
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 4 (April 2004)

Special issue: TOOLS USA 2003

Cite this article as follows: Linda Badri and Mourad Badri: “A Proposal of a New Class Cohesion
Criterion: An Empirical Study”, in Journal of Object Technology, vol. 3, no. 4, April 2004, Special
issue: TOOLS USA 2003, pp. 145-159. http://www.jot.fm/issues/issue_2004_04/article8

A Proposal of a New Class Cohesion
Criterion: An Empirical Study

Linda Badri and Mourad Badri, Department of Mathematics and Computer
ScienceUniversity of Quebec at Trois-Rivières, Canada

Abstract
Class cohesion refers to the degree of the relatedness of the members in a class. It is
considered as one of most important object-oriented software attributes. Several metrics
have been proposed in the literature in order to measure class cohesion in object-
oriented systems. They capture class cohesion in terms of connections among
members within a class. The major existing class cohesion metrics are essentially
based on instance variables usage criteria. It is only a special and a restricted way of
capturing class cohesion. We believe, as stated in many papers, that class cohesion
should not exclusively be based on common instance variables usage criteria. We
introduce, in this paper, a new criterion, which focuses on interactions between class
methods. We developed a cohesion measurement tool for Java programs and
performed a case study on several systems. The obtained results demonstrate that our
new class cohesion metric, based on the proposed cohesion criteria, captures several
pairs of related methods, which are not captured by the existing cohesion metrics.

1 INTRODUCTION

Software metrics have become essential in some disciplines of software engineering
[Pressman01]. In the field of software quality, metrics are used for assessing several
software attributes (complexity, coupling, cohesion, etc.). They provide, therefore, an
important assistance to developers and managers in order to assess and improve software
quality during the development process. Object technology has been widely used in
several areas during the last decade. Class cohesion is considered as one of most
important object-oriented software attributes. Cohesion refers to the degree of the
relatedness of the members in a component. High cohesion is a desirable property of
software components. It is widely recognized that highly cohesive components tend to
have high maintainability and reusability [Bieman95, Briand98, Chae00, Li93]. The
cohesion of a component allows the measurement of its structure quality. The cohesion
degree of a component is high, if it implements a single logical function. All the parts of
the component must contribute to this implementation.

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_04/article8

A PROPOSAL OF A NEW CLASS COHESION CRITERION: AN EMPIRICAL STUDY

146 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

Yourdon and Constantine introduced cohesion in the traditional applications as a
measure of the extent of the functional relationships of the elements in a module
[Yourdon79]. They have described cohesion as a criterion for the estimation of design
quality. Grady Booch describes high functional cohesion as existing when the elements of
a component (such as a class) all work together to provide some well-bounded behavior
[Booch94]. In the object paradigm, a class is cohesive when its parts are highly
correlated. It should be difficult to split a cohesive class. A class with low cohesion has
disparate and non-related members. Cohesion can be used to identify the poorly designed
classes. Cohesion is an underlying goal to continually consider during the design process
[Larman02].

Several metrics have been proposed in the literature in order to measure class
cohesion in object-oriented systems. The major existing class cohesion metrics have been
presented in detail and are categorized in [Briand98]. They are based on either instance
variables usage or sharing of instance variables. These metrics capture class cohesion in
terms of connections among members within a class. They count the number of instance
variables used by methods or the number of methods pairs that share instance variables.
We believe that it is only a special way of capturing class cohesion, which is based on
instance variables usage criteria. These metrics have been experimented and widely
discussed in the literature [Basili96, Briand00, Chae98, Chidamber98, ElEmam99,
Henderson-Sellers96]. Several studies have noted that the existing cohesion metrics fail
in many situations to properly reflect the cohesiveness of classes [Kabaili00, Chae00].
According to many authors, they do not take into account some characteristics of classes,
for example, sizes of cohesive parts as stated in [Aman02] and connectivity among
members as stated in [Chae00].

Beyond these aspects, we believe that the existing metrics fail to reflect properly
the properties of class cohesion, particularly in terms of related methods. They are based
on restricted criteria and could lead to unexpected values of cohesion in many situations.
We believe that class cohesion should not exclusively be based on common instance
variables usage as stated in [Kabaili00] and will have to go beyond this aspect by
considering the interaction patterns among class methods. We note that in many
situations several methods are functionally related together without sharing any instance
variables. We extended the existing criteria by considering different ways of capturing
class cohesion. We introduce, in this paper, a new criterion, which focuses on interactions
between class methods. We developed a cohesion measurement tool for Java programs
and performed a case study on several systems. The obtained results demonstrate that our
new class cohesion metric, based on the proposed cohesion criteria, captures several pairs
of connected methods, which are not captured by the existing cohesion metrics.

