
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 5, May-June 2004

Cite this article as follows: Apostolos Zarras: “A Comparison Framework for Middleware
Infrastructures”, in Journal of Object Technology, vol. 3, no. 5, May-June 2004, pp. 103-123.
http://www.jot.fm/issues/issue_2004_05/article2

A Comparison Framework for
Middleware Infrastructures

Apostolos Zarras, University of Ioannina, Greece

Abstract
Middleware is a software layer standing between the operating system and the
application, enabling the transparent integration of distributed objects.
In this paper, we propose a framework that facilitates the comparison of middleware
infrastructures. Our approach serves for identifying similarities and differences between
middleware infrastructures and revealing their advantages and disadvantages when
facing the question of choosing one that satisfies the application’s requirements. Based
on the proposed framework, we compare CORBA with J2EE and COM+, three of the
most widely used infrastructures in both industry and academia.

1 INTRODUCTION

Middleware is a current trend in the development of open distributed systems; it stands
between the operating system and the application and enables the transparent integration
of distributed objects [Bernstein96]. Middleware consists of reusable functionality that
offers solutions to frequently encountered problems like heterogeneity, interoperability,
security, dependability, etc. This functionality is offered either by the core of a
middleware infrastructure, or by complementary services. The former mediates the
interaction between distributed objects, while the latter deal with issues like fault
tolerance, transactions, naming, trading, security, etc.

In the early 90s, there have been efforts to come up with standards describing the
semantics and the structure of middleware infrastructures, capable of supporting a wide
range of applications. The CORBA (Common Object Request Broker Architecture)
specification [CORBAv3.0.2] is among the most successful results of those efforts.
Except for infrastructures that comply with the CORBA standard (e.g., [Henning et al.98,
Lo et al.98, ORBIX, Schmidt et al.98, Puder et al.00]), there exist others, which are also
quite famous and widely used in both industry and academia. Among the most popular,
we find J2EE (Java 2 Enterprise Edition) [J2EEv1.4] and COM+ [COM+v1.5].

Given this wide variety of solutions, what is still missing, from a software
engineering point of view, is a methodology that facilitates selecting the one that better

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_05/article2

A COMPARISON FRAMEWORK FOR MIDDLEWARE INFRASTRUCTURES

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

tackles the particular requirements of a distributed application. Recently, the OMG
architecture board made a statement concerning the coordinated use of existing standards
towards Model Driven Architecture development (MDA) [MDA]. The MDA
development process relies on the specification of models of the application’s
architecture. In a first step, the models are infrastructure-independent (i.e., they abstract
away technological details that do not relate to the fundamental functionality of the
application). The application’s architecture specification may further include a
description of technological requirements, which serve for choosing among different
infrastructures that may satisfy them. The step that follows consists of refining
infrastructure-independent models into infrastructure-specific ones. The MDA
development process completes with turning infrastructure-specific models into code.

Concerning the issues discussed above, we propose a framework for the systematic
comparison of middleware infrastructures, which facilitates the first step of the MDA
development process. The framework aims at systematically exploring similarities,
differences, revealing advantages and disadvantages of middleware infrastructures, when
facing the question of choosing one that better satisfies the application’s requirements.

The remainder of this paper is structured as follows. Section 2 presents previous
work and requirements related to our main objective. Section 3 details the comparison
framework. Section 4 presents the framework in action, comparing CORBA with J2EE
and COM+. Finally, Section 5 summarizes our contribution.

2 BACKGROUND & REQUIREMENTS

Most of previous approaches to the comparison of middleware infrastructures rely on
purely functional criteria. In [Plasil et al.98], for instance, the authors compare CORBA,
Java RMI and DCOM (a predecessor of COM+) regarding a number of basic concepts
(e.g., request/response, remote reference, interface, proxy, marshaling, etc.) and patterns
(e.g., the broker pattern, the proxy pattern, etc.), traditionally used for the integration of
distributed objects. The overall comparison is faithful from a technical point of view.
However, the comparison framework proposed by the authors does not establish
relationships between functional concepts, patterns and typical requirements imposed by
distributed applications. Hence, given the results from their comparison we cannot reason
about which infrastructures are capable of satisfying the requirements of a particular
application. Moreover, we cannot reason about which specific concepts and patterns we
should use to satisfy those requirements.

In [Roman et al.99] and [Gopalan98] the authors also rely on functional comparison
frameworks. Comparing middleware infrastructures strictly from a functional point of
view can be misleading as it is more than difficult to check all the features of one
infrastructure against corresponding features of another one. In general, there is no
perfect middleware infrastructure; every one of them has its weak and strong points. Even
if a particular infrastructure has less weak points than another does, it may not be suitable

BACKGROUND & REQUIREMENTS

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 105

for the specific application that we implement because its weak points may be exactly the
ones we have to employ to satisfy the application’s requirements.

In [Emmerich00], the author follows a requirement-based approach. More
specifically, the author identifies typical requirements of distributed applications over the
middleware and examines whether or not different types of middleware infrastructures
support those requirements. However, the comparison framework used does not establish
the relationship between the requirements and the specific middleware functional
concepts we should use to satisfy them.

Based on the issues raised above, we propose a comparison framework which
combines both the requirements-based and the functional-based approaches. More
specifically, our framework consists of a set of key requirements typically imposed by
distributed applications over the middleware. Satisfying the requirements depends on the
particular architectural style (i.e. the different types of elements that can be used for
building an application on top of the infrastructure and constraints on the use of those
elements) assumed by a middleware infrastructure and the services the infrastructure
provides. In the proposed framework:

• We define a generic architectural style that satisfies the key requirements; if the
particular architectural style of a middleware infrastructure conforms to this
generic architectural style, the infrastructure is capable of satisfying the key
requirements.

• We identify fundamental services that should be offered by a middleware
infrastructure towards satisfying the key requirements.

3 COMPARISON FRAMEWORK

Figure 1 gives the overall structure of our comparison framework, which consists of key
requirements imposed over the middleware, a generic architectural style for middleware
infrastructures and fundamental middleware services.

