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Software product lines improve the productivity of developers by structuring applica-
tion development around a set of features common to a family of applications. While
a number of product line development approaches have been proposed, we argue
that these approaches primarily target product lines that vary with respect to their
functional properties. We propose a complementary approach to developing object-
oriented product lines that vary with respect to their non-functional characteristics.
Our approach is based on the use of software containers, similar to those used to
host Enterprise Java Beans. We illustrate the approach in the context of a distributed
middleware product line for Microsoft’s .NET Framework. The individual products in
this family vary with respect to their dependability properties.

1 INTRODUCTION

In manufacturing enterprises like the automotive industry, companies focus their
production efforts around families of similar products. This kind of product line
manufacturing allows core production assets to be used across products in the same
family. Volkswagen, for example, produces three different automobile models that
share the same chassis component. The Jetta, Golf, and GTI are each manufactured
by specializing a generic chassis to suit the needs of the individual models. In
addition to the economies of scale created by this process, additional productivity
improvements come by way of worker specialization. Production workers become
familiar with the common components, the tools used to compose them, and the
process by which individual products are manufactured.

Following the manufacturing metaphor, software product lines are developed
around a core set of reusable software assets, with individual products in the line
developed by specializing those assets. Not surprisingly, product line development
techniques fundamentally rely on commonality and variability analyses [9]. Com-
monality analysis identifies the core set of features that are constant across a product
family. Conversely, variability analysis identifies the features that vary among the
individual products. Development strategies leverage this analysis by focusing prod-
uct development around the core set of software artifacts that implement behavior
common to all products in the family. By providing hooks for implementing the pos-
sible variations, individual products are developed with only the incremental effort
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required to implement the application-specific variability. The result is improved
time- and cost-to-market through code reuse and developer specialization.

Software product lines are experiencing increasing popularity as software ven-
dors are faced with mounting pressure to develop software more quickly and more
economically. As a consequence, a number of product line development approaches
have been proposed. The majority of these approaches, as we will see later, target
variation along the functional dimension. We propose a complementary approach
for building product lines that vary along the non-functional dimension. We have
a particular interest in product lines that vary with respect to their dependability
characteristics, and therefore focus primarily on these specialized product families.

Our development approach is based on the use of open object containers, similar
to those used to host Enterprise Java Beans [36]. In this context, a container is
an extensible environment that provides runtime support to the objects it hosts.
To be clear, the traditional object-oriented programming literature [22, 24] uses the
term container to refer to classes that serve as collections of objects (e.g. lists,
stacks, queues). We refer to these classes as collection classes, reserving the term
container to refer to an extensible hosting environment for objects. Similar to an
operating system hosting processes, a container hosts objects, providing services to
the objects it hosts transparently. That is, hosted objects are imbued with addi-
tional services just by virtue of executing within the container, with little or no
additional programming effort on the part of the class designer. Containers provide
a model of object-oriented software development that supports a clean separation
of concerns between core object functionality, and system-level peripheral services.
This development model has been used to great advantage in factoring out func-
tional commonalities within the same product. In this paper we explore the use of
open object containers in factoring out non-functional commonalities along a line of
similar products. As we will see, our approach has a number of advantages.

The remainder of this paper is organized as follows. We present an overview
of existing product line development approaches in Section 2. Section 3 presents
an overview of container architectures, and their use in developing object-oriented
product lines. We then illustrate the approach through an example presented in
Section 4. We conclude in Section 5, summarizing the advantages of the approach,
and providing pointers to future work.

2 SOFTWARE PRODUCT LINES

The product line development approach has a long history in the software engi-
neering community. The roots of the approach are typically traced back to David
Parnas [27, 26], although many of the ideas on which his work is based date back
even further to the concept of program families proposed by Edsger Dijkstra [10, 11].
More recently, software product lines have gained considerable importance as an
effective way of achieving large-scale software reuse. A number of development ap-
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proaches have been proposed; in this section we briefly survey some of the most
important ones.

