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Components are increasingly used to create complex and distributed systems and ap-
plications. They are often viewed as simple servers, which limits their capacity for
collective action. In this paper, we propose a method to simplify their assembly and
their potential re-usability. We use the notion of dependency and contract between
components to explicitly design an entity that guarantee the correctness of the built
system. We introduce split contracts and delegations of properties to check, both at
conception and execution time, the correctness of the built system. Our solution in-
creases the independence of the participating entities by isolating the core components
and transferring the aggregation into speci�c �glue� components.

1 INTRODUCTION

The Object Oriented approach was introduced to o�er powerful tools and e�cient
structural design. Classes o�er a clear hierarchical organization. However complex-
ity remains in the interactions that tightly bind each object with the others. This
hinders the development of large scale industrial applications. Components were
introduced to enhance the isolation and the separation of concerns by increasing the
granularity of the manipulated entities, and by giving them new capabilities. But if
encapsulation gives abstraction power, it hides the speci�cation of the component
(and mainly its internal behavior). Components are black boxes without a �user
manual�.

Contracts were introduced in Objects by Helm [5]. This aimed to compensate
the lack of methods to express relations between objects. They were used to specify
behavioural compositions. Using contracts provides an orthogonal dimension to the
one provided by the class structure. Techniques of development are more and more
based on the component approach [3]. To improve these techniques and allow re-
use, contracts were extended and adapted to them by Meyer [10] and Jezequel [6].
Usually, contracts are only associated to servers. That limitation is still present
in contracts models. This is the signi�cant anti-symmetry of the call because only
servers imposes its conditions of use without even considering the clients nature.

This work1 o�ers developpers an integrated development environment with anal-
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ysis tools that use more symmetric contracts to describe composition of components.
This paper begins by stating current trends in the use of the contracts for compo-
nents. Then we introduce a new point of view for the call of a component service.
From this point, we set up contracts for this type of call and de�ne a notion of
compatibility between two contracts. From this basic de�nition, we then extend
the compatibility notion to n components and de�ne all the possible dependencies.
Finally, we apply these notions to verify the integrity of an application developed
with these contracts. To illustrate our approach, we present a simple cash dispenser
example.

2 TOWARDS A COMPATIBILITY RELATIONSHIP

Components and contracts

A component is a cooperative composite entity similar to those described in Archi-
tecture Description Languages [8]. A component has multiple interfaces which are
sets of operations - also called methods. Sometimes interfaces are grouped to make
ports which become a point of interaction. A �rst attempt to introduce contracts in
components was done in 1999 in the article �Making Component Contract Aware�
[2]. It introduces four types of contract : syntactic, behavioral, synchronization, and
quality of service. It speci�es conditions and a unique contract carrying both client
and server constraints.

An entity that interacts can only accept the contract (or one of its siblings) and
respect it. This point of view limits the assembling capacity of a developer because
some entities could have di�erent compatible speci�cations without having any ob-
vious relationship - i.e. same contract. Another restriction is that the contracts have
to be used during execution in order to check the interaction validity. Finally, they
are dedicated to an application and a speci�c platform even if adaptation remains
possible. Contracts are made for a speci�c context therefore it is di�cult to extract
a component from the whole.

Tools like Jcontract [14], Icontract [18], Ei�el [9] implement �Design By Contract�
assertions but for an Object Oriented Model not for components. Moreover they
are used for test purposes and not at all for model checking.

To relieve these �dependence� and �checking� limitations, we choose to use �split�
contracts. Each side has its own requirements and its own guarantees expressed as a
set of properties. The client de�nes a set of required properties and the server a set
of o�ered properties. If two entities have to interact, both split parties set a contract
for the interaction. We are currently independent from a speci�c platform model
like COM+, EJB [1], CCM [13], .NET [11]. All notions will be kept as abstract as
possible. Though, In our model, stress is put on the semantic and the pragmatic
viewpoints that is to say respectively on the functional and non-functional properties
of a component. This document mainly deals with the description of interactions
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between components using contracts but wholly viewed as collaboration [15].