Key Requirements over the Middleware

The RM-ODP (Reference Model for Open Distributed Processing) standard [RMODP]
discusses the issue of typical requirements on the integration of distributed objects.
Moreover, in [Emmerich00] the author further deals with this issue. Based on these
approaches, we consider the following requirements:

• Openness: The middleware infrastructure should enable extending the
applications built on top of it in various ways. (e.g., adding, removing, upgrading,
composing services, etc.).

• Scalability: The middleware infrastructure should facilitate the effective operation
of the applications at many different scales.

• Performance: The middleware infrastructure should enable the efficient and
predictable, if needed, execution of the applications that are built on top of it.

A COMPARISON FRAMEWORK FOR MIDDLEWARE INFRASTRUCTURES

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

• Distribution transparency: is the property that determines if the application is
perceived by users, or developers as a whole rather than as a collection of
independent constituent elements. The requirement for distribution transparency is
quite generic and it is usually refined into a number of more specific
transparencies including:

o Access transparency: the infrastructure should enable accessing local and
remote application elements in the same way.

o Location transparency: the infrastructure should enable accessing the
application elements without knowledge of their physical location.

o Concurrency transparency: the infrastructure should allow concurrent
processing on resources, without interference.

o Failure transparency: the infrastructure should enable service
provisioning despite the occurrence of failures.

o Migration transparency: the infrastructure should provide means for
changing the location of elements of the application without
compromising the application’s correct operation, i.e. without affecting the
elements that depend on the migrated elements.

o Persistence transparency: the infrastructure should provide means for
concealing the deactivation and reactivation of elements from other
elements that are using them.

o Transaction transparency: the infrastructure should provide means for
coordinating the execution of atomic and isolated transactions.

A Generic Architectural Style

In general, every middleware infrastructure assumes an architectural style that must be
followed by applications using the infrastructure. Three basic principles must hold for
this architectural style to support the development of open and scalable applications:

• Modularity: The application should consist of a collection of elements, each one
providing services, used by the others. Modularity enables the identification of
dependencies between the elements that make up the system. Consequently, it allows
determining, which elements are affected by the eventual addition, removal or
upgrade of services.

• Encapsulation: For each constituent element, there is a clear separation between
the element’s interface and implementation. The interface is a well-defined
specification of the provided services, the contract between the element and the
entities using it. The implementation is the realization of the provided services. In
general, it is safe to change the implementation of an element as long as the
element’s interface is preserved. Changing an element’s interface without
compromising the overall application integrity requires that the rest of the
application does not depend on this particular interface, at the time of the change.

• Inheritance: An interface specification (resp. implementation) may be derived
from another one. The derived interface (resp. implementation) provides at least

COMPARISON FRAMEWORK

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 107

the services of the base interface (resp. implementation). Inheritance enables the
vertical and horizontal composition of services.

Openness Scalability Performance

Requirements

Access PersistenceLocationMigration FailureTransaction Concurrency

Distribution
Transparency

(a) Key Requirements.

Application Capsule Manager

Cluster Manager

Capsule1..n1 1..n1

11 11

Cluster
11 11

1..n

1

1..n

1

Engineering Object
1..n

1

1..n

1

Proxy Binder Protocol

Channel

Skeleton
1..n 1..n

1

1..n 1..n

Engineering Object

1

1..n1..n 1..n 1..n

(b) Generic Architectural Style.

naming trading replicationmigrationevent checkp/recovtransaction

Repository Services

Services

authenticationaccess control

Security Services

encryptionconc control

Coordination Services

(c) Fundamental Services.

Figure 1: The basic concepts of the comparison framework.

The generic architectural style we assume in the comparison framework respects the
aforementioned principles. It further relies on the architectural style proposed in RM-
ODP for open distributed systems. More specifically, the basic elements that make up an
application are engineering objects, i.e. units of data or computation, which we integrate
transparently using functionality of a middleware infrastructure. An engineering object
can be instantiated multiple times within an application. Instances have state and

A COMPARISON FRAMEWORK FOR MIDDLEWARE INFRASTRUCTURES

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

collaborate towards the accomplishment of specific tasks. An engineering object provides
one or more interfaces. Furthermore, an engineering object may require one, or more
interfaces. Interfaces may be of the following kinds [RMODP]:

• Signal interfaces: defining asynchronous stimuli that can be handled by instances
of engineering objects, providing these interfaces.

• Operation interfaces: defining operations that can be invoked on instances,
providing these interfaces. Invoking an operation causes a request message to be
sent by the invoker to the invoked instance. Invoking an operation may further
result in a reply sent from the invoked instance to the invoking instance.

• Stream interfaces: defining operations that can be invoked on instances, providing
these interfaces. The result of invoking a stream operation is the continuous
conveyance of information from the invoked instance to the invoking instance.

Following RM-ODP, we assume that engineering objects are organized into clusters for
the purpose of activation, deactivation, checkpoint, recovery, etc. Each cluster is
associated with a cluster manager, i.e. an engineering object that coordinates the
aforementioned activities. Clusters are organized into capsules for the purpose of
encapsulation of processing, storage, and request flow. A capsule is associated with a
capsule manager, i.e. an engineering object that coordinates the cluster managers of the
constituent clusters.

Engineering objects that belong to different capsules communicate through channels.
More specifically, two or more collaborating objects are associated with a channel, which
provides access transparency, i.e. it masks differences in data representation and
communication mechanisms enabling the inter-operation of the associated objects. A
channel is a compound element consisting of proxies, skeletons, binders and protocol
objects.

A proxy is an engineering object that bridges the semantic gap between local (i.e.
elements belonging to the same capsule) and remote elements (i.e. elements belonging to
different capsules). Invoking an operation, (or sending a signal) on an object involves
holding a reference to that object. If both the invoker and the invoked object reside in the
same address space, the reference is a typical implementation-language specific pointer
(e.g. a C++ pointer). On the other hand, if the invoker and the invoked object reside in
different address spaces, the reference is a pointer to a representative of the invoked
object (i.e. a proxy) in the invoker’s address space. Upon the invocation, the proxy
constructs and forwards a request to the remote object, through the rest of the objects that
make up the channel. Requests and replies must be converted into a form that is suitable
for transmitting over the network. Technically, the previous is achieved through
serialization of requests and replies into a byte stream. The serialization procedure is
usually called marshalling. Several conversions may take place during marshaling, to
deal with data representation differences between the invoker’s and the invoked object’s
execution environments (e.g., little-endian, big-endian).

