Yolo County Soil Viewer. In
Section 4, we give implementation details of WebGD custom server controls. In Section
5, we give an example WebGD business application, Motels in Oregon, that demonstrates
many features covered in this paper. Finally, we summarize the major benefits of the
WebGD framework and give a direction for further development.

 Web Browser

Web Server
ASP.NET

Custom Server

Controls

ActiveX
Connector

ArcIMS ArcSDE.NET

ArcSDE

Relational
Database

Fig. 1: Organization of WebGD.

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 211

2 WEBGD ORGANIZATION

The organization of WebGD applications is shown in Fig. 1. The relational database and
the ArcSDE server in combination manage geographical data. The ArcIMS Internet map
server generates maps to be displayed on a Web browser by using geographical data
provided by the ArcSDE server. The Web pages are dynamically generated by the server-
side scripts written in ASP.NET. When a server side script receives a request to generate
a map, the script forwards that request to the ArcIMS server through the ActiveX
Connector COM component. The ArcSDE.NET assembly was developed to allow
ASP.NET scripts to directly access ArcSDE spatial data. Direct access provides such
additional functions not supported by ArcIMS as inserting and deleting map features.

ASP.NET

ASP.NET, a subsystem of the Microsoft .NET Framework, is for developing dynamic
Web-based applications. ASP.NET provides an integrated set of .NET classes, including
those for data access, XML, graphics, and Web server controls. In addition to the .NET
Framework class library, .NET allows COM components to be used in .NET programs.
Thus, to access an ArcIMS application server, an ASP.NET script for an ArcIMS map
interface can use ArcIMS ActiveX Connector, which is a COM component.

Furthermore, ASP.NET has introduced server controls. A server control is a class
that encapsulates both a view and behavior of a user-interface component. An instance of
a server control can be embedded in an ASP.NET .aspx page, which can contain
ordinary HTML controls and ASP.NET server controls. Server controls are converted
into HTML elements when an ASP.NET script containing them is executed by a Web
server.

ArcIMS Server

ArcIMS, a software package from ESRI, can be used to create a map server. An ArcIMS
server provides GIS functionality for a Web-based map interface. When a user performs
an operation that requires a new map image, ASP.NET uses the ActiveX Connector to
send a request for a map image to the ArcIMS server, which then returns the URL of the
newly generated image. When a user clicks on the map to select a geographical feature,
the x- and y-coordinate values of the clicked point are provided to the ASP.NET
application. Based on these coordinates, the application defines a spatial filter for locating
the selected geographical feature.

Custom Server Controls for ArcIMS ActiveX Connector

Our custom server controls for ArcIMS ActiveX Connector were developed as ASP.NET
server controls, and they encapsulate common functions and interfaces found on ArcIMS
map interfaces. We currently provide three server controls: ArcImsMap, MapToolbar,

WEB GD: A FRAMWORK FOR WEB-BASED GIS/DATABASE APPLICATIONS

212 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

and LayerList. An ArcImsMap displays a map image and provides methods to
manipulate the map. A MapToolbar allows the user to select a tool to operate on a map
interface. A LayerList displays the list of the layers currently shown on the map, and it
also allows the user to set layer visibility and to select an active layer.

ArcSDE Server

ArcSDE supports an object view of such spatial data as map layers and geographical
features stored in tables in a relational database. Business data can also be stored in a
relational database along with the spatial data. Although both spatial and business data
managed by ArcSDE can be retrieved through ArcIMS, ArcIMS does not support such
functions as inserting, deleting, and updating data.

ArcSDE.NET Assembly

ESRI, the company that developed ArcSDE, provides C, Java, and ArcObjects APIs for
client programming. Although the ArcObjects COM component provides the most
complete functionality, ArcObjects cannot be used by Web-based applications because of
an ESRI license restriction. Therefore, the ArcSDE.NET assembly has been developed to
allow scripts written in .NET languages, such as C#, to access an ArcSDE server through
the ArcSDE C API.

The ArcSDE.NET assembly calls the ArcSDE C API by using Microsoft .NET C++.
C++ is the only language in .NET Framework that can be used to call unmanaged code
directly. To create the ArcSDE.NET assembly, a pair of managed and unmanaged C++
modules have been created. When receiving a request from a user, an ASP.NET script
calls an appropriate function in managed C++ modules in ArcSDE.NET. The managed
module uses the unmanaged module to access to ArcSDE API. By calling C API
functions from unmanaged C++ functions, unmanaged structured data from the C API
can be properly passed to a C function. Moreover, an overhead of switching between
managed and unmanaged codes can be reduced by combining several C API function
calls into one function call in an unmanaged class.