Contracts de�ne dependencies in relations and interactions involving elements
of the application. We associate, as in the CORBA CCM Model [16], to each
interaction, speci�cations which accurately set the required service context (the
client point of view) and the o�ered service context (the server point of view).
Speci�cations are expressed by pre and post-conditions. Assertions determine the
guarantees and the obligations applied to each participant in interaction. Server and
client have to specify required conditions that the server and client must provide. If
the server or client do not provide them, the binding won't be established.

Compatibility and sub-typing

Firstly, we introduce a compatibility notion between two components which leads
us to de�ne a compatibility relation between services (resp. interfaces, operations).
Roughly speaking, this notion enables the substitution of one component (resp.
service, interface, operation) by another one. A classical compatibility notion is
given by the sub-typing notion : a type T is a subtype of a type T ′ (noted T <: T '
) if each value of T can be used in a consistent manner for each expected values of
T ′.

Our compatibility notion is based on an extension of sub-typing. To de�ne the
compatibility between two operations, we extend the classical sub-typing notion. We
denote PO <: RO the compatibility of a Required Operation (RO) and a Provided
Operation (PO). To check this newly de�ned compatibility, we add a speci�cation
to the involved operations. These speci�cations are composed of a set of properties.
From now on, the properties describe the operations. We set SPO (resp. SRO) as
the speci�cations of PO (resp. RO).

Services are too often under-speci�ed but this is the only data (aside testing) that
we can rely on and programmers always use the speci�cations for the important parts
of the new designed component. So when we talk about compatibility between PO
and RO, we mean compatibility between their respective speci�cations: SPO <: SRO.

Moreover, we can distinguish di�erent levels, or so called point of view, in the
speci�cations. Compatibility can be considered from many viewpoints. We use a
classi�cation deduced from the Natural Language Processing point of view. There
is the syntactic level which deals with the signature and the manipulated data. The
semantic level which deals with the functional properties of the service. And the
pragmatic level that deals with the di�culties raised by the component environment
and the way it is used. Usually the compatibility relationship uses sub-typing. We
enforce that an operation o of type T is semantically compatible with an o′ operation
of T ′, if they have the same number of parameters and the same identi�er, if the
contra-variance of in parameters and the covariance of out parameters are con�rmed.
The contra-variance of in parameters asserts that they are in reverse order from
the sub-typing relation. The covariance of the out parameters asserts that the
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parameters carry out the same sub-typing relation order.

The following two de�nitions illustrate the contra-variance of the in parameters
for a provided and a required operation:

• Provided Operation : void an_operation (in long parameter)

• Required Operation : void an_operation (in int parameter)

The following two de�nitions illustrate the covariance of the out parameters for
a provided and a required operation:

• Provided Operation : void an_operation (out int return_param)

• Required Operation : void an_operation (out long return_param)

This prohibits the sub-typing relationship for the inout parameters. This de�ni-
tion is one possibility among many others but it has the advantage of limiting the
semantic variations of operations having the same signature (syntactically compat-
ible) but with a totally di�erent semantic. There is no automatic solution. Only
the human brain can make the di�erence. As this compatibility relationship relies
on sub-typing notions, the relation is transitive but not symmetric. So we have
¬(PO <: RO ⇒ RO <: PO).

Then comes the semantic compatibility. In component interaction, the speci�ca-
tion SRO of a Required Operation (RO) is a set of properties required to prove the
correctness of the client. In a similar manner, a provided operation (PO) and its
speci�cation SPO guarantees the �usage� properties of all correct implementations
of a server. Figure 1 illustrates this issue.

A call correctness can be asserted by determining the "compatibility" conditions
in which a client wishing to use a service RO could use a PO service instead. So, the
call correctness is stated as conditions to satisfy for RO to be replaced by PO. We
choose to use the pre and post conditions formalism. In a non-distributed mono-
lithic programming context, assertions are expressed in classic �rst order logic. We
don't need a speci�c expression of knowledge because the process has a global vision
of itself and its state. However in distributed, concurrent programming, there is
no global state, there are only some partial views of the systems. Making a non-
outdated global view is di�cult and costly in many ways. It is therefore imperative
to introduce a knowledge expression language (an epistemic language) to reify the
state of knowledge of the entities. Another point is the fact that elements are con-
currently addressed so a temporal expression language is also necessary. Therefore,
in the concurrent distributed environment of the components, we set a pre-condition
(O_pre) as a modal logic predicate that can be temporal and/or epistemic [17]. This
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Figure 1: Interaction between a provided and a required service

predicate is evaluated just before the execution of the operation and sets the condi-
tions of the proper realization of the interaction (and subsequently the service). In
most cases, the constraints do not specify one unique coherent state but a family of
acceptable execution historic that will lead to an acceptable execution. In the same
way, a post condition (O_post) de�nes a set of potential correct futures (after the
correct achievement of the service).