A binder is an engineering object that maintains the integrity of a channel (e.g., it
monitors communication failures and round-trip times and sets appropriate time-outs; it
multiplexes connections to multiple remote objects to optimize resource usage). A

COMPARISON FRAMEWORK

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 109

protocol object provides basic communication functionality (e.g., it writes a request to a
TCP/IP socket, it performs retransmissions based on time-outs set by the binders, etc.). A
skeleton is the representative of all objects requiring an interface provided by a remote
object, in the capsule of the remote object. The skeleton accepts as input requests built by
proxies and uses information that is encapsulated in those requests to perform local
invocations on behavioral features (i.e. operations, signals) provided by the remote
object. The skeleton may further encapsulate the result of the request into a reply, which
is delivered back to the invoker.

Fundamental Middleware Services

So far, we have seen that openness, scalability and access transparency of an application
depend on the particular architectural style assumed by the middleware infrastructure
used for building it. Performance, on the other hand, mainly depends on the realization of
the infrastructure’s communication channels. A basic performance criterion is the
communication overhead introduced by the use of the channels. This overhead is usually
not negligible; it is the penalty for dealing with communication in distributed
applications, executing on heterogeneous execution environments.

Achieving the rest of the requirements, identified at the beginning of this section,
relies on the use of complementary services offered by the infrastructure. The use of the
complementary services should be transparent to the application, whenever possible.
More specifically, the infrastructure should provide means that relief the developers from
explicitly using complex functionality of the services within the code of the application.
The ideal is that developers just setup properties that characterize the objects of the
application. Then, the middleware used for integrating the objects implicitly combines
functionality of corresponding services to impose those properties (e.g., the developer
just sets the replication-style to be active-replication; based on the style, appropriate
functionality is used within channels, for multicasting requests sent by clients to groups
of replicated objects).

The fundamental services offered by an infrastructure can be divided into three
categories: repository, coordination, and security services [RM-ODP].

Repository services provide functionality that allows managing information
regarding objects, interfaces, locations, etc. This category includes trading and naming
services. A naming service defines a name space and provides interfaces through which
we associate names with references to objects. Client capsules may then use names to
obtain the associated object references. A trading service is a more sophisticated
mechanism. The client capsules do not need to know specific names of server objects,
they just hold a reference to a trader and use it to request for a required service. The
trader maintains a registry that contains references to objects, providing specific services.
A client request to the trader is specified in terms of a required interface and additional
quality of service properties. The trader looks in the registry for a reference to an object
that can fulfill the client’s requirements and if there exists one, the trader returns it to the
client. Naming and trading services can be used to provide location transparency.

A COMPARISON FRAMEWORK FOR MIDDLEWARE INFRASTRUCTURES

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

Moreover, we can use the trading service to satisfy scalability requirements as it can
serve as a mechanism for load balancing.

Coordination services include services that can be used to achieve concurrency
transparency (e.g. locking). Failure transparency regarding accidental faults is realized
using coordination services for replication, checkpoint and recovery [Laprie85].
Replication may be employed both at the level of engineering objects (use of groups of
replicated objects instead of simple objects) and at the level of communication channels
(use of request retry and redirection mechanisms). Failure transparency concerning
intentional/malicious faults relies on the use of security services for authentication, access
control and encryption [Laprie85]. Migration transparency is achieved using
coordination services that allow copying or moving an object from one location to
another, without affecting other objects that use it. Persistence transparency relies on two
key issues: (1) references to persistent objects must remain valid despite the deactivation
and reactivation of those objects, (2) the state of the objects must persist to their
deactivation and reactivation. In principle, the creation and maintenance of references is a
responsibility of the infrastructure. On the other hand, persistent state involves using a
complementary checkpoint and recovery service. Transaction transparency involves
using coordination services that realize atomic commitment protocols (e.g. two-phase
commit protocol) and concurrency control protocols that guarantee isolation (e.g. two-
phase locking).

4 THE COMPARISON FRAMEWORK IN ACTION

In this section, we demonstrate the use of the proposed framework for comparing
CORBA with J2EE and COM+.

Openness

All three platforms that we assess in this paper support the development of open systems.
More specifically, each one of them relies on a particular architectural style, which is
aligned with the basic principles and concepts of the generic architectural style we
detailed in the previous section.

CORBA forces developers to build applications that comply with the CORBA object
model [CORBAv3.0.2]. According to that model, the basic engineering objects are called
CORBA objects. Each CORBA object provides a single interface; it is a conceptual entity
realized by an implementation language-specific entity (e.g. a C++ object, a Java object,
etc.), named servant. In principle, the servant may realize more than one CORBA objects.
By default, CORBA interfaces are operation interfaces, as defined in the generic
architectural style. An operation may return a reply or not; in the latter case it is called a
one-way operation. In order to realize a signal interface we have to use the CORBA
Event Service [CORBAServices]. Stream interfaces are not supported. The specification
of interfaces relies in CORBA IDL (Interface Definition Language), a purely declarative

THE COMPARISON FRAMEWORK IN ACTION

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 111

language that supports interface inheritance. Implementation inheritance depends on the
implementation language used for the realization of servants.

CORBA objects that have common properties regarding activation, deactivation, etc.
can be organized into clusters managed by a POA element (Portable Object Adapter).
Capsules are called CORBA servers. CORBA objects that belong to different servers
communicate using channels, which rely on the GIOP communication protocol. A more
sophisticated approach for clustering objects that have common properties consists of
building CORBA components instead of typical CORBA objects [CORBA-CCM].
Components extend the semantics of simple objects in that they can register to containers,
i.e. objects that implicitly manage object activation and deactivation, transactions,
security and persistence. To achieve the previous containers combine functionality of
standard CORBA services like PSS (Persistent State Service) and OTS (the Object
Transaction Service) [CORBAServices]. Technically, each container is associated with a
properly configured POA. CORBA components provide more than one interfaces divided
into two categories: (1) external interfaces used by other components of the application,
and (2) callback interfaces, used by the container towards managing object activation and
deactivation, transactions, security and persistence.