3 INTERACTIVE MAP INTERFACES

Each of our custom server controls provides a user-interface element for a WebGD map
interface. A unique feature of our map interface is that geographical features can be
inserted and deleted from the map and that information associated with them can be
retrieved from a database through the interactive map interface. In describing components
and functions of a WebGD map interface, we will use the Yolo County Soil Viewer
application as a running example.

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 213

Map Interface of the Yolo County Soil Viewer

The map interface of Yolo County Soil Viewer consists of four Web Forms pages:
tools.aspx, tools2.aspx, map.aspx, and contents.aspx. They are contained in
four frames as shown in Fig. 2. Both tools.aspx and tools2.aspx contains a
MapToolbar. map.aspx contains an ArcImsMap, and contents.aspx contains a
LayerList.

Using Yolo County Soil Viewer

To zoom into an area of interest, the user needs to select the zoom-in tool. Once she
selects the zoom-in tool, she can press the left mouse button at the top-left corner of the
area to zoom in and drag the cursor to the lower-right corner of the zoom-in area, drawing
a rectangle, as shown in Fig. 3, that represents the area for zooming.

Fig. 2: Map interface of Yolo County Soil Viewer.

map frame

tools frame

contents frame

tools2 frame

map frame

tools frame

contents frame

tools2 frame
map frame

tools frame

WEB GD: A FRAMWORK FOR WEB-BASED GIS/DATABASE APPLICATIONS

214 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

On the Web server, the executed ASP.NET script requests a new map image from the
ArcIMS server. The ArcIMS server generates the image and sends its URL back to the
ASP.NET script. The script then includes the URL in the page displayed in the map
frame. The new map shows an orthographic photo image in the background as shown in
Fig. 4. The layer list shows the Ortho Photo layer when the map scale becomes smaller
than 1:200000.

Fig. 4: Map with the orthographic photo layer.

4 WEBGD CUSTOM SERVER CONTROLS

We developed a set of custom server controls to be used as map-interface components.
In this section, we show how those server controls can simplify development of an
interactive map interface.

Fig. 3: Zooming in to an area of interest.

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 215

Developing a Map Interface with Custom Server Controls

We designed and implemented a set of custom server controls, including ArcImsMap,
LayerList, and MapToolbar, for rapid implementation of an interactive map interface.
Instances of these server controls can be added to an ASP.NET .aspx file with XML
tags. Development enviroments like Visual Studio .NET allow these server controls to be
picked and placed on the Web Form. T appearance and behavior of a server control can
be managed by setting property values. The map interface shown in Fig. 5 was created
using WebGD server controls. This figure also shows the ArcImsMap, LayerList, and
MapToolbar server controls.

Control is the base class of all the ASP.NET server controls. Control defines events,
properties, and functions common to every server control. In each phase of the lifecycle
of a server control, the virtual function provided for that phase of the server control is
called. To define its own appearance and behavior, a custom control can override virtual
functions inherited from Control. For example, each of our custom server controls
overrides the Render() method to define its appearance.

Our custom server controls are derived from the WebControl class, and hence the
properties of WebControl are inherited by WebGD server controls. WebControl
provides the properties common to every Web server controls, and we can change the
appearance and the behavior of a control by setting new values to its properties. For
example, we can set a new value to the BackColor property to change the background
color of the control. In this section, we describe implementation details of each of our
custom server controls.

ArcImsMap

An instance of ArcImsMap is used to render the map. As such, ArcImsMap forms the
core of a WebGD map interface. The user can perform various actions, such as zooming,
panning, and querying, with a map interface. Actions on a map image are handled by the

Fig. 5: Interactive map interface generated by WebGD.

ArcImsMap

LayerList

MapToolbar

WEB GD: A FRAMWORK FOR WEB-BASED GIS/DATABASE APPLICATIONS

216 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

ArcImsMap. We encapsulate functionality of each action in a subclass of MapAction
and store instances of MapAction subclasses in the Actions collection of an
ArcImsMap. When an ArcImsMap receives a request posted back from the Web
browser, it searches through the Actions collection for the MapAction instance that
matches the action posted back. If the matching MapAction is found, its function Act()
is invoked. In addition to the server-side function, a MapAction subclass may include
also a client-side JavaScript script, which allows the user to interact with the map. For
example, a ZoomInAction provides the client-side script for drawing a box for
zooming.