A compatibility de�nition

The speci�cation of an operation compels to use a temporal logic. We choose to use
the Temporal Logic of Action [7]. In TLA, an execution is viewed as a sequence of
steps, each producing a new state by changing the values of one or more variables.
We apply the same analogy for components and we consider an execution to be
the resulting sequence of a succession of states that will take the semantic meaning
of the studied component interactions. At the very instant where the operation is
enabled, the O predicate is true. The same holds for the O ∧ O_pre. After the O
execution, the operation following O (noted nextO or XO) is enabled. The predicate
XO∧O_post is true at this very moment and the post conditions are veri�ed. This
invocation speci�cation presumes the atomicity of the operation from the client
point of view. At this granularity level, we do not provide any information on the
behavior of O during its execution. So basically the execution can be symbolized by
O ∧ pre ⇒ O ∧O_post as in �gure 2.

In this context, we must introduce time, causality and epistemic expression tools
but this is not the purpose of the current paper. The previous basic statement can
be extended to express the semantic and temporal compatibility of an interaction
by using the �ve following equations:
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Figure 2: Temporal Logic Representation of an operation execution

1. RO ∧RO_pre ⇒ XO ∧RO_post

2. PO ∧ PO_pre ⇒ XO ∧ PO_post

3. RO = PO ∧XRO = XPO

4. RO ∧RO_pre |= PO ∧ PO_pre

5. XPO ∧ PO_post |= XRO ∧RO_post

The �rst condition (1) tells that there exists a speci�cation SRO of a RO which
enables the client to move from one coherent state to another. The second expression
(2) states the existence of a provided operation speci�cation (SPO) which enables
the server to pass from one coherent state to another. The three last conditions seal
the relation of compatibility between the client and the server. The third condition
(3) guarantees that the provided operation PO can be used instead of the required
operation RO. In other words, the component can make a direct invocation without
the need of a connector or an adaptator to link the PO and the RO. The fourth
condition (4) imposes the contra-variance between the provided and required pre-
conditions. The �fth condition (5) imposes the covariance between the provided and
required post-conditions. In other words, before an invocation, each pre-condition
from the client must be veri�ed by the caller and at the return, each post-condition
from the server must be in agreement with the properties of the called.

The pragmatic compatibility is the most di�cult to de�ne. It consists in the
behavioural and environmental compatibility veri�cation. Pragmatic properties are
often di�cult to analyse. They could be expressed totally by logical expressions but
also as state-transition diagram. In this case specifying compatibility is equivalent
to testing if the diagram of the PO is less constrained than the diagram of the
RO. Typically, this is the notion of symmetries found in Petri nets. This type of
compatibility will be transitive but the symmetry will not be guaranteed as it was in
the other levels. A more complex de�nition of the compatibility can be de�ned for
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interfaces, which will impose a causal order between calls. However the techniques
are exactly the same than those used to compare the method behavior.

Semantic and pragmatic constraints can be expressed with �rst order predicate
logic2, second order modal logic3 and with di�erent languages [19]. Our study does
not limit itself to one of them but all services are to be speci�ed using the same
logic language. It is not our purpose to develop our own language so we check
some of among the abundance of existing ones. Our preference goes to one of
the most widely used: OCL. In addition, temporal extensions and some software
checkers are available for free [12]. Unfortunately, a knowledge expression extension
is still missing in OCL. This add-on could be very useful to formulate and manage
the ways and means of the information di�usion and knowledge of a speci�c data
among components. A possibility to deal with theses properties is to use a runtime
checker, to test if a component bind itself with an unauthorized entity or/and get
access to forbidden data.

Interaction contracts

One of the essential principles in an interaction contract elaboration is the com-
patibility between the properties of each contributor. The compatibility between
both involved operation is a su�cient and necessary condition for the existence of
a contract (Figure 3) because of the transitivity of the relation.