Architectural Style OPENNESS

Modularity Encapsulation
Interfaces Engineering

Objects
Clusters Capsules Channels

Operation Signal Stream

Inheritance

CORBA CORBA
objects GIOP

based

J2EE Java
 objects RMI

based

COM+ COM+
Objects

DCE
RPC
based

Table 1 : CORBA, J2EE and COM+ regarding openness.

J2EE imposes the use of the Java object model [J2EEv1.4] for developing J2EE
applications. According to that model, an application comprises a collection of Java
objects, each one providing a number of Java interfaces. Java interfaces are operation
interfaces. To realize signal interfaces we have to use the Java Message Service (JMS)
[J2EEv1.4]. As with the case of CORBA, stream interfaces are not supported. Interfaces
are specified using Java language-specific constructs (instead of employing a separate
IDL language). Java allows both interface and implementation inheritance.
ActivationGroup objects can be used to cluster objects with common properties regarding
activation and deactivation. A capsule in J2EE is called a server. Objects that belong to
different servers communicate through channels that rely on the Java RMI
communication protocol. Alike CORBA, J2EE further provides a more sophisticated
approach for clustering objects, which involves building Enterprise Java Beans (EJBs)
instead of typical Java objects. EJBs extend the semantics of simple Java objects in that
they can register to EJB containers, i.e. objects that systematically manage the

A COMPARISON FRAMEWORK FOR MIDDLEWARE INFRASTRUCTURES

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

activation/deactivation, transactional processing, persistence, etc. of the registered
objects.

In COM+, the basic engineering objects are called COM+ objects and provide one, or
more interfaces [COM+v1.5]. COM+ objects are conceptual entities realized by one or
more implementation objects written in a conventional programming language like C++,
Java, etc. COM+ interfaces are in principle operation interfaces. Signal interfaces can be
realized using the COM+ event service [COM+Events]. As with the previous two
infrastructures, stream interfaces are not supported. Interfaces are specified using
Microsoft IDL (MIDL), a purely declarative language that supports inheritance. Capsules
in COM+ are named processes. COM+ objects are organized into clusters, named
contexts, regarding common properties, having to do with the objects’ activation,
deactivation, transactions, security etc. COM+ objects interact through channels that rely
on DCE RPC [DCE-RPC].Table 1 summarizes the comparison of the three
infrastructures regarding openness.

Scalability

As we detailed previously, the architectural styles assumed by all three infrastructures we
examine here support the development of scalable applications. CORBA further provides
a trading service that can be used for load balancing [CORBAServices].The CORBA
Trader provides a registry of publicly known services. Clients may query the trader for a
particular service, providing the specification of the service, in terms of a CORBA IDL
interface. Client queries may further include quality of service requirements that must be
satisfied by the service provider. The trader answers the clients’ queries with references
to objects that can successfully offer the required service, while fulfilling the clients’
quality requirements.

COM+ supports static load balancing [COM+v1.5]. More specifically, a COM+
system can be configured to assign certain clients to certain servers that execute the same
logic. However, the mapping between clients and servers does not change dynamically to
reflect changes in the servers’ workload. This technique is an easy way for dealing with
predictable loads. A more sophisticated solution involves using referral COM+ objects
that assign clients to component objects dynamically. J2EE also does not provide a
standard trading service [Roman et al.99]. However, it provides means for implementing
proprietary ones. Table 2 summarizes the comparison of CORBA, J2EE and COM+
regarding scalability.

SCALABILITY Architectural Style Trading Services
CORBA

J2EE
COM+

 Table 2: CORBA, J2EE and COM+ regarding scalability.

THE COMPARISON FRAMEWORK IN ACTION

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 113

Performance

Regarding efficiency, several performance evaluation efforts [CORBABench, EJBBench,
DCOM] show that the communication overhead is similar in orders of magnitude for
COM+, J2EE and various CORBA compliant middleware infrastructures (e.g. OmniORB
[Lo et al.98], ORBacus [Henning et al.98], ORBIX [ORBIX], TAO [Schmidt et al.98],
MICO [Puder et al.00]). In CORBA, we should expect spending from 0.6 to 3.5 ms to
send data of a basic type (e.g. long, char, float, double, short etc.) from a client to a server
object1. J2EE, also seems to be expensive; we should count spending from 4 to 5 ms1.
Finally, in COM+ 2.5 to 3.5 ms are needed1. The communication overhead grows for
more complex data types like arrays, sequences, etc.

CORBA is the only one among the infrastructures we consider here that facilitates
the predictable execution of applications. In particular, the Real-Time CORBA [CORBA-
RT] is an extension of the standard CORBA specification, enabling clients of an
application to create priority-banded connections to server objects. Clients can send
prioritized requests through those connections. Servers may specify priorities on a per
object basis, (e.g., requests targeted to a particular object may have higher priorities
compared to requests targeted to other objects encapsulated by the same server). Request
processing takes place according to either the client, or the server priority model,
depending on specific properties set on the server-side. Clients may further setup
timeouts on requests and servers can precise on the number of threads used for request
processing. Clients and servers can also customize certain properties of the underlying
TCP/IP communication protocol (e.g. the sizes of the communication buffers used). Real-
Time CORBA infrastructures come along with scheduling services, facilitating the
execution of activities (i.e. sets of requests) according to various scheduling policies (e.g.,
EDF, rate-monotonic, etc. [Schmidt et al.98]). Table 3 summarizes the comparison of
CORBA, J2EE and COM+ considering efficiency and predictability.