We implemented actions with classes instead of implementing them as functions of
ArcImsMap, since in this way we can add an action to an ArcImsMap or remove an
action without modifying the ArcImsMap class. To implement a map action, such as
highlighting areas in the map being displayed, we can create a new MapAction subclass
and add its instance to the Actions collection of the ArcImsMap. Thus, functionality of
a WebGD map interface is not limited to the classes currently provided by our
framework. In addition, as a map action is encapsulated in a class, we can reuse it in
multiple applications.

As shown in Fig. 6, the following abstract functions are defined in MapAction.
• GetAction(): This function returns the string representation of the action. For

example, GetAction() of a ZoomInAction returns the value of “zoomin”. In
order to determine the action requested by the user, the ArcImsMap uses the
returned value of GetAction() to compare with the string posted back in the
hidden action field.

• Act(): This function is called by the ArcImsMap to perform the action
requested. For example, Act() of a ZoomInAction changes the extent of the
map to the extent selected by the user. A Boolean value indicates whether or not
the map scale has been changed. If the scale has changed and if the LayerList is
in another page, then the ArcImsMap generates the client-side JavaScript script to
post back the page containing the LayerList so that the new layer list is
rendered.

• GetClientMouseHandlerName(): The ArcImsMap calls this function when it
generates the switch statement in the client-side function setTool()to register
the mouse-down event handler provided for the action selected. The function
GetClientMouseHandlerName() returns the name of the mouse-down event
handler for the action supported by this MapAction object.

• GetClientMouseHandlerMethod(): This returns the client-side script of the
mouse-down handler. The client-side script is in JavaScript. The ArcImsMap
registers the script returned from this function to the Web Forms page. As some
actions, such as zoom-in and zoom-out, share a client-side script, the ArcImsMap
uses the name of the handler as the key to prevent the same script to be registered
redundantly for the same page.

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 217

public abstract class MapAction {
 public abstract string GetAction();
 public abstract string GetClientMouseHandlerName();
 public abstract string GetClientMouseHandlerMethod();
 public abstract bool Act(ArcImsMap pMap);
}

Fig. 6: Class MapAction.

MapToolbar

A MapToolbar can contain several tools for use on a map. A MapToolbar lays out
tools in a table, storing each tool in a cell. Tools are represented by the images like those
in the tools frame within the map interface given in Fig. 7. In addition, tools can be
represented by texts as done in the tools2 frame.

Some map operations, such as zooming, require the user to interact on the map
image. When the user selects the zoom-in tool, the tool button changes its background
color to indicate that it is currently selected. When another tool is selected, the original
background color is restored. If a tool is represented by an image button then the image
can be changed to another image to indicate that the tool is selected.

A MapToolbar is laid out as a table, and the ArcIMSMap control can have several
MapToolbars associated with it. A developer can arrange tools and a map image
according to her preference. Fig. 7 shows another map interface with four
MapToolbars, each of which has one tool for panning the map in a different direction.

Like an ArcImsMap, a MapToolbar has a collection of Tools. Each object in the
collection is an instance of a subclass of the Tool class. A MapToolbar has the attribute
[…, ParseChildren(true, "Tools"), …], which tells the page parser to create
objects from nested elements and to add them to the Tools property of the
MapToolbar.

Fig. 7: Map interface with four MapToolbars.

WEB GD: A FRAMWORK FOR WEB-BASED GIS/DATABASE APPLICATIONS

218 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

The Tool class contains data specifying the appearance of the tool and the behavior
of the map operation represented by the tool. The behavior can be defined with four
member variables of Tool.

• Action: This variable stores an action string to be set to the hidden action field
of an ArcImsMap.

• isMapAction: This variable indicates whether or not the user needs to interact
with the map to perform the operation. If isMapAction is true when the tool is
selected, the tool changes the background color of the image, and the client-side
function setTool() of ArcImsMap registers a mouse handler associated with
the operation.

• needNewImage: This variable specifies whether or not the operation requires the
new image. If the new image is needed, the form of the ArcImsMap is submitted
to the Web server.

• funcName: This variable stores the name of a client-side function of the tool.
While most operations that require new map images do not have a client-side
functions, those operations that do not need new images need client-side
functions. For example, a tool for retrieving information uses a client-side
function to open a Web page to display the requested information.

We can get the values of the above four variables, but we cannot change their values. A
MapToolbar renders HTML elements with attribute onclick associated with the
setTool() function call made with arguments action, isMapAction,
needNewImage, and funcName.

Tool also has other variables for specifying the appearance of a tool. Examples of
such variables are the showImg variable that defines whether or not the tool is an image
button and the enable variable that defines whether the tool should be initially enabled
or disabled. The Tool class provides the public properties for these variables. Hence,
values of these variables can be specified as attributes in declarative tags, as shown in
Fig. 8. As the behavior of the operation represented by a tool can be defined with its
member variables, we created CustomTool, which exposes some member variables as
properties. Thus, we can define a tool for an operation by specifying the values of
CustomTool properties.