So we must have SRO <: SPO. If this conditions is not veri�ed then the interac-
tion and subsequently the composition is not possible. An interaction contract has
a speci�cation issued from a negotiation process between a client and a server on
the base of the required and o�ered speci�cations. So a simple interaction contract
is a speci�cation SCO which uniquely types an interaction. The contract speci�ca-
tion SCO replaces, in the application using the caller and the called, their respective
speci�cations (SPO and SRO). The existence of the SCO is ensured by the relation
transitivity. So we have:

• PO <: CO <: RO

• RO_pre |= CO_pre |= PO_pre (contravariance)

• RO ∧RO_post |= CO_post |= PO ∧ PO_post (covariance)

2When the subject of the sentence is an individual object (like Socrates in "Socrates is mortal"),
then we are using �rst order logic

3When the subject is another predicate (like being mortal in "Being mortal is tragic"), then we
are using second order logic or higher order logic
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Figure 3: Representation of interaction contracts
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A �rst trivial illustrative sample

Firstly, let us say that more informations and a more complex sample can be found
on the project page of ACCORD 4. But, to illustrate this, let us take a naive getCash
operation, which withdraws cash from a bank account. The client coordinator has
a required interface RIBank link with the bank component obtained through a pro-
vided interface PIBank from a bank component. The speci�ed method is getCash.
The Required Operation of the client component is:

Component Coordinator - interface RIBank
OperationgetCash (amount, account)
pre-condition (OR_pre) :
typeOf (amount) is type_amount
∧ typeOf (account) is type_account
∧ amount < maximum1
∧ balance (account) - amount > 0

post-condition (OR_post) :
balance (account) = balance (account)@pre - amount

To be more precise, it would have been interesting to introduce the epistemic
modalities where the client would only know if the operation is possible or not
without knowing the balance. However, the previous code only limits the amount of
money a client can take to a maximum of maximum1 and imposes that the balance
of the account will stay positive after the operation.

The speci�cation SPO of the provided operation (PO) would be:

Component Bank - interface PIBank
Provided Operation : getCash (amount, account)

pre-condition (PO_pre) :
typeOf (amount) is type_amount
∧ typeOf (account) is type_account
∧ amount < maximum2
∧ balance (account) amount > 0

post-condition (PO_post) :
balance (account)=balance (account)@pre - amount
∧ balance (account) < triggerLevel(account) ==> msg_alert

This speci�cation only enables getCash operation with an amount lower than
maximum2. The post-condition throws an alert message if the amount on the ac-
count is below a trigger value. In this case, the contra-variance hypothesis on the
pre-conditions RO_pre ⇒ PO_pre) enforces the following condition for the oper-
ation to be successful:

amount<maximum1 ==> amount<maximum2

The maximum amount required must be less than the maximum amount pro-
vided. The covariance hypothesis on the post-conditions PO_post ⇒ RO_post)
are naturally satis�ed because

4http://www.infres.enst.fr/projets/accord/lot1/index.html
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[
balance (account)=balance (account)@pre-amount
∧ balance (account) < triggerLevel(account) ==> msg_alert

]
=⇒ balance (account) = balance (account)@pre - amount

So from these conditions, we can make a SOC which is compatible with SRO and
SPO :
Contract Operation: getCash (amount, account)
pre-condition (CO_pre) :

typeOf (amount) is type_amount
∧ typeOf (account) is type_account
∧ amount < maximumC
∧ maximumC < maximum2
∧ balance (account) amount > 0

post-condition (CO_post) :
[
balance (account)=balance (account)@pre-amount
∧ balance (account) < triggerLevel(account) ==> msg_alert

]
==> balance (account) = balance (account)@pre - amount

In SCO, we must adopt in the pre-condition with an adapted maximum called
maximumC which must be less than maximum2 and in the post-conditions those
from the client which are compatible but which enforce some more conditions.