The rest of the paper is structured as follows: Section 2 provides an overview of
the main class cohesion metrics and highlights their weakness. Section 3 presents the
proposed class cohesion criteria. Section 4 presents the new approach that we propose for
class cohesion assessment. In section 5, we present the results of our empirical study.
Finally, conclusions and future work are presented in section 6.

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 147

2 CLASS COHESION: MAJOR EXISTING METRICS

Classes are considered as the basic units of object-oriented software. Classes should then
be designed to have a good quality. However, improper modeling in the design phase,
particularly improper responsibilities assignment decisions, can produce classes with low
cohesion. In order to assess class cohesion in object-oriented systems several metrics
have been proposed in the literature. Most of the proposed class cohesion metrics are
inspired from the LCOM (Lack of COhesion in Methods) metric defined by Chidamber
and Kemerer [Chidamber91]. Many authors have redefined the LCOM metric as
referenced in the following paragraphs.

 Metric Definition

 LCOM1 Lack of cohesion in methods. The number of pairs of methods in the class using no

instance variables in common.

 LCOM2 Let P be the pairs of methods without shared instance variables, and Q be the pairs of

methods with shared instance variables. Then LCOM2 = |P| - |Q|, if |P| > |Q|. If this
difference is negative, LCOM2 is set to zero.

 LCOM3 Consider an undirected graph G, where the vertices are the methods of a class, and there is

an edge between two vertices if the corresponding methods share at least one instance
variable. Then LCOM3 = | connected components of G |

 LCOM4 Like LCOM3, where graph G additionally has an edge between vertices representing

methods Mi and Mj, if Mi invokes Mj or vice versa.

 Co Connectivity. Let V be the vertices of graph G from LCOM4, and E its edges. Then

 |E| - (|V| - 1)
 Co = 2 .
 (|V| - 1) . (|V| - 2)

 LCOM5 Consider a set of methods {Mi} (I = 1, … , m) accessing a set of instance variables {Aj}

(j = 1, …, a). Let µ (Aj) be the number of methods that reference Aj. Then

 (1/a) Σ 1 ≤ j ≤ a µ (Aj) - m
 LCOM5 =
 1 – m
 Σ 1 ≤ j ≤ a µ (Aj)
 Coh A variation on LCOM5. Coh =
 m . a

 TCC Tight Class Cohesion. Consider a class with N public methods. Let NP be the maximum

number of public method pairs : NP = [N * (N – 1)] / 2. Let NDC be the number of direct
connections between public methods. Then TCC is defined as the relative number of
directly connected public methods. Then, TCC = NDC / NP.

 LCC Loose Class Cohesion. Let NIC be the number of direct or indirect connections between
public methods. Then LCC is defined as the relative number of directly or indirectly
connected public methods. LCC = NIC / NP.

Table 1 - The major existing cohesion metrics.

A PROPOSAL OF A NEW CLASS COHESION CRITERION: AN EMPIRICAL STUDY

148 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

The existing cohesion metrics are based on either instance variables usage or sharing of
instance variables. A class is more cohesive, as stated in [Chae00], when a larger number
of its instance variables are referenced by a method (LCOM5 [Henderson-Sellers96], Coh
[Briand98]), or a larger number of methods pairs share instance variables (LCOM1
[Chidamber91], LCOM2 [Chidamber94], LCOM3 [Li93], LCOM4 [Hitz95], Co
[Hitz95], TCC and LCC [Bieman95]). Table 1 gives a summary of their definition.
Chidamber and Kemerer propose the LCOM (LCOM1 and LCOM2) metric to assess
class cohesion. LCOM2 equals the number of methods pairs that have no attributes in
common minus the number of methods pairs that share at least one attribute. LCOM2
equals 0 if this value is negative. LCOM2, as a redefinition of LCOM1, has been widely
discussed in the literature [Badri95, Briand98, Chae98, Henderson-Sellers96, Hitz95].
LCOM2 of many classes are set to be zero although different cohesions are expected
[Basili96].