<ARCIMS:MapToolbar id="MapToolbar1" runat="server"

 BackColor="#ccffff" mapid="myMap" numcols="4">

 <ARCIMS:ZoomInTool ShowImg="true“/>

 <ARCIMS:ZoomOutTool ShowImg="true“/>

 <ARCIMS:PanTool ShowImg="true“/>

 <ARCIMS:ZoomActiveTool ShowImg="true“/>

</ARCIMS:MapToolbar>

Fig. 8: Declarative tags for a MapToolbar.

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 219

LayerList

The LayerList displays the list of the layers currently shown on the map, and it also
allows the user to change visibility of the layers and to select the active layer. In this
section, we describe the user interface of a LayerList and explain how different types
of layers are handled by LayerList.

The LayerList shows the list of the layers displayed on the ArcImsMap. Each
layer occupies one row in the table provided for the LayerList, and each row has two
columns for the name and the visibility checkbox. The user can make a layer visible or
invisible with this checkbox. When the user checks or unchecks the checkbox, the client-
side JavaScript code generated by the instance of LayerList submits the Web Forms
page containing the state of the ArcImsMap to the server for a new map image. The
table cell displaying the name of a layer has a JavaScript function registered with the
click event. When the user clicks on the name of a layer, the LayerList highlights
the layer to indicate that it is the active layer. A map operation, like zoom-to-active-layer,
uses information on the active layer when the action is performed on the map.

In the load phase, a LayerList steps through the layer list of the ArcIMS Map
object, creating a LayerItem for each layer and adding it to the Layers array. Then, in
the render phase, the LayerList renders the LayerItems in the Layers collection.
The declaration of LayerItem is shown in Fig. 9. We add the Layers array to
LayerList to allow modification of the property values of layers before they are used in
the render phase.

WEB GD: A FRAMWORK FOR WEB-BASED GIS/DATABASE APPLICATIONS

220 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

public sealed class LayerItem {
 private string id;
 private bool visible; //whether the layer is shown on map
 private LayerType type; //feature, image or clone
 public string Name; //layer name
 public bool Active; //whether the layer can be active
 public bool Show;//whether the layer is shown on list
 public string ID { get{ return id;}}
 public bool Visible {get{ return visible;}}
 public LayerType Type {get {return type;}}
 public LayerItem (string pName, string pId, bool pVisible,
 bool pActive, LayerType pType)
 {
 Name = pName;
 id = pId;
 Active = pActive;
 visible = pVisible;
 type = pType;
 Show = type == Clone ? false : true;
 }

}

Fig. 9: Class LayerItem.

A LayerList handles layers differently, depending on their types. ArcIMS supports
three types of layers: Feature, Image, and Acetate. In addition to those layer types, an
instance of LayerList may contain a clone of a Feature layer.

• Feature layer: A Feature layer represents a vector dataset. ArcIMS allows us to
get or set many properties of a Feature layer. For example, we can get the extent
of the dataset, and we can apply a filter to the features in the layer. A Feature
layer can be selected as the active layer on a LayerList.

• Image layer: An Image layer displays raster data on the map. For an Image layer,
we can only read the values of the values, such as name, minimum scale, and
maximum scale. As an ArcIMS server does not provide any useful function on
an image layer, it cannot be selected as the active layer.

• Acetate layer: An Acetate layer is a custom layer to which we can add objects,
such as a scale bar, a north arrow, and polygons. As an Acetate layer does not
represent any dataset, a LayerList does not add it to the Layers collection.

• Cloned layer: A cloned layer is a copy of the Feature layer. We can use a cloned
layer to implement such a feature as highlighting. To highlight geographical
features, we create a new layer as a clone of the layer to be highlighted, keeping
only the features that need be highlighted, and change the symbol of the cloned
layer. By default a cloned layer will not be shown in the LayerList.

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 221

Supported Web Browsers

As described earlier, client-side JavaScript code is used in many functions. These client-
side scripts provide functions that cannot be performed with static HTML. However,
client-side scripts cause browser compatibility problems. We developed and tested our
custom server controls to support the following major Web browsers: Microsoft Internet
Explorer 6.0, Netscape Navigator 6.2, and Mozilla 1.1.

5 WEBGD APPLICATION: MOTELS IN OREGON

To illustrate the utility of WebGD, we examine Motels in Oregon, an example business
application that allows customers to search for information and make reservations for
motels in Oregon. With a standard Web browser, users can perform various operations
related to motel business processes. Fig. 10 shows the interface for Motels in Oregon,
which, in this case, displays the State of Oregon.