3 COMPONENTS ASSEMBLY AND CONTRACTUAL DEPENDENCIES

Why interactions contracts are not su�cient

Some speci�c cases appear in the construction of the speci�cations of SRO or SPO.
On one hand the programmer can use a �Component O� The Shell� along with the
provided speci�cations de�ned by the �COTS�. Henceforth, the developer accepts
the post-conditions PO_post and makes them his own RO_post for the new imple-
mented component. In the same manner, he uses the pre-conditions PO_pre for the
RO_pre and tries to satisfy them. Therefore, the newly created component accepts
all the conditions imposed by the speci�cations of the component with which it inter-
act. Verifying the peer to peer compatibility between both elements is then trivial.
This case often rises in top-down development methodologies. On the other hand,
when the programmer develops a new component, he can use the speci�cations of
a required operation to build a new component with a provided operation that will
totally satisfy the required properties. This is the case of bottom-up methodologies.

But this is insu�cient. A composite is composed of a set of components according
to an assembly graph. As a component can be a composite itself, the abstract model
is fractal. If there is no dependence between the speci�cations then the assembly is
reduced to a succession of interaction contracts de�nitions. More often, there are
dependencies between the speci�cations so the validity of the aggregation must be
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Figure 4: Structure of a composite

veri�ed.

The component speci�cations are �xed and are not mutable at execution time.
The Provided Service has a visible (public) part and a hidden (private) part with
its respective speci�cations noted SV PO and SHPO. The Required Service also has
a visible and hidden part respectively noted SV RO and SHRO. (�gure 4).

Dependencies taxonomy

This model exhibits four categories of possible dependencies between components
speci�cations (noted from 1 to 4 on �gure 4):

1. Type 1 identi�es the link between a visible provided interface of the composite
and an interface provided by member components of the composite.

2. Type 2 identi�es the link between the required visible interface of a member
of the composite and a visible interface of it.

3. Type 3 identi�es the external links between components. They are the previ-
ously de�ned links between a required operation and a provided one.

4. Type 4 identi�es intra-components links. These are rei�ed to support the
dependencies created by the implantation of a service that are used by another
one.
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Figure 6: Dependencies of required public services

Dependencies of provided services (type 1 links)

Links of type 1 hold a more or less complex delegation of an external visible provided
interface that is to say an invocation of a service on the external visible part of a
component can be transferred to a sub-element of itself. The selected hypothesis is
the pure delegation. In this case, the provided speci�cation SV PO that is rendered
visible is the same as the speci�cation of a provided service (SHPO) of a composite
member. Another working hypothesis would be a delegation by compatibility. Then
a speci�cation of a visible provided service is compatible with the provided service
of a member of a composite (SHPO <: SV PO). Another last solution would be a
delegation by adaptation so that the provided visible service is an adaptation of an
internal provided one (�gure 5).

Dependencies of required service (type 2 links)

As previously mentioned, one solution is the pure delegation of a speci�ed required
visible service of a member component as a required visible service of the composite.
And in a similar way to the type 1 link, we can use the compatibility delegation
(SHPO <: SV RO) and adaptation delegation.

Dependencies between components (type 3 links)

In the context of an assembly, a component needs a required service RO according
to a SRO speci�cation. It also provides a service PO in agreement with to the
speci�cation SPO. In the general case, a dependency relation called RPD (Required
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on Provided Dependency) express that SRO rely on SPO by the relation SRO =
RPD(SPO). Examples of such dependencies can be exhibited in static or dynamic
links or at a larger scale in aspect oriented programming. With the static link, the
copying mechanism of the provided speci�cation to de�ne the required speci�cation
is one sample of dependency. With a dynamic link a component receives a reference
to another one at runtime. So, it depends only on the component that will �nally
really be invoked. Aspect Oriented Programming (AOP) [4] introduces an aspect
component that require the service of a base component which is, at �rst sight,
unde�ned.

The speci�cation and the services for this aspect oriented component is the one
o�ered by the wrapped component. This would enable AOP advantages of the high
granularity level of component. A last case is when quality of service is used because
it also implies numerous dependencies. For instance, the response time for a service
relies on the �nal server and its intermediates. Then time overhead, parameter
modi�cation and so on can be introduced (Figure 7).

Internal Dependencies (type 4 links)

A composite provides a service PO according to a speci�cation SPO. It requires a
service RO with its speci�cation SRO. SRO relies on SPO by a dependency function
called Provided on Required Dependency noted PRD so that SPO = PRD(SRO).
We have the same example as those previously quoted (�gure 8).
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Figure 9: Internal structure and dependencies of a composite

So �nally we can structurally de�ne a composite with the schema of the �gure
9.