Li and Henry redefine LCOM in [Li93]. LCOM3 is defined as the number of
disjoint sets of methods. Each set contains only methods that share at least one attribute.
Hitz and Montazeri redefine LCOM3 in [Hitz95]. Their metric is based on graph theory
and defined as the number of connected components of a graph. The vertices of the graph
represent the methods of the class. There is an edge between two vertices if the
corresponding methods access the same instance variable. There is also an edge between
vertices representing methods Mi and Mj, if Mi invokes Mj or vice versa. Hendersen-
Sellers propose LCOM5 in [Henderson-Sellers96] which is based on the number of
referenced instance variables. A class is more cohesive when a large number of its
instance variables are referenced by a method. Briand et al. propose a redefinition of this
metric in [Briand98].

Bieman and Kang propose TCC (Tight Class Cohesion) and LCC (Loose Class
Cohesion) as cohesion metrics [Bieman95]. They also consider the methods pairs using
instance variables in common. In their approach, an instance variable may be directly or
indirectly used by a method. An instance variable is used directly by a method Mi, if the
instance variable appears in the body of the method Mi. An instance variable is used
indirectly by a method Mi, if the instance variable is directly used by a method Mj that is
either directly or indirectly invoked by Mi. Two methods are directly related if they both
use either directly or indirectly a common instance variable. TCC is defined as the
percentage of methods pairs, which are directly related. LCC is defined as the percentage
of methods pairs, which are either directly or indirectly related.

The major existing class cohesion metrics attempt to quantify the cohesion of a
class by taking into account only the interactions among methods and instance variables
of a class. This type of criterion constitutes, in our opinion, a restrictive way of capturing
the cohesion of classes. We note, in many situations, that methods of a class may be
related together without sharing any instance variables. We believe that cohesion metrics
must also take into account the interaction patterns between methods of a class. Several
studies have noted that the existing cohesion metrics do not take into account all
characteristics of classes and fail in many situations to properly reflect their cohesion
[Aman02, Chae00, Kabaili0]. If we consider the example given in figure 1, according to

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 149

the existing cohesion metrics presented in Table 1, the methods M1 and M2 are related by
sharing the attribute A2. The method M3 is not related to the two other methods despite
the fact that M3 shares directly with M2 the private (or protected) method M4. The direct
relation between the methods M2 and M3 in the one hand and the indirect relation
between the methods M1 and M3 in the other hand are not captured. It should be difficult
to split this class in this case.

 M1 M2 M3

 M4
 A1 A2 A3

Figure 1 – Connected members.

3 CONNECTIVITY BETWEEN METHODS

Two methods can be connected in many ways. The adopted approach for the estimation
of class cohesion is based on different relationships that may exist between its methods. It
takes into account several ways of capturing the functional cohesion of the class, by
focusing on the proposed cohesion criteria: Attributes Usage Criterion and Methods
Invocation Criterion.

Attributes Usage Criterion (CA)

Consider a class C. Let A = {A1, A2,…, Aa} be the set of its attributes and M = {M1, M2,
…, Mn} be the set of its methods. Let UAMi be the set of all the attributes used directly or
indirectly by the method Mi. An attribute is used directly by a method Mi, if the attribute
appears in the body of the method Mi. The attribute is indirectly used by the method Mi,
if it is used directly by another method Mj of the class that is invoked directly or
indirectly by Mi. There are n sets UAM1, UAM2, …, UAMn. Two methods Mi and Mj are
directly related by the UA relation if UAMi ∩ UAMj ≠ ∅. It means that there is at least
one attribute shared (directly or indirectly) by the two methods.

Methods Invocation Criterion (CM)

Consider a class C. Let M = {M1, M2, …, Mn} be the set of its methods. Let IMMi be the
set of all the methods of the class C, which are invoked directly or indirectly by the
method Mi. A method Mj is called directly by a method Mi, if Mj appears in the body of
Mi. A method Mj is indirectly called by a method Mi, if it is called directly by another
method of the class C that is invoked directly or indirectly by Mi. There are n sets IMM1,
IMM2, …, IMMn. Two methods Mi and Mj are directly related by the IM relation if IMMi

A PROPOSAL OF A NEW CLASS COHESION CRITERION: AN EMPIRICAL STUDY

150 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

∩ IMMj ≠ ∅. We also consider that Mi and Mj are directly related if Mj ∈ IMMi or Mi ∈
IMMj.

4 CLASS COHESION: A NEW MEASURE

Class cohesion in our approach, as stated initially in [Badri95], refers essentially the
relatedness of public methods of a class, which represent the functionalities used by its
clients. It is defined in terms of the relative number of related public methods in the class.
The others methods of the class are included indirectly through the public methods. Our
approach is comparable to the one adopted by Bieman and Kang in [Bieman95].