• Class Libraries. One of the most basic approaches for developing object-
oriented product lines is to provide a class library that implements the func-
tionality that is common across a family of products. All of the products in
the family implement their common behavior using library classes, specializ-
ing those classes as appropriate to the individual applications. These libraries
typically provide classes that model entities and services specific to a par-
ticular domain, thereby supporting product lines within that domain. The
basic approach is familiar to anyone who has used more generic class libraries
like libg++ [21], the C++ Standard Template Library [24], COOL [14], and
Bertrand Meyer’s Base Object-Oriented Component Libraries [23].

• Component Repositories. Similar to a class library, a component repository
contains reusable artifacts that provide functionality common to one or more
product families. Individual applications are built as assemblies of components
from these repositories, as well as application-specific components. Variability
is achieved by selecting different combinations of components, as well as vary-
ing how those components are assembled. Product line development strategies
which leverage component-based software engineering principles are discussed
in more detail in [16, 17].

• Object-Oriented Frameworks. The framework-based approach to devel-
oping object-oriented product lines focuses not just on reusing the services
supplied by individual classes, but also on reusing the collaborative structure
embedded across a family of products. An object-oriented framework [13] pro-
vides a set of classes that collaborate in a precise manner to provide a common
architectural framework on which a family of similar products can be built.
The common collaborative structure is captured in the form of key methods,
referred to as template methods in the design patterns literature [15], that
direct the flow-of-control, and call the appropriate hook methods of various
classes. Hook method implementations are deferred to derived-class design-
ers, who provide implementations appropriate to the individual applications.
Individual products in a line are developed with only the incremental effort
required to implement the application-specific variability. Framework-based
product line strategies are discussed in more detail in [2, 30].

• Component Frameworks. Similar to object-oriented frameworks, compo-
nent frameworks can be used to factor out architectural commonalities along a
product line. They are distinct, however, in that component frameworks spec-
ify structural and behavioral constraints that must be met by components
plugged into the framework (e.g. for specialization), as well as rules govern-
ing how the components must interact [38]. Just as the notion of component
repository is an analogue of class library, the notion of component framework
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is an analogue of object-oriented framework. A detailed treatment of their use
in developing software product lines can be found in [33].

• Step-Wise Refinement. Another approach to building software product
lines is based on Edsger Dijkstra’s concept of step-wise refinement [12].
The basic idea is to develop solutions to problems by starting with a high-
level solution, and progressively refining that solution until the required level
of detail is achieved. The work presented in [6, 4, 5] discusses a technique based
on scaling step-wise refinement to refinement layers that cross-cut module
boundaries. In that model, a refinement is a cross-cutting aspect [19] that
refines the functionality of one or more classes. The common functionality of
the product line is implemented in the base layer. Individual applications are
developed by progressively refining this functionality by applying additional
layers that specialize the core functionality as appropriate to the application.

• Domain-Specific Languages. A domain-specific language is a program-
ming notation dedicated to solving problems in a certain area; its expressive
power is tailored to solving problems in a particular domain. The domain
commonalities are factored out implicitly, embedded in the semantics of the
language. These tailored languages are especially useful in building special-
ized product lines because, while the language provides constructs specific to
the domain, it also typically excludes constructs of a regular programming
language that could detract from the problem domain at hand [7]. Individ-
ual applications can be generated as specifications in these languages (thus
exploiting their simplicity), and then translated into production programming
languages (thus remaining portable) [3].

3 OBJECT-ORIENTED CONTAINERS

A software container is a runtime environment designed to manage the execution
of objects. Containers provide a set of common services to the objects they host,
without the objects having been explicitly programmed to support those services.
An EJB container [36], for example, provides persistence, queuing, reference, and
other enterprise services to the instances it hosts. Objects hosted by the container
are imbued with these services with little additional programming effort just by
virtue of executing within the container. That is, container services are relatively
transparent to the hosted objects, as well as their clients.

Software containers achieve their relative transparency by relying on an old folk
theorem in computer science: any problem we are likely to encounter can be solved
by introducing an extra level of indirection. This is strikingly visible in the case of
container architectures, which leverage indirection to transparently mediate object
collaborations. Container-hosted objects are not accessed by client objects directly,
but rather through container-generated proxies [15]. Object method invocations on
proxy objects are intercepted by the container, which provides additional services
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Figure 1: The container acts as a transparent layer around one or more objects.
Client access to hosted objects is mediated by the container, which transparently
injects services in the path of object collaborations.

before and after routing the invocations to the appropriate invocation targets. A
high-level view of this model is illustrated in Figure 1.