The dependency equations system

The observation of the structure (�gure 9) leads to distinguish four set of services:

• a set of private provided services SHPO that are hidden and provided by a
member component and can only be internally accessed by the composite.

• a set of private required services SHRO that are hidden and must be o�ered by
a member component (or a set of them) to the currently studied composite.

• a set of public provided services SV PO that are provided by the component to
the world

• a set of public required services SV RO that are required by the component.
This link is often employed for shared public components.

From this list, we can now de�ne the full equations for a typical component of the
system.
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• Internal-External component dependency enforces that a private provided ser-
vice (SHPO) rely on public required services (SV RO) and private required ser-
vices (SHRO) according to a function PRDH so that SHPO = PRDH (SV RO ∧
SHRO).

• Internal-External component dependency enforces that a public provided ser-
vice (SV PO) rely on public required services (SV RO) and private required ser-
vices (SHRO) according to a function PRDV so that SV PO = PRDV (SV RO ∧
SHRO).

• External-Internal component dependency enforces that a private required ser-
vice (SHPO) rely on public provided services (SV PO) and private provided ser-
vices (SHPO) according to a function RPDH so that SHRO = RPDH (SV PO ∧
SHPO).

• External-Internal component dependency enforces that a public required ser-
vice (SV RO) rely on public provided services (SV PO) and private provided ser-
vices (SHPO) according to a function RPDV so that SV RO = RPDV (SV PO ∧
SHPO).

A �xed-point solution

De�ning a contract for a component leads to determine a unique speci�cation SHCO

which will replace the private o�ered (SHPO) and required (SHRO) speci�cations for
each assembly link. Such a contract exists only if the compatibilities constraints
settle incompatible dependencies between o�ered and required services (see para-
graph �Interaction contracts�): SHPO <: SHCO <: SHRO. In fact, if the SHCO exists
it can replace all the private speci�cations (SHPO , SHRO ) inside the equations so
we should have :

∧



SHCO = RPDH(SV PO ∧ SHCO)
SHCO = PRDH(SV RO ∧ SHCO)
SV RO = RPDV (SV PO ∧ SHCO)
SV PO = PRDV (SV RO ∧ SHCO)

SHPO <: SHCO <: SHRO

This expression of the assembly, if it exists, relies on the contract speci�ca-
tion de�ned for the private services (SHCO) and the required and provided services
(SV PO,SV RO).

�No solution� traps

Until now, we supposed a good system design which enables an internal contract re-
placing all the contracts of the links inside the composite. To achieve this, we use the
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Component A Component A

PO RO

Specifications of PO Specifications of RO

Get from ROGet from RO Get from PO

Figure 10: Cyclic relationship

peer-to-peer compatibilities and delegations. However, some errors could appear in
the design so that the algorithm gives no solution. Continuing the analogy between
our study and the mathematical �xed-point method, two types of incompatibilities
can at least be identi�ed. The �rst one is the non-convergence of the method and
the other one is the detection of a direct incompatibility.

The veri�cation of the assembly may not be completely speci�ed. This is due
to the system under-speci�cation or to a cyclic delegation that cannot be resolved.
This is shown in �gure 10. In this context, the method could help the conceptor to
isolate the defective components, contracts or interactions.

The direct incompatibility is relatively easy to isolate because it is between two
elements. A simple example would be an interaction between two semantically
di�erent interfaces; one relying on a transaction and another one relying on an
atomic operation. The only solution to the problem is the insertion of a connector
to do �the glue job�. But this direct incompatibility can interfere at di�erent levels.

The �rst and most simple case concern a required service and a provided one.
There are many solutions to reconcile two participants. Mediator, Aspect Oriented
Programming, Connector are some of them. The second one can arise in the case of
delegations that are not pure; that is to say when a service is delegated in compati-
bility. A delegation is a transfer of service from one component to the other. It can
be viewed as a structural interaction or as a cooperation. Two objects cooperate to
achieve a common aim. This type of interaction is often not rei�ed by the system. If
an incompatibility arise, a wrapper with some kind of code must be used to reconcile
the delegate and the delegated.