We have revised our initial definition of class cohesion proposed in [Badri95] by
extending the methods invocation criterion in the one hand and introducing the concept of
indirect usage of attributes defined by Bieman and Kang in [Bieman95] in the other hand.
We have also extended this concept to the methods invocation criterion.

Direct relation between methods

Two public methods Mi and Mj may be directly connected in many ways: they share at
least one instance variable in common (UA relation), or interact at least with another
method of the class (IM relation), or both. It means that: UAMi ∩ UAMj ≠ ∅ or IMMi ∩
IMMj ≠ ∅. Consider a class C with PUM = {M1, M2, …, Mn} the set of its public
methods. The maximum number of public methods pairs, as stated in [Badri95,
Bieman95], is n * (n – 1) / 2.

Consider an undirected graph GD, where the vertices are the public methods of the
class C, and there is an edge between two vertices if the corresponding methods are
directly related. Let ED be the number of edges in the graph. The degree of cohesion in
the class C based on the direct relation between its public methods is defined as: DCD =
|ED| / [n * (n – 1) / 2] ∈ [0,1]. DCD gives the percentage of public methods pairs, which
are directly (as defined below) related. The LCCD (Lack of Cohesion in the Class) metric
of the class C is then given by: LCCD = 1 - DCD ∈ [0, 1].

Indirect relation between methods

However, two public methods Mi and Mj can be indirectly related if they are directly or
indirectly related to a method Mk. The indirect relation, introduced by Bieman and Kang
in [Bieman95], is the transitive closure of the direct relation. We use this concept in our
approach for identifying the indirect related methods. Thus, a method M1 is indirectly
connected with a method Mk if there is a sequence of methods M1, M2, M3, …, Mk such
that Mi is directly connected to Mi+1 (i= 1, k-1).

Consider now an undirected graph GI, where the vertices are the public methods
of the class C, and there is an edge between two vertices if the corresponding methods are
directly or indirectly related (transitive closure of the graph GD). Let EI be the number of
edges in the graph. The degree of cohesion in the class C based on the direct and indirect

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 151

relations between its public methods is defined as: DCI = |EI| / [n* (n – 1) / 2] ∈ [0,1].
DCI gives the percentage of methods pairs, which are directly or indirectly related. The
lack of cohesion in the class C is then given by: LCCI = 1 - DCI ∈ [0, 1].

The new definition that we propose for class cohesion assessment seems to be
more appropriate than the others, particularly the ones supposed taking into account the
interactions between methods. It allows capturing more properties of classes, particularly,
in terms of connections between methods. Two public methods can be related by calling
directly or indirectly, for instance, private (or protected) methods, which do not use any
attribute of the class. Such characteristics are not captured by the other definitions of
class cohesion presented in section 2.

5 EMPIRICAL STUDY

We developed a cohesion measurement tool (in Java) for Java programs to automate the
computation of the major existing class cohesion metrics presented in Table 1 including
DCD and DCI metrics. In summary, height metrics have been implemented: LCOM1,
LCOM2, Co, Coh, TCC, LCC, DCD and DCI. In order to demonstrate the effectiveness of
the new criterion and the proposed metrics for class cohesion assessment, we performed a
case study on several systems. In the following sections, we first present the selected test
systems for the experiment. Then, we present the obtained results and a discussion of
these results.

Selected systems

As a first experimentation of our approach and to achieve significant and general results,
we have chosen several systems. Our goal was to analyze a maximum number of Java
classes from different systems. The considered systems vary in size and domain. Table 2
provides some of their characteristics.

System-1 is designed for migrating code written in old languages to newer ones.
System-2 allows a company to maintain a website. System-3 is an implementation of
Sun's Java Server Pages. System-4 provides a collection of index structures, query
operators and algorithms allowing performance evaluation of new query processing
developments. System-5 offers functionality to load, analyze, process and save pixel
images. Finally, System-6 is a Java-based build tool, with functionalities similar to the
Unix Make utility.

Several classes in the considered systems have only one method or do not have
any methods. These classes were considered as special classes and have been excluded
from our measurements. We also excluded all abstract classes. Overloaded methods
within the same class were treated as one method. Moreover, all special methods
(constructor, destructor) are removed in our approach.