Fig. 10: Motels in Oregon

Motels in Oregon allows users browse the map, by panning the map and zoomming in or
out. When zoomed in far enough, the Ortho Image layer becomes visible, giving users an
aerial view of the map. The result in Fig. 11 shows a section of Corvallis, OR in which
the Super 8 Motel and Econo Lodge are highlighted.

WEB GD: A FRAMWORK FOR WEB-BASED GIS/DATABASE APPLICATIONS

222 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

Fig. 11: Zoomed in to Corvallis, OR.

Motels in Oregon has four levels of authorization: the public, customers, motel owners,
and administrators. The public can browse the map to locate motels and retrieve
information. When members of the public register, they become customers, who can, in
addition to searching and information retrieval, set and modify reservations. Motels can
be searched for by address or by selecting an area, as shown in Fig. 12
.

Fig. 12: Searching for motels by area.

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 223

Once a motel has been found, users can retrieve relevant information such as room rates,
number of rooms, and other amenities. This is done by simply clicking on the motel on
the map. The results of such a query are depicted in Fig. 13.

Fig. 13: Retrieving motel information.

Motel owners utilize the full power of WebGD, as they can insert and delete motel
symbols on the map, and insert, retrieve, update, and delete non-spatial data associated
with each motel. Fig. 14 gives a view of the interface for inserting a motel.

WEB GD: A FRAMWORK FOR WEB-BASED GIS/DATABASE APPLICATIONS

224 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

Fig. 14: Inserting a motel.

Motels in Oregon provides a powerful interface for motel operators and customers. This
application offers motel operators both a means of advertisement and sales, while
providing customers with a convenient platform for locating motels and reserving rooms.

6 CONCLUSIONS AND FUTURE WORK

WebGD is a framework for developing Web-based GIS/database applications. This
framework makes possible rapid development of a Web-based application that supports
the insertion and deletion of geographical features shown on the interactive map
interface, as well as the access and retrieval of information associated with those
geographical features.

The building blocks of WebGD are ASP.NET custom server controls. We have
observed the following benefits of the WebGD custom server controls.

1. WebGD custom server controls enable us to create a Web-based GIS application
rapidly. These instances can be added to an ASP.NET page as declarative
elements. In addition, a development tool, such as Visual Studio .NET, allows us
to pick and place instances of those server controls on a Web Forms page.

2. The appearance and behavior of a custom server control can be customized for
each application. We can set the values of server control properties in declarative

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 225

tags as attribute values or change those values in ASP.NET scripts with
executable statements.

3. We can implement new map actions and new tools, and add their instances to our
custom server controls.

WebGD has been used to develop several Web-based applications that have map
interfaces. Yolo County Soil Viewer and Motels in Oregon are two example applications
discussed in this paper.

We are also developing WebSiteGen, a tool that uses the schema of a database to
automatically generate a set of Web forms for accessing data stored in the database. We
will combine WebGD with WebSiteGen so that Web-based applications including both
map interfaces and data forms can be created with little up-front programming. The
information in the configuration file of a map service can be used to relate geographical
features displayed on the map interface to the business data associated with them. In this
way, we are creating tools and a framework that can be used to automatically create Web-
based GIS/database applications.

REFERENCES

[Challa02] Challa Siva and Artur Laksberg: Essential Guide to Managed Extensions
for C++, Apress, 2002.

[Duthie02] G. Andrew Duthie and Matthew MacDonald: ASP.NET in a Nutshell,
O’Reilly, 2002.

[ESRI02] ArcObjects Developer Help, ESRI, 2002.

[ESRI02] ArcXML Programmer’s Reference Guide, ESRI, 2002.

[Microsoft02] MSDN Library, Microsoft, 2002.

About the authors
Paphun Wangmutitakul is a software engineer at Terra Genesis, Inc., AZ. She
currently works on developing GIS application programs for transportation system
maintenance and analysis.

WEB GD: A FRAMWORK FOR WEB-BASED GIS/DATABASE APPLICATIONS

226 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

Dr. Toshimi Minoura is an associate professor of Computer Science at Oregon State
University. His research group has designed and implemented frameworks for creating
web-based GIS/database applications, by using ArcIMS and ArcSDE on Windows and by
using MapServer on Linux. With this technology, the group has created applications for
environmental impact assessment and wildlife conservation.

Alec Maki is a graduate student in computer science at Oregon State University. He
studies under Dr. Minoura's guidance. His research focus is on the design and
development of web-based GIS/database applications.