4 A MORE COMPLEX (YET SIMPLE) EXAMPLE

Context

We set an academic sample for our exposé. A composite Cash Dispenser manages
the distribution of money. It encapsulates some internal composites according to
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Bank

Human−
Computer
Interface

Coordinator CredentialChecker

Distributer

Printer

StockManager

Figure 11: Global view of the system

the structure presented in �gure 11 .

The sub-elements of the main composite are the Human-Computer Interface, the
Credential Veri�er, the Stock Manager, the Printer and a Coordinator. The main
composite is in external relation with a bank component for money transactions. To
illustrate our point of view, we will partly describe the assembly of all these entities.
We will limit ourselves to the relationship between the Coordinator and the other
components. To keep the whole thing short, only semantic logic predicates will be
used. Pragmatic properties will be excluded. From now, we will apply a bottom-up
approach. The essential steps are:

1. Verify the provided and required speci�cations compatibility.

2. Solve the �xed point equations to get the provided speci�cations and the con-
tracts.

Coordinator-StockManager relationship

The role of the coordinator component is to control the system tasks. The only
operation that will be studied is the method getCash from the Coordinator. The
behaviour of this operation is described on �gure 14.

For a cash withdrawal, the Coordinator begins by checking the available stock.
Consequently, a Required on Provided Dependency exists between the components
Coordinator and StockManager (�gure 12).

It is characterized, on the Coordinator side, by the existence of a required inter-
face called "RIStock". A basic speci�cation expressed by pre and post-conditions is :
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S
VPOS

VRO

StockManagerCoordinator

Figure 12: Coordinator-StockManager relationship

RPD

S

CredentialVerifierCoordinator

VPOVRO
S

Figure 13: Coordinator-CredentialVeri�er relationship

Component Coordinator - interface RIStock
method: check_stock (amount, notEnoughStock)
pre-conditions:
typeOf(amount) is amountType
∧
0<amount<maxStock

post-conditions:
Stock.PIStock.check_stock.post

The requirer commits itself to satisfy typing and ceiling constraints from its
pre-conditions. As said before, the requirer expects the provider to ful�l con-
ditions in return. To demonstrate the dependency, the post-condition has been
set in order for the required interface of the Coordinator ("RIStock") to be the
one o�ered by the StockManager component: PIStock. This is the reason of the
"Stock.PIStock.check_stock.post"line. The StockManager on its own sets up a self-
su�cient provided interface called PIStock. It is speci�ed by the following properties:

Component StockManager - interface PIStock
method: check_stock(amount, notEnoughStock)

pre-conditions :
typeOf(amount) is amountType
∧
0<amount

post-conditions:
notEnoughStock=(amount>StockAmount)

Coordinator-CredentialVeri�er relationship

The coordinator then proceeds to the credential check of the client. To do this, it
uses the authenticate component method (see �gure 13).

The Required on Provided Dependency is featured from the Coordinator side by

40 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4



4 A MORE COMPLEX (YET SIMPLE) EXAMPLE

a RIAuthenticate :

Component Coordinator - interface RIAuthenticate
method: authenticate (userIdentity,password,invalidPassword)
pre-conditions:
CrendentialVerifier.PIAuthenticate.authenticate.pre

post-conditions:
CrendentialVerifier.PIAuthenticate.authenticate.post

And from the CredentialVeri�er point of view, the PIAuthenticate is :

Component CredentialVerifier - interface PIAuthentificate
method: authentificate (userIdentity,password,invalidPassword)
pre-conditions:

typeOf(userIdentity) is loginType
∧
typeOf(password) is passwordType

post-conditions:
invalidPassword=( passwordsFile(userIdentity) 6=password)

The required interface does not bind any peculiar condition and accept those
from the provided interface.

Bank-Coordinator relationship

The coordinator has a required interface RIBank link with the bank component
obtained through a provided interface PIBank. The speci�ed method is with-
draw_account.