A PROPOSAL OF A NEW CLASS COHESION CRITERION: AN EMPIRICAL STUDY

152 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

System-1

System-2

System-3

System-4

System-5

System-6

Total

of classes

738

342

75

405

168

504

2232

of special

classes

186

58

12

100

36

58

450

of

considered
classes

552

284

63

305

132

446

1782

of attributes

2346

1587

185

940

763

2795

8616

of methods

6457

3806

388

2359

1224

4541

18775

of public
methods

5749

3094

351

2208

995

3536

15933

of protected

methods

358

258

2

141

2

539

1300

of private

methods

350

454

35

10

227

466

1542

Size in

repository

4.09 MB

5.94 MB

0.29 MB

3.55 MB

1.09 MB

5.12 MB

20.08 MB

Table 2 - Some characteristics of the selected test systems.

Environment

The developed environment for the computation of the selected metrics is composed of
several tools. In its actual version, a Java parsing tool (www.antlr.org) that we have
extended, parses the test system source code. The extracted information contains data
about all classes (attributes, methods, used attributes, invoked methods, etc.). This
information is treated, in a second phase, by a metrics tool that we developed. The
obtained results are transferred into Excel for statistical processing (Figure 1). We
collected the values for all the selected metrics from the test systems. For each metric, we
calculated some descriptive statistics (minimum, maximum, mean, median, and standard
deviation).

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 153

 System
 Source Code
 (Java)

 Java Parser Results

 Metrics Tool
 Classes Data

Figure 1 - Metrics calculation Process.

Results

We measured class cohesion values for the 6 selected systems. Table 3 provides the
descriptive statistics for all test systems. LCOM1 and LCOM2 count the number of
methods pairs with shared instance variables. These measures are not normalized. Coh is
based on the instance variable usage and count the number of the interactions between
instance variables and methods. Co, TCC and LCC are based on the ratio of methods
pairs with shared instance variables. TCC and LCC consider indirect sharing of instance
variables by methods invocation. Co considers only the direct interactions between
methods. TCC and LCC metrics are supposed to take into account implicitly the
interactions between methods. The problem with these metrics is that many interactions
between methods, which do not share any instance variables, are not captured despite the
fact that the corresponding methods are related. This often occurs that a large number of
related methods pairs are not reflected in the cohesion values.

Systems LCOM1 LCOM2 Co Coh TCC LCC DCD DCI

System1

Minimum
Maximum
Mean
Median
Std. Dev.

0
5486

139.705
 15.000
431.163

0
5407

119.174
 9.000

406.053

0
1

0.146
0.000
0.264

0
1

0.300
0.238
0.303

0
1

0.354
0.214
0.374

0
1

0.416
0.300
0.409

0
1

0.407
0.322
0.374

0
1

0.520
0.493
0.410

A PROPOSAL OF A NEW CLASS COHESION CRITERION: AN EMPIRICAL STUDY

154 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

Table 3 - Cohesion metrics results for the test systems.

The obtained results for DCD and DCI show clearly that the two metrics capture more
pairs of related methods than the others, particularly Co, TCC and LCC metrics. Figure 2
shows the mean values of the normalized metrics for 3 systems. Figure 3 shows the
distribution of the cohesion values of all the classes of the system-4 according to the TCC
and DCD metrics. These results indicate that our metrics capture an additional aspect of
properties of classes. This is due, in our opinion, to the combination of the proposed
criteria. This aspect will be discussed and validated in the next section. The main
objective of this work was to demonstrate the effectiveness of the new cohesion criterion
that we introduced in section 3. It is for this raison that we will not discuss in detail the
cohesion values of the test systems. The results in table 3 show clearly that most of the
selected test systems are not cohesive. However, System 3 is strongly cohesive (DCI =
0.805) compared to the others systems.

System-1

0

0.1

0.2

0.3

0.4

0.5

0.6

Co Coh TCC DCD LCC DCI

System-2

0

0.1

0.2

0.3

0.4

0.5

Co Coh TCC DCD LCC DCI

System-3

0

0.2

0.4

0.6

0.8

1

Co Coh TCC DCD LCC DCI

Figure 2 - Mean values of the normalized metrics.

System2

Minimum
Maximum
Mean
Median
Std. Dev.

0
13997

244.408
10.000
1307.11

0
13996

129.063
6.000

861.646

0
1

0.130
0.000
0.251

0
1

0.218
0.143
0.232

0
1

0.285
0.029
0.380

0
1

0.362
0.030
0.435

0
1

0.323
0.167
0.378

0
1

0.425
0.278
0.432

System3

Minimum
Maximum
Mean
Median
Std. Dev.