Software containers provide a model of object-oriented development that sup-
ports a separation of concerns between core object functionality and container-
supplied peripheral services. Application developers focus their attention exclu-
sively on application-level services, leaving the peripheral services to the container
vendor. In practice, this set of peripheral services is fixed, and is generally lim-
ited in scope to a handful of enterprise services that are broadly applicable across
most domains. That is, container services are typically used to factor out a small
(but complex) set of domain-independent commonalities. Our approach to product
line development extends this perspective; we extend the range of container services
under consideration, and use those services to factor out commonalities, as well as
manage non-functional variation among products in a family. At the heart of this
approach is the ability to modularize container services as reusable modules.

As we have discussed in [18], and will see in the following section, interceptors
provide a means of modularizing a variety of novel container services across different
domains. These interceptors are invoked automatically by the container in response
to invocations on the objects it hosts. Interceptors operate on the logical invoca-
tion request and response messages that flow between objects in an object-oriented
system. Whenever a method is invoked on a hosted object (through a proxy), the
container generates an object that stores information about the call, and passes
the resulting message object to the appropriate interceptors before performing the
invocation on the target. Similarly, when the invocation completes, the container
generates a new object that stores information about the call completion, and passes
the resulting message object to the appropriate interceptors before returning control
to the caller. An interceptor-based architecture [29] allows interceptors to modu-
larize the behavior injected in the path of target method invocations. Figure 2
illustrates a container linked with two such interceptor modules.
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Figure 2: The container mediates access to its hosted objects through interceptor
modules. Each interceptor module modularizes a particular service that should be
transparently injected in the path of object collaborations.

Since the interceptors we have described operate on call and response informa-
tion, they can be viewed as meta-level objects that transform the behavior of the
objects to which they are applied [18]. Like other meta-level approaches, intercep-
tors can modularize concerns that are typically thought of as cross-cutting. For
example, a single interceptor instance can be used to provide invocation logging
services to a set of objects of varying type1. This meta-level property is important
to our approach because it allows us to modularize non-functional concerns, which
almost always cross-cut module boundaries since systems are typically decomposed
based on functional considerations. Consequently, we are able to develop interceptor
libraries that provide a range of non-functional services.

Given a library of interceptor modules targeting non-functional concerns, we
should like to vary the interceptors used by a container to achieve non-functional
variation along products in a line. Following the open-closed principle of modular
decomposition [22], the set of services supplied by a container should be configurable
without modifying the underlying container code. This is in conflict with the fixed-
service view of containers that pervades present day software practice. As we have
discussed in [34], one way of achieving this non-invasive configurability is to recast
container architectures as a special kind of parameterized templates. That is, each
container is parameterized by a variable number of interceptors that enrich the
behavior of the hosted objects and their interactions. Supporting a variable number
of interceptors is possible because interceptors share a common interface. From the
container designer’s perspective, the container accepts one template parameter: a
variable length array of interceptor objects that provide identical interfaces.

While much work has gone into using containers to factor out commonalities,
there appears to be little work in using containers to manage variability. Our ap-
proach to product line development relies on a parameterized view of software con-
tainers, and a supporting interceptor library that provides a range of non-functional

1The resulting invocation log may be used to support debugging services, rollback/recovery,
etc.
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services. By varying the set of interceptors used by a container, we are able to factor
out commonalities, as well as tailor the non-functional properties as appropriate to
the individual applications.

4 EXAMPLE: A DISTRIBUTED MIDDLEWARE PRODUCT LINE

In [18] we describe the design and implementation of an open object container that
we have developed for Microsoft’s .NET Framework. Our container architecture
supports the parameterized view of containers outlined in the previous section. We
have used this architecture to develop middleware that provides transparent distri-
bution and lookup services, similar to those provided by Java RMI and CORBA.
As we have a particular interest in dependability properties, we have additionally
developed a library of interceptor modules that provide a range of dependability ser-
vices to applications developed using this middleware. Using the modules provided
by this library, we have deployed our middleware under different configurations de-
pending on the level of dependability required by the individual applications. In this
section we briefly describe a small set of the interceptor modules that we have devel-
oped, and provide a silhouette of how those modules have been used in developing
a dependable middleware product line.