Component Coordinator - interface RIBank
method: withdrawAccount (userIdentity, amount, overdraft)

pre-conditions:
Bank.PIBank.withdrawAccount.pre

post-conditions:
Bank.PIBank.withdrawAccount.post

and,

Component Bank - interface PIBank
method: withdrawAccount (userIdentity, amount, overdraft)

pre-conditions:
typeOf (userIdentity) is LoginType
∧
typeOf(amount) is amountType
∧
amount<maximumWithdrawal

post-conditions:
overdraft=(balance(userIdentity)<amount)
∧
balance(userIdentity)=balance(userIdentity)@pre - amount
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        end of
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start of
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      start of

?not overDraft

!StockManager.check_stock(amount,notEnoughStock)

?not notEnoughStock
!Credential.Verifier.authenticate
(userIdentity,password,invalidPassword)

credential checking

!failedOperation=false

?overdraft

?notEnoughStock
!failedOperation=true
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getCash

?not invalidPassword
!Bank.withdraw_account (userIdentity, amount, overdraft)

getCash

!failedOperation=true
?invalidPassword

!failedOperation=true
cash delivery

Figure 14: Internal Coordinator dependencies

Internal dependencies from the coordinator component

The simpli�ed version of the operation getCash on �gure 14 gives us the main in-
terface PIMain of the coordinator:

Component Coordinator - interface PIMain
method:getCash (amount,userIdentity,password,failedOperation)

pre-conditions:
Coordinator.RIStock.check_stock.pre
∧ Coordinator.RIAuthentificate.authentificate.pre
∧ Coordinateur.RIBank.withdraw_account.pre
∧ ...

post-conditions:
Coordinator.RIStock.check_stock.post
∧ Coordinator.RIAuthentificate.authentificate.post
∧ Coordinateur.RIBank.withdraw_account.post
∧ ...
∧ failedOperation = (notEnoughStock ∨ invalidPassword ∨ overdraft)

Solving the �xed point equations

It is trivial to establish the external compatibility between the provided and required
speci�cations of the encapsulated components. The required properties of the Coor-
dinator are mostly de�ned by importing the provided properties of the used services.
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Solving the equations is equivalent to substitute the speci�cations (also presented
in this paper as split contracts) for the interaction contracts and a global logical
reduction of them in the Coordinator component.

After the dependencies substitution, we get:

interface PIMain
method:getCash (amount,userIdentity,password,failedOperation)

pre-conditions:
typeOf(amount) is amountType
∧ 0<amount<maxStock
∧typeOf(userIdentity) is loginType
∧ typeOf(password) is passwordType
∧ typeOf (userIdentity) is LoginType
∧ typeOf(amount) is amountType
∧ amount<maximumWithdrawal
∧ ...

post-conditions:
∧ notEnoughAmount=(amount>StockAmount)
∧ notValidPassword=(passwordsFile(userIdentity) 6=password)
∧ overdraft=(balance(userIdentity)<amount)
∧ balance(userIdentity)=balance(userIdentity)@pre-amount
∧ ...
∧ failedOperation = (notEnoughStock∨invalidPassword∨overdraft)

And after the logical reduction:

interface PIMain
method:getCash (amount,userIdentity,password,failedOperation)

pre-conditions:
typeOf(amount) is amountType
∧ 0<amount< min(maxStock, maximumWithdrawal)
∧ typeOf(password) is passwordType
∧ typeOf (userIdentity) is LoginType
∧ ...

post-conditions:
balance(userIdentity)=balance(userIdentity)@pre-amount
∧ failedOperation =
[

amount>StockAmount
∨ passwordsFile(userIdentity)6= password
∨ balance(userIdentity)<amount

]
...

Finally, a speci�cation of the Coordinator provided interface getCash has been
found. The next step in the bottom-up approach is to proceed to the resolution of
the �Human-Computer interface� component contracts.
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5 CONCLUSION

In this paper, we present a new component assembly approach based on a �xed point
equation resolution. This method can be applied to a top-down and bottom-up
accurate existing components aggregation. One di�culty is the lack of speci�cation
for required and provided services of industrial components. The syntactic signature
is often the only speci�cation. User manuals are not really usable to make formal
veri�cations. Moreover, even when these speci�cations exist, manual or automatic
veri�cation is still di�cult. Split expression provided and required speci�cations,
when assembled, insure correctness in component based applications.

It also enables to have a better isolation of each component, a new easier way to
bind them and a possibility to perform structural veri�cation of application. As a
future work, we intend to design a method to locate assembly �aws hence to correct
a bad assembly.
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