0
287

26.968
0.000
62.523

0
249

20.968
0.000
55.806

0
1

0.120
0.000
0.269

0
1

0.666
1.000
0.410

0
1

0.728
1.000
0.404

0
1

0.764
1.000
0.401

0
1

0.747
1.000
0.388

0
1

0.805
1.000
0.351

System4

Minimum
Maximum
Mean
Median
Std. Dev.

0
3003

42.915
7.000

247.670

0
3003

38.184
3.000

247.729

0
1

0.211
0.000
0.322

0
1

0.296
0.278
0.280

0
1

0.335
0.109
0.387

0
1

0.359
0.143
0.405

0
1

0.489
0.500
0.385

0
1

0.607
0.750
0.409

System5

Minimum
Maximum
Mean
Median
Std. Dev.

0
2482

85.409
6.000

299.329

0
2479

68.000
6.000

258.185

0
1

0.176
0.061
0.287

0
1

0.255
0.189
0.276

0
1

0.324
0.207
0.362

0
1

0.438
0.333
0.433

0
1

0.362
0.277
0.366

0
1

0.498
0.500
0.440

System6

Minimum
Maximum
Mean
Median
Std. Dev.

0
2890

84.765
14.000
257.531

0
2620

73.217
8.000

238.511

0
1

0.149
0.000
0.267

0
1

0.324
0.233
0.292

0
1

0.381
0.300
0.348

0
1

0.489
0.467
0.436

0
1

0.395
0.333
0.347

0
1

0.533
0.600
0.438

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 155

TCC

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

DCD

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

 Figure 3 - Cohesion values of Systems-4 classes.

Validation

In this section we are interested in comparing the results of DCD by considering only the
first criterion and DCD by combining the two proposed criteria. Our goal is to
demonstrate that the second metric (including the two criteria) is more significant than
the first one and allows capturing more pairs of related methods. If we consider the DCD
metric by taking into account only the first criterion, the metric is then equivalent to the
TCC metric [Bieman95]. The same principle may be applied to the DCI metric.

Let DCD (CA) be the degree of cohesion by considering only the first criterion
(attributes usage criterion). Let DCD (CA and CM) be the degree of cohesion by
considering the two criteria (attributes usage criterion and methods invocation criterion).
Let Diff be the difference between DCD(CA and CM) and DCD(CA). If there is no
difference between the values of DCD(CA) and DCD(CA and CM), then the population
mean of the differences should be significantly zero. We collected the data for the two
metrics from the six test systems. The results with some descriptive statistics are
presented in table 4. We believe that the second metric is more significant than the first
one. In order to validate this hypothesis, and knowing that the two criteria are dependent,
we use an appropriate statistical test (the paired t-test [Hines03]).

Let µ1 be the mean value of DCD(CA and CM). Let µ2 be the mean value of
DCD(CA). We have then two hypotheses:

 H0 : µ1 = µ2 The two metrics are equivalent.
 H1 : µ1 > µ2 DCD(CA and CM) is more significant then DCD(CA).

Let Diff be (µ1 - µ2). The precedent test will be equivalent to: H0 : Diff = 0 and H1 : Diff
> 0. The statistical test is :

Z = đ / [Sd / sqrt(n)]

With đ : the sample mean value of Diff,
Sd : the sample standard deviation of Diff and
n : the number of classes of the test system.

A PROPOSAL OF A NEW CLASS COHESION CRITERION: AN EMPIRICAL STUDY

156 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

 systems

Des. Stat.

 DCD (CA)

 DCD
(CA and CM)

 Diff

 Z

 Zα

System-1

Mean
Std. Dev.

0.407
0.374

0.447
0.382

0.053
0.169

7.368

2.326

System-2

Mean
Std. Dev.

0.323
0.378

0.343
0.386

0.038
0.129

4.964

2.326

System-3

Mean
Std. Dev.

0.747
0.388

0.771
0.362

0.019
0.059

2.556

2.326

System-4

Mean
Std. Dev.

0.489
0.385

0.524
0.380

0.154
0.279

9.639

2.326

System-5

Mean
Std. Dev.

0.362
0.366

0.386
0.377

0.038
0.163

2.678

2.326

System-6

Mean
Std. Dev.

0.395
0.347

0.446
0.360

0.014
0.059

5.011

2.326

Table 4 - Cohesion criteria comparison.