PERFORMANCE Efficiency Predictability

CORBA 0.5 to 3.5 ms

J2EE 3 to 5 ms

COM+ 2.5 to 3.5 ms

 Table 3: CORBA, J2EE and COM+ regarding performance.

1 These are representative measures taken from extensive experiments performed in the context of the
CORBA comparison project [CORBABench], the EJB comparison project [EJBBench] and [DCOM]. We
consider that these measures are sufficient to give an idea of the performance overhead introduced by the
infrastructures we examine. An extended performance evaluation of CORBA, J2EE and COM+ is out of
the context of this paper.

A COMPARISON FRAMEWORK FOR MIDDLEWARE INFRASTRUCTURES

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

Access Transparency

CORBA, J2EE and COM+ channels provide access transparency. More specifically, in
CORBA, proxies and skeletons are called stubs and skeletons, respectively. Requests are
marshaled into byte streams according to the standard CDR format (Common Data
Representation), which deals with byte ordering differences between the machines that
host the client and the server object. CDR further deals with the alignment of primitive
CORBA data types within messages. Stubs and skeletons are automatically generated
using a CORBA IDL compiler.

CORBA binders manage connections according to the GIOP protocol. Connections
in GIOP v1.0, v1.1 are asymmetric; the client can issue requests through the connection,
while the server can receive requests and send replies but can not issue requests. This
restriction is relaxed in GIOP v1.2 and v1.3, where connections are bidirectional.
Connection shutdown can be initiated either by a server-side binder, or by a client-side
binder. Server-side binders can not initiate connection closure if there exist client requests
that are pending. Client-side binders are responsible for multiplexing connections to
objects encapsulated by the same server to optimize resource usage. If client-side binders
do not support the previous feature, a new connection is created for every server object
used by the client. CORBA protocol objects rely on TCP/IP. Other protocol objects may
also be used within CORBA channels, as long as they conform to certain transport
protocol assumptions specified in the CORBA standard.

ACCESS
TRANSPARENCY

Proxy/Skeleton
– Marshaling Binders – Connections Protocol

Objects

GIOP1.0 GIOP1.1 GIOP1.2 GIOP1.3
CORBA GIOP

channels CDR format unidirectional
asymmetric

unidirectional
asymmetric

bidirectional
symmetric

bidirectional
symmetric

TCP/IP

J2EE RMI
channels

Java Object
Serialization
Protocol

bidirectional symmetric TCP/IP

COM+
DCE
RPC

channels
NDR format bidirectional symmetric TCP/IP

Table 4: CORBA, J2EE and COM+ regarding access transparency.

J2EE channels rely either on Java RMI [JavaRMI] or on GIOP. According to RMI, at the
time when a client obtains a reference, a new proxy is created. Consequently, multiple
proxies in the address space of the client may represent the same remote object.
Marshaling is based on the Java Serialization Protocol [JavaRMI]. Proxies and skeletons
are automatically generated, using the rmic compiler. RMI binders manage the opening
and closure of bidirectional connections. Moreover, they are responsible for multiplexing
connections according to the Java Multiplexing Protocol [JavaRMI]. RMI protocol
objects are based on TCP/IP. Other kinds of protocol objects are also supported.

THE COMPARISON FRAMEWORK IN ACTION

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 115

COM+ channels are based on DCE RPC [DCE-RPC]. When a client process obtains a
reference to an interface for the first time, a proxy is created. The proxy is reference-
counted to avoid creating multiple proxies, representing the same remote object. Request
and reply marshalling relies on the DCE NDR (Normal Data Representation) format.
Stubs and skeletons are automatically generated using the MIDL compiler. Binders
manage the opening, closure and multiplexing of bidirectional connections. Finally, the
protocol objects rely on TCP/IP. Other kinds of protocol objects may also be included in
COM+ channels. Table 4 summarizes the comparison of CORBA, J2EE and COM+
concerning access transparency.

Location Transparency

CORBA provides both naming and trading services that can be used to achieve location
transparency [CORBAServices]. J2EE provides two different naming facilities: a daemon
process, called RMI-Registry that realizes a flat namespace and the Java Naming and
Directory Interface (JNDI), which is similar to the CORBA Naming service [J2EEv1.4].
The distinctive feature of JNDI over CORBA Naming is that the former generates events,
upon request, whenever a namespace changes due to the addition, removal, or update of a
name binding. Clients using JNDI can then register event listeners to receive such events.
J2EE does not provide, for the time being a trading service.

LOCATION
TRANSPARENCY

Naming
Services

Trading
Services

Transparent use of
the services

CORBA
J2EE

COM+

 Table 5: CORBA, J2EE and COM+ regarding location transparency.

As in the case of J2EE, COM+ provides naming facilities, but it does not offer any
trading service. More specifically, in COM+ there exist two basic global name spaces.
The first one contains GUIDs (globally unique identifies), which are bound to COM+
interfaces, or to classes of COM+ objects. The second name space contains names of
monikers, i.e. persistent COM+ objects used for storing the state of other COM+ objects.

Using the naming and trading services is typically not a complex task; thus, the
middleware infrastructures we assess here do not provide any means to further facilitate
it. Table 5 summarizes the comparison of CORBA, J2EE and COM+ concerning location
transparency.

Concurrency Transparency

SYNCHRONIZATION
TRANSPARENCY

Concurrency Control
Services

Transparent use of the
services

CORBA
J2EE

COM+

 Table 6: CORBA, J2EE and COM+ regarding concurrency transparency.

A COMPARISON FRAMEWORK FOR MIDDLEWARE INFRASTRUCTURES

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

CORBA enables the concurrent execution of requests. However, the particular request
processing models that can be employed are not precisely defined in the standard.
Following, we give typical models that may be supported by CORBA compliant
infrastructures:

• The thread-per-request model: a new thread is created for every request delivered
to a server.

• The thread-per-client model: a new thread is created for every new client that
requests services from a server.

• The thread-pool model: a fixed number of threads are used for serving requests
(this model should be provided by infrastructures that comply with the Real-Time
CORBA specification [CORBA-RT]).