Dependability Services

Replication and Fail-Over
In distributed scenarios it is often useful to maintain replicated objects so that
object failures can be masked from the rest of the system. When an object fails,
client requests can be transparently redirected to one of the replicas, preventing
the fault from propagating to client objects. This service is implemented as three
interceptor modules.

• Multicast Interceptor. The multicast interceptor is associated with a pri-
mary target, and is responsible for keeping a set of replicas synchronized with
that target. Whenever an invocation is received by the primary object, the
multicast interceptor forwards copies of that message to the replicas. These
replicas serve as hot-spares, ready to be put into service should the primary
fail.

• Filter Interceptor. The filter interceptor acts as a one-way filter that only
allows messages from the primary object to pass through to clients. Mes-
sages sent from non-primary replicas are discarded, allowing clients to remain
unaware of the replication.

• Fail-Over Interceptor. The fail-over interceptor detects when an object
is unable to respond to invocation requests, and then selects a new primary
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object on behalf of the filter interceptor. We have implemented two versions
of this module. The first implementation detects object failures by capturing
exceptions from the underlying network. The second implementation relies on
a simple heart-beat scheme that signals a failure if the primary does not send
a heart-beat within a specified amount of time.

Distributed Recording
In providing masking fault-tolerance, an alternative to replicating objects is to pro-
vide support for checkpointing and recovery. The distributed recording service logs
logically sequential events in a distributed system using vector clocks [20]. The re-
sulting log can be used to play back the events to bring the system into a consistent
state should a fault occur. This service is implemented as two interceptors that
share a set of vector clocks and a common log. Each vector clock corresponds to the
logical time associated with a single object.

• Send Interceptor. When the send interceptor receives a message for sending,
it updates the logical clock of the sending object, and logs the message along
with the time at which it was sent. If the target of the message is container-
hosted, the interceptor adds the updated value of the clock as a time-stamp
to the outgoing message. The message is then passed to the container for
sending.

• Receive Interceptor. When the receive interceptor receives a message for
delivery, it checks whether a time-stamp was included with the message. If
a time-stamp was included, the interceptor removes the time-stamp, updates
the logical clock of the receiving object, and logs the message along with the
time at which it was received. The message is then passed to the container for
delivery.

Load Balancing
When a system is subject to high demand, it is beneficial to distribute the pro-
cessing load across all available hardware resources. Our load balancing service
provides object-based load balancing across a set of replicated objects distributed
across multiple processors. As the service is simple, it is implemented as a single
interceptor.

• Switch Interceptor. The switch interceptor provides a load-balancing ser-
vice to a set of replicated objects. The interceptor monitors the utilization of
the containers in which the replicated objects are hosted. When an invocation
request is received, the interceptor redirects the message to the object whose
container has the most available resources.
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Product Configurations

We have deployed our middleware using several different interceptor configurations.
Each configuration corresponds to a unique product in a family of middleware ap-
plications. The selection of interceptor modules for each product is driven by the
dependability needs of the applications that will use the resulting middleware. Dis-
tributed applications requiring support for masking fault-tolerance, for example,
would be deployed with the interceptors required to support replication and fail-
over, or checkpointing and recovery. Space and time tradeoffs of replication versus
checkpointing, real-time constraints, and other considerations will drive the selection
of one technique over the other. Middleware targeting applications with stringent
real-time constraints, for instance, would be configured with the interceptors re-
quired to support replication and fail-over, as the time required to rollback from a
fault would make checkpointing and recovery infeasible. The middleware product
line might also be deployed with our load balancing service to keep the application
load from interfering with meeting real-time requirements.

Every product in our product family is developed by non-invasively specializing
our core middleware implementation. The configuration process is equivalent to
instantiating the middleware implementation with one or more interceptor-based
services. This process is light-weight, and can be done with little or no programming.
We are, for example, investigating the use of XML-based configuration files for
automating the configuration and deployment of individual products.