Knowing that the number n used in the experiment (for the six test systems) is large, the
procedure consists in comparing, for each test system, Z to the normal quantile Zα (the
chosen values for α are 0.05 and 0.01). If the value of Z is greater than the value of Zα
than we will reject the hypothesis H0: Diff = 0 and consequently accept the hypothesis
H1: Diff > 0. In this case, the statistical test will be significant and we will conclude that
the DCD(CA and CM) metric is more significant than the DCD(CA) metric. It means that
the second criterion (methods invocation criterion) that we introduced in this paper is
significant and allows capturing an additional aspect of properties of classes. We
collected the data for the two metrics from the six selected test systems and calculated
Diff and Z for all test systems. These results are presented in table 4. They show clearly,
for all the six test systems, that Z is greater than Zα. These results show that the DCD(CA
and CM) metric is more significant than the DCD(CA) metric. Moreover, they demonstrate
that the second criterion (methods invocation criterion) that we introduced in this paper is
significant and allows capturing an additional aspect of properties of classes.

6 CONCLUSION AND FUTURE WORK

Class cohesion is considered as one of most important object-oriented software attributes.
Cohesion refers to the degree of the relatedness of the members in a class. Members in a
class are attributes and methods. Several metrics have been proposed in the literature in
order to measure class cohesion in object-oriented systems. These metrics have been

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 157

defined to capture class cohesion in terms of connections among members within a class.
However, several studies have noted that they fail in many situations to properly reflect
the cohesion of classes. According to many authors, they do not take into account many
characteristics of classes.

We noted that the existing class cohesion metrics are essentially based on instance
variables usage criteria. We agree that these criteria are important, but we believe that
they are not sufficient to capture all the connections among members within a class. This
explains in part, in our opinion, why they fail in several situations to reflect the
relatedness of the members of a class, and particularly methods of a class. We considered,
as stated in many works, that a class cohesion metric have to go beyond this aspect. We
focused on the interaction patterns among class methods. We suspected that this aspect
was not properly reflected in the existing cohesion metrics.

In order to capture additional characteristics of classes and to better measure their
cohesion property, we introduced in this paper a new class cohesion criterion, which is
based on methods invocation. We proposed in this work a new approach for class
cohesion assessment based on two fundamental criteria: attributes usage criterion and
methods invocation criterion. We have revised our initial definition of class cohesion and
proposed two new metrics for assessing it. Our main goal in this work was to validate the
introduced criterion and our approach for class cohesion assessment. We have developed
a cohesion measurement tool for Java programs to automate the computation of the major
existing class cohesion metrics including ours. In order to demonstrate the effectiveness
of the new criterion, we performed a case study on several systems. More than 2000 Java
classes have been analyzed.

The obtained results confirm our hypothesis. They show clearly that the proposed
metrics, based on a combination of the proposed criteria, capture more pairs of connected
methods than the existing cohesion metrics, particularly the ones supposed implicitly
taking into account the interactions between methods (such as Co, TCC and LCC
metrics). We believe that the present work constitutes an improvement of class cohesion
assessment. During our experiment, we collected several data on the analyzed classes. An
important part of the collected data has been treated during this work. Actually, we are
analyzing the rest of the collected data. As future work we plan to: (1) study in detail the
weakly cohesive classes, (2) refine if necessary the proposed criteria for class cohesion
assessment, (3) study the proposed metrics by including others aspects of object-oriented
design such as inheritance between classes, (4) and work on a metric-based approach for
assessing classes responsibilities assignment.

7 ACKNOWLEDGEMENTS

This work was supported by NSERC (Natural Sciences and Engineering Research
Council of Canada) grant.

A PROPOSAL OF A NEW CLASS COHESION CRITERION: AN EMPIRICAL STUDY

158 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 4

REFERENCES

[Aman02] H. Aman, K. Yamasaki, H. Yamada and MT. Noda, A proposal of class
cohesion metrics using sizes of cohesive parts, Knowledge-based Software
Engineering, T. Welzer et al. (Eds), pp. 102-107, IOS Press, September
2002.

[Badri95] L. Badri, M. Badri and S. Ferdenache, Towards Quality Control Metrics for
Object-Oriented Systems Analysis, TOOLS (Technology of Object-Oriented
Languages and Systems) Europe'95, Versailles, France, Prentice-Hall, March
1995.

[Basili96] V.R. Basili, L.C. Briand and W. Melo, A validation of object-oriented design
metrics as quality indicators, IEEE Transactions on Software Engineering, 22
(10), pp. 751-761, October 1996.

[Bieman95] J.M. Bieman and B.K. Kang, Cohesion and reuse in an object-oriented system,
Proceedings of the Symposium on Softwarw Reusability (SSR’95), Seattle, WA,
pp. 259-262, April 1995.