Concurrency control can be achieved using the CORBA Concurrency Control Service
(CCS) - a basic locking mechanism [CORBAServices]. The use of CCS is not transparent
to the application; locks should be explicitly acquired and released by the application.

In J2EE, multiple requests may be delivered simultaneously to a Java object. These
requests are served in separate threads. Concurrency control is based on standard Java
synchronization mechanisms, whose employment can be hidden under the use of the Java
synchronized clause (if we characterize operations op1, op2 of a Java class with the
synchronized keyword, J2EE guarantees that upon the concurrent arrival of requests for
op1 and op2, op1 shall start after the end of op2, or the inverse).

COM+ allows the concurrent execution of requests in the following sense. COM+
objects within a server are organized into apartments, depending on the request-
processing model they use. There are two types of apartments: single-threaded, and
multi-threaded. A single-threaded apartment consists of exactly one thread, so requests to
COM+ objects that belong to it are served sequentially. A multi-threaded apartment
comprises more than one thread, assigned to requests targeted to the objects that belong
to the apartment. Concurrency control in multi-threaded apartments can be based on
COM synchronization mechanisms (e.g., functionality that realizes the IBlockingLock
interface), whose use, however, is not transparent to the application. Table 6 summarizes
the comparison of CORBA, J2EE and COM+ regarding concurrency transparency.

Failure Transparency

CORBA was recently extended to support fault tolerance. More specifically, the standard
specification for Fault Tolerant CORBA [CORBAv3.0.2] defines basic mechanisms and
interfaces for replication, checkpoint and recovery of CORBA object groups. From the
client perception, the employment of the fault tolerance mechanisms is transparent since
groups are used as normal CORBA objects. Clients hold a group reference instead of an
object reference and request services provided by the group.

THE COMPARISON FRAMEWORK IN ACTION

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 117

Accidental Faults Intentional Faults

FAILURE
TRANSPARENCY Replication

Services

Checkpoint
and Recovery

Services

Transparent use
of the services Security Transparent use

of the services

CORBA
J2EE

COM+

 Table 7: CORBA, J2EE and COM+ regarding failure transparency.

Depending on the particular replication style used, the CORBA infrastructure either
forwards a client request to one member (called primary object) of the group (passive
replication), or multicasts the request to all members, while guaranteeing totally ordered
request delivery (active replication). In active replication, whenever a member fails, the
remaining replicas are used to guarantee correct service provisioning. In passive
replication the state of the primary is either periodically stored in a log (cold-passive
replication), or loaded into one or more backup replicas (warm-passive replication). Upon
the occurrence of a failure, a backup object becomes the new primary. CORBA further
defines mechanisms employed at the level of CORBA channels for request retry and
redirection. Fault tolerance support in J2EE and COM+ is limited; channels include
mechanisms for network/hardware fault detection and connection recovery.

Regarding intentional faults, all three infrastructures provide security services for
authorization, authentication and encryption. The functionality provided by those services
is embedded in the communication channels. Hence, the use of security services, in all
three cases, is transparent to the application. In CORBA, different kinds of secure
channels may be employed, relying on security protocols like SSL, GSS Kerberos and
CSI-EKMA (those protocols differ mainly regarding the flexibility they provide in the
delegation of identities and privileges; SSL appears to be the least flexible protocol, since
delegation is not allowed). Security in J2EE and COM+ is based on SSL channels.
However, channels relying on other security protocols (e.g. Kerberos) are also supported
[Roman et al.99].

Table 7 summarizes the comparison of CORBA, J2EE and COM+ regarding failure
transparency.

Migration Transparency

In CORBA there are two possible ways of migrating an object. The primitive way is to
invoke an operation on another object that resides at the target location and pass a copy of
the object that is to be migrated as a parameter. Then, the original copy can be destroyed.
The migrated object must be passed by value. The previous is possible in CORBA only if
the migrated object is a valuetype (i.e. a special kind of object, whose specification
comprises the definition of both the object’s interface and the object’s state). CORBA
channels can redirect requests issued by clients that hold references to the original copy
of the migrated object. Consequently, the integrity of the application is preserved. Passing
objects by value is also possible in J2EE.

A COMPARISON FRAMEWORK FOR MIDDLEWARE INFRASTRUCTURES

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

However, this primitive approach to object migration does not deal with dependencies
that may exist between a migrated object and other objects. Such dependencies may
further impose the migration of the dependent objects. To deal with these cases, CORBA
provides a more sophisticated service called CORBA LifeCycle [CORBAServices].

Passing objects as parameters in CORBA and J2EE and using the CORBA LifeCycle
service is not transparent to the application. Table 8 summarizes the comparison of
CORBA, J2EE and COM+ regarding migration transparency.

MIGRATION
TRANSPARENCY

Passing Objects by
Value Migration Services Transparent use of the

services
CORBA

J2EE
COM+

Table 8: CORBA, J2EE and COM+ regarding migration transparency.

Persistence Transparency

In CORBA, references to an object may be either persistent, or transient depending on the
policies of the POA that manages the lifecycle of the object. Moreover, CORBA provides
the Persistent State Service (PSS) [CORBAServices], for logging (resp. restoring)
objects’ states to (resp. from) persistent storage. Checkpoint and recovery of objects’
states is not transparent in the sense that it is the responsibility of the application to log
periodically the state of its constituent objects. To achieve fully transparent persistence
we have to build persistent CORBA components instead of simple CORBA objects and
register them into CORBA containers. Upon registration, the containers take over the
responsibility of logging and restoring the components’ state.

PERSISTENCE
TRANSPARENCY Persistent References Checkpoint and Recovery

Services
Transparent use of

the services
CORBA

J2EE
COM+

Table 9 : CORBA, J2EE and COM+ regarding persistence transparency.

In J2EE, object references can be persistent. More specifically, if a client tries to contact
an object that can be activated, but is currently not active, the RMI Registry responsible
for the object is contacted instead. The daemon shall reactivate the object and provide the
client proxy with an updated object reference. Regarding persistent storage, objects can
use JDBC or SQL/J to access a database. The use of the previous facilities is not
transparent, unless we built EJBs, instead of simple Java objects, and register them to
EJB containers that systematically log in database storage the state of the registered EJBs.