5 DISCUSSION

As the example in the preceding section illustrates, object-oriented containers are
technically viable for developing product lines that vary with respect to their non-
functional properties. However, the motivations for (and hence the suitability of
an approach to) building software product lines goes beyond technical feasibility.
Software product lines introduce interesting opportunities for advancing the state of
the software business. For a product line approach to be adopted, it is essential that
these business (i.e. non-technical) issues be considered in some detail as well. In this
section, we present a brief outline of how object-oriented containers offer solutions
to some of these non-technical issues. Much of the discussion covers our ongoing
and future research directions in using containers to build commercial product lines.

Variability Analysis

Variability in a software product line is made explicit by introducing a number of
variation points [8]. Each of these variation points represents a particular design
decision that is explicitly delayed until later in the development cycle. At the time
of designing a product line, the engineer designs in the commonalities as the base
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features of the line, and leaves the variabilities open. In other words, the variation
points are not fixed. Once the variation points are fixed, the designer has constrained
the different ways in which the product line architecture can be specialized to yield
a specific product. This phase of the product line’s development is called domain
engineering. The process of building particular products from such a product line
architecture, known as application engineering, involves binding specific variants to
each variation point.

In an object-based approach to product line architectures, such as the one we
have proposed in this article, the different design decisions can be encapsulated in
their own modules [25]. Once this is done, the application engineering process is re-
duced to simply picking the particular modules that include the appropriate variants
for each variation point. This approach, in itself, introduces another variation point
— the binding time of the variants to their variation points. In our object-based
approach, depending on the implementation technology that is chosen, the binding
time could range from compile-time through run-time. In fact, with interceptors as
the implementation mechanism (as described in Sections 3 and 4), variants can be
bound at run-time to their variation points. Further, our interceptor architecture
allows for variants to be unbound and rebound during the lifetime of the software
system. Such possibilities for rebinding open up new avenues for further investiga-
tion in product line variabilities.

Another important variability is the evolution of object interfaces [37]. New im-
plementations of existing abstract interfaces may add new functionality that was
originally unknown to the rest of the system. Such interface modifications are han-
dled in our interceptor-based architecture, since the level of granularity provided by
interceptors can be as fine-grained as needed. An interceptor could, for example,
intercept requests for a new method that did not exist in the original object, and
delegate those requests to another object capable of providing the appropriate ser-
vice. Further, since the interceptor architecture supports dynamic reconfiguration at
various levels of scope [18], variabilities can be introduced at the product line level,
product level, object level, or even at the method level; and all these variabilities
can be introduced and modified at run-time.

Product Line Economics

Economics is a very important motivation behind product-line engineering [28]. In-
deed, it may well be the primary motivation for developing product families. The
cost improvements of building a product family as opposed to several individual (yet
related) products is considerable. Thus any new approach to building product lines
must address this issue.

In our model, individual products in the product family are created by configur-
ing the hosting container with the appropriate set of container services. Even after
a product has been deployed, the set of services it uses can be modified dynamically.
Dynamic binding and rebinding of services to products brings up the interesting
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possibility of a pay-on-use economic model. The vendor of the services can use a
cost model based on which particular services a product uses, and even when those
services are bound.

Moreover, our model allows the product designer to view the container services
from a real options perspective. The binding of a particular service to a product is
viewed as an investment that the product designer is making. [1] and [35] present
software development as an investment activity. The models they propose (when
adapted to our container-based approach) provide a strong economic basis for using
software containers to build product-lines architectures.

Reasoning Issues

When an object is hosted by a container, the client’s view of the object is trans-
formed. The client views the hosted object as a variant of the original, augmented
by the services supplied by its hosting container. So, when reasoning about com-
positional behavior, it is important to consider each object in conjunction with its
host. However, since the abstract interface of the hosted object is modified as a
result of placing it in the container, standard approaches to compositional reasoning
can no longer be applied.

In an effort to overcome this problem, we have shown previously that containers
can be recast as parameterized components, and when viewed this way, the distinc-
tion between containers and components disappears [34]. Several proof techniques
are available for reasoning about parameterized components [32]. Further, tools ex-
ist to automatically generate reasoning tables for parameterized component models
that use templates as the parameter binding mechanism [31]. All of these tech-
niques could potentially be used to reason about container-based product lines. At
this point, however, we cannot use these methods to reason about systems developed
using our interceptor architecture, since interceptors are meta-level components. We
are currently working to develop a strong connection between such meta-level me-
diators and component-based reasoning.
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