[Briand98] L.C. Briand, J. Daly and J. Wusr, A unified framework for cohesion
measurement in object-oriented systems, Empirical Software Engineering, 3 (1),
pp. 67-117, 1998.

[Briand00] L. Briand, J. Wuest, J. Daly and V. Porter, Exploring the relationships between
Design Measures and software quality in object-oriented Systems, Journal of
Systems and Software, No. 51, pp. 245-273, 2000.

[Booch94] G. Booch, Object-Oriented Analysis and Design With Applications, Second
edition, Benjamin/Cummings, 1994.

[Chae98] H. S. Chae and Y.R. Kwon, A cohesion measure for classes in object-oriented
systems, Proceedings of the fifth International Software Metrics Symposium,
Bethesda, MD, pp. 158-166, November 1998.

[Chae00] H. S. Chae, Y. R. Kwon and D H. Bae, A cohesion measure for object-oriented
classes, Software Practice and Experience, No. 30, pp. 1405-1431, 2000.

[Chidamber91] S.R. Chidamber and C.F. Kemerer, Towards a Metrics Suite for Object-Oriented
Design, Object-Oriented Programming Systems, Languages and Applications,
Special Issue of SIGPLAN Notices, vol. 26, No. 10, pp. 197-211, October 1991.

[Chidamber94] S.R. Chidamber and C.F. Kemerer, A Metrics suite for object Oriented Design,
IEEE Transactions on Software Engineering, Vol. 20, No. 6, pp. 476-493, June
1994.

[Chidamber98] S.R. Chidamber, David P. Darcy, and C.F. Kemerer, Mangerial use of metrics for
object-oriented sofytware : An exploratory analysis, IEEE Transactions on
Software Engineering, vol. 24, No. 8, pp. 629-639, August 1998.

[ElEmam99] K. El Emam and M. Wacelio, The prediction of faulty class using object-oriented
design metrics, National Research Council of Canada NRC/ERB 1064, 1999.

[Henderson] B. Henderson-sellers, Object-Oriented Metrics Measures of Complexity,
Prentice-Hall, 1996.

VOL. 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 159

[Hines03] W. W. Hines, D. C. Montgomery, D. M. Goldsman and C. M. Borror, Probability
and statistics in engineering, Fourth edition, John Wiley & Sons, Inc., 2003.

[Hitz95] M. Hitz and B. Montazeri, Measuring coupling and cohesion in object oriented
systems, Proceeding of International Symposium on applied Corporate
Computing, pp. 25-27, October 1995.

[Kabaili00] H. Kabaili, R.K. Keller, F. Lustman and G. Saint-Denis, Class Cohesion
Revisited : An Empirical Study on Industrial Systems, Proceeding of the
workshop on Quantitative Approaches Object-Oriented Software Engineering,
France, June 2000.

[Kabaili01] H. Kabaili, R.K. Keller and F. Lustman, Cohesion as Changeability Indicator in
Object-Oriented Systems, Proceedings of the Fifth European Conference on
Software Maintenance and Reengineering (CSMR 2001), Estoril Coast (Lisbon),
Portugal, March 2001.

[Larman02] G. Larman, Applying UML and Design Patterns, An introduction to object -
oriented analysis and design and the unified process, second edition, Prentice
Hall, 2002.

[Li93] W. Li and S. Henry, Object oriented metrics that predict maintainability, Journal
of Systems and Software, Vol. 23, pp. 111-122, February 1993.

[Pressman01]R. S. Pressman, Software Engineering, A practitioner's approach, Fifth edition, Mc
Graw Hill, 2001.

[Yourdon79]E. Yourdon and L. Constantine, Structured Design, Prentice Hall, Englewood Cliffs,
N.J., 1979.

About the authors

Linda Badri (Linda_Badri@uqtr.ca) is professor of computer science
at the Department of Mathematics and Computer Science of the
University of Quebec at Trois-Rivières. She holds a PhD in computer
science (software engineering) from the National Institute of Applied
Sciences in Lyon, France. Her main areas of interest include object-
oriented software engineering and Web engineering.

Mourad Badri (Mourad_Badri@uqtr.ca) is professor of computer
science at the Department of Mathematics and Computer Science of
the University of Quebec at Trois-Rivières. He holds a PhD in
computer science (software engineering) from the National Institute of
Applied Sciences in Lyon, France. His main areas of interest include
object-oriented software engineering, aspect orientation and formal
methods.

mailto:Linda_Badri@uqtr.ca
mailto:Mourad_Badri@uqtr.ca