References to COM+ component objects are not persistent. The state of component
objects can be stored to a database, using ADO or OLE-DB interfaces. However, the use
of the aforementioned facilities is not transparent to the application [Roman et al. 99].
Table 9 summarizes the comparison of CORBA, J2EE and COM+ concerning persistence
transparency.

THE COMPARISON FRAMEWORK IN ACTION

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 119

Transaction Transparency

CORBA comes along with the Object Transaction Service (OTS) [CORBAServices],
which realizes the well-known 2-phase-commit protocol. Most implementations of the
OTS specification support the execution of both flat and nested transactions. The use of
OTS alone does not guarantee isolation. To achieve the previous we have to combine
OTS with CCS. The use of OTS and CCS is not transparent to the application. More
specifically, application objects that participate in a transaction must register the
resources they use to a transaction coordinator. Moreover, before serving transactional
requests, the participating objects must try to acquire locks on their resources. When the
transaction completes, OTS releases all locks that have been acquired. Hence, the first
phase of the well-known 2-phase-locking protocol is a responsibility of the application,
while OTS transparently performs the second phase, using CCS functionality.

To achieve fully transparent transactional processing we have to implement
transactional CORBA components and register them into CORBA containers. Then, the
containers handle client invocations appropriately (e.g., they may implicitly acquire
locks, register resources, etc.).

Transaction Services TRANSACTION
TRANSPARENCY Flat

Transactions
Nested

Transactions

Transparent use of
the services

CORBA
J2EE

COM+

 Table 10: CORBA, J2EE and COM+ regarding transaction transparency.

J2EE provides a service, named JTS (Java Transaction Service) that is similar to OTS.
One significant difference is that JTS only supports the flat transaction model. Moreover,
container-managed transactions are supported for EJBs. COM+ provides OLE
transactions for the atomic and isolated execution of invocations on COM+ objects. Both
flat and nested transaction models are supported. Moreover, COM+ provides MTS
(Microsoft Transaction Server), a container for COM+ transactional objects. Table 10
summarizes the comparison of CORBA, J2EE and COM+, regarding transaction
transparency.

A COMPARISON FRAMEWORK FOR MIDDLEWARE INFRASTRUCTURES

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

Overall Assessment

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

Ope
nn

es
s

Sca
labil

ity

Pred
ict

ab
ility

Acc
es

s T
ran

s

Lo
ca

tio
n T

ran
s

Con
cu

rre
nc

y T
ran

s

Fail
ure

 Tran
s

Migr
atio

n T
ran

s

Pers
ist

en
ce

 Tr
an

s

Trans
ac

tio
n Tr

an
s

po
in

ts
 in

 fa
vo

r

CORBA J2EE COM+

Overall

0

5

10

15

20

25

CORBA J2EE COM+

po
in

ts
 in

 fa
vo

r

(a) (b)

Figure 2: Overall comparison of CORBA, J2EE and COM+, regarding their standard specifications.

Figure 1 gives an overall view of the results we obtained from the comparison of
CORBA, J2EE, and COM+. More specifically, we counted one point-in-favor of an
infrastructure for every () mark we gave in the detailed comparison (for openness and
access transparency we only counted an overall point-in-favor for each infrastructure
because they all have common features regarding those properties). Figure 1(a) gives the
points-in-favor per-requirement, while Figure 1(b) gives the total number of points-in-
favor for each infrastructure. From both figures, we can come into conclusion that
CORBA, in general, provides more facilities for satisfying typical requirements imposed
by distributed applications. To be fair with the other two infrastructures we have to
highlight that this conclusion is based on the comparison of the standard CORBA
specification with the specifications of J2EE and COM+. However, not all
implementations of the CORBA standard specification provide all of the CORBA
services and facilities we identified during the detailed comparison.

Based on the previous remark, we examined a number of available implementations
of CORBA (omniORB, ORBacus, ORBIX, TAO, MICO), regarding the availability of
the CORBA services and facilities we identified in the detailed comparison. Then, we
calculated the points-in-favor for each implementation and compared them with those for
J2EE and COM+. Figure 2 gives the results from this comparison. With the exception of
omniORB, all CORBA implementations appear better than COM+. However, they are all
quite close to J2EE.

THE COMPARISON FRAMEWORK IN ACTION

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 121

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

Ope
nn

es
s

Sca
lab

ility

Pred
ict

ab
ilit

y

Acc
es

s T
ran

s

Lo
ca

tio
n T

ra
ns

Con
cu

rre
nc

y T
ran

s

Fa
ilu

re
 Tr

an
s

Migr
ati

on
 T

ra
ns

Pers
ist

en
ce

 Tr
an

s

Tr
an

sa
cti

on
 Tr

an
s

po
in

ts
 in

 fa
vo

r

CORBA omniORB ORBacus ORBIX TAO MICO J2EE COM+

Overall

0
5

10
15
20
25

CORBA

omniO
RB

ORBacus ORBIX TAO
MICO

J2EE
COM+

po
in

ts
 in

 fa
vo

r

(a) (b)

Figure 3: Overall comparison of available CORBA implementations, J2EE and COM+.

5 CONCLUSION

The main contribution of this paper is twofold: (1) it proposes a comparison framework
for middleware infrastructures and (2) presents a detailed comparison of three widely
used infrastructures in both industry and academia: CORBA, J2EE and COM+. The
comparison framework we propose constitutes a foundation for further research we
perform in the field of MDA. More specifically, we currently work towards a developer-
oriented environment for MDA development, which relies in the approach proposed in
[Issarny et al.02]. The core element of our environment is a UML-based representation
for the specification of infrastructure independent models of distributed applications. The
comparison framework presented here serves for specifying the applications’
technological requirements and selecting a middleware infrastructure that provides
functionality, which can be used for satisfying those requirements. Our environment
further comprises automated procedures for: (1) refining infrastructure independent
models into infrastructure specific ones and (2) generating code from infrastructure
specific models.

REFERENCES

[COM+v1.5] COM+ v1.5. Microsoft Corporation. http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/cossdk/htm/pgcontexts_1p0z.asp

[COM+Events] COM+ Event Service. Microsoft Corporation.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/htm/
pgservices_events_5x4j.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/htm/pgcontexts_1p0z.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/htm/pgcontexts_1p0z.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/htm/pgservices_events_5x4j.asp

A COMPARISON FRAMEWORK FOR MIDDLEWARE INFRASTRUCTURES

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5

[CORBAv3.0.2] Common Object Request Broker Architecture (CORBA/IIOP) v.3.0.2.
OMG Document, formal/2002-12-06 http://www.omg.org/technology/
documents/formal/corba_iiop.htm

[CORBABench] CORBA Comparison Project Web site. Distributed systems Group,
Charles University. http://nenya.ms.mff.cuni.cz/projects.phtml?p=cbench&q=3

[CORBA-CCM] CORBA Component Model (CCM). OMG Document formal/2002-06
65. http://www.omg.org/technology/documents/formal/components.htm

[CORBA-RT] Real-Time CORBA v1.1. OMG Document, formal/2002-08-02.
http://www.omg.org/technology/documents/formal/real-time_CORBA.htm

[CORBAServices] CORBAServices Specification. OMG Document.
http://www.omg.org/technology/documents/corbaservices_spec_catalog.htm

[DCE-RPC] DCE 1.1: Remote Procedure Call. Open Group, 1997.
http://www.opengroup.org/onlinepubs/009629399/toc.htm

[DCOM] DCOM Technical Overview. Microsoft Corporation.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cossdk/htm/pgservices_events_5x4j.asp

[EJBBench] EJB Benchmarking Web site. Distributed Systems Group, Charles
University, Prague. http://nenya.ms.mff.cuni.cz/projects.phtml?p=ejbc&q=4

[Emmerich00] W. Emmerich. Software Engineering and Middleware: A Roadmap. The
Future of Software Engineering, ed. A. Finkenstein, pp.117-129 2000.

[Issarny et al.02] V. Issarny, C. Kloukinas and A. Zarras. “Systematic Aid for
Developing Middleware Architectures”. Communications of the ACM (CACM), vol. 45,
no. 6, pages 53-58, 2002.

[J2EEv1.4] The Java 2 Enterprise Edition (J2EE) Specification v.1.4. Sun Microsystems.
http://java.sun.com/j2ee/

[JavaRMI] Java Remote Method Invocation (RMI). Sun Microsystems.
http://java.sun.com/j2se/1.4.1/docs/guide/rmi/spec/rmiTOC.html

[Henning et al.98] M. Henning and S. Vinosky. Advanced CORBA Programming with
C++. Addison Wesley, 1998.

[Gopalan98] S. R. Gopalan. A Detailed Comparison of CORBA, DCOM, and Java/RMI.
OMG whitepaper, 1998. http://my.execpc.com/~gopalan/misc/compare.html

[Laprie85] J-C. Laprie. “Dependable Computing and Fault Tolerance : Concepts and
Terminology”. In Proceedings of the 15th International Symposium on Fault-Tolerant
Computing (FTCS-15), pp. 2-11, 1985.

[Lo et al.98] S. Lo and S. Pope. “The Implementation of a High Performance ORB over
Multiple Network Transports”. AT&T Labs Cambridge, Technical Report 98.5, 1998.
http://www.uk.research.att.com/abstracts.html

http://www.omg.org/technology/documents/formal/corba_iiop.htm
http://nenya.ms.mff.cuni.cz/projects.phtml?p=cbench&q=3
http://www.omg.org/technology/documents/formal/components.htm
http://www.omg.org/technology/documents/formal/real-time_CORBA.htm
http://www.omg.org/technology/documents/corbaservices_spec_catalog.htm
http://www.opengroup.org/onlinepubs/009629399/toc.htm
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/htm/pgservices_events_5x4j.asp
http://nenya.ms.mff.cuni.cz/projects.phtml?p=ejbc&q=4
http://java.sun.com/j2ee/
http://java.sun.com/j2se/1.4.1/docs/guide/rmi/spec/rmiTOC.html
http://my.execpc.com/~gopalan/misc/compare.html
http://www.uk.research.att.com/abstracts.html

CONCLUSION

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 123

[MDA] OMG: Model Driven Architecture. OMG Document ormc/2001-07-01, 2001.
http://www. omg.org/mda.

[ORBIX] ORBIX v.3 Web site. http://www.iona.com/products/orbix3_home.htm

[RMODP] ISO/IEC. Open Distributed Processing Reference Model (RM-ODP) Part 3:
Architecture, 1995.

[Roman et al.99] E. Roman and R. Oberg. « The Technical Benefits of EJB and J2EE
Technologies over COM+ and Windows DNA”. The MIDDLEWARE Company, 1999.
http://www.middleware-company.com

[Plasil et al.98] F. Plasil and M. Stal. “An Architectural View of Distributed Objects and
Components in CORBA, Java RMI and COM/DCOM”. Software Concepts and Tools,
vol. 19 no.1, 1998.

[Puder et al.00] A. Puder and K. Romer. MICO and Open Source CORBA
Implementations. Morgan Kaufmann Editions, 2000.

[Schmidt et al.98] D. C. Schmidt, D. L. Levine and S. Mungee. „The Design of the TAO
Real-Time Object Request Bromer”. Computer Communications, vol. 21 no. 4, pp. 294-
324, 1998.

About the author
Apostolos Zarras got his Ph.D. in the year 2000 from the University of Rennes I, France.
From 2000 to 2002, he worked as a research engineer at INRIA-Rocquencourt, France.
Currently he is a visiting assistant professor at the University of Ioannina, Greece. His
current research interests include model driven architecture development, adaptive
middleware, and quality analysis of software systems. He can be reached at
zarras@cs.uoi.gr.

http://www. omg.org/mda
http://www.iona.com/products/orbix3_home.htm
http://www.middleware-company.com
mailto:zarras@cs.uoi.gr

