
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 7, July-August 2004

Cite this article as follows: Gonzalo Génova, Juan Llorens and José Miguel Fuentes: “UML
Associations: A Structural and Contextual View”, in Journal of Object Technology, vol. 3, no. 7,
July-August 2004, pp. 83-100. http://www.jot.fm/issues/issue_2004_07/article1

UML Associations: A Structural and
Contextual View

Gonzalo Génova, Juan Llorens and José M. Fuentes
Computer Science Department, Carlos III University of Madrid

Abstract
The different kinds of communication links that can exist in an interaction among objects
pose the question of whether every link is or is not an instance of an association, and
whether an association must exist whenever there is a communication path between
objects. The distinction between static and dynamic associations is not adequate to
solve this problem, since in object-orientation every association has static and dynamic
features, so that these two aspects do not serve to define two disjoint subtypes of
association. Instead, we propose the distinction between structural and contextual
associations, which, with an adequate redefinition of association and link stereotypes,
helps to maintain the principle that every link is an instance of an association, avoiding
the baseless link problem.

1 INTRODUCTION

One of the biggest difficulties in modeling with UML stems from the attempt to abstract
with one construct, the association, both the static structure of the system and the
structure of interactions between objects, an idea inherited from Rumbaugh’s Object-
Relation Model [Rumbaugh 87]. Unfortunately, UML does not solve the conflict between
two different notions of association that blend relationships between data structures with
client-server relationships equivalent to inter-module procedure calls, thus confusing the
data modeling and functional dependency perspectives [Simons 99]. In particular, the role
of associations as communication infrastructure between objets is not clearly explained in
the UML official documentation, since apparently there can be communication links that
do not belong to any existing association, against the principle that every link is an
instance of an association. Some authors have tried to distinguish between two disjoint
subtypes of associations to solve this problem, “static associations” and “dynamic
associations” [Stevens 02], but we consider that this distinction is not adequate, since in
object orientation every association has both static and dynamic features.

The remainder of this paper is organized as follows. Section 2 exposes the
contradictions of the UML Standard in dealing with communication links. Section 3

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_07/article1

UML ASSOCIATIONS: A STRUCTURAL AND CONTEXTUAL VIEW

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

recalls and criticizes Stevens’s distinction between static and dynamic associations.
Section 4 contains the fundamentals for the distinction between structural and contextual
associations, and its relationship to association and link stereotypes. Section 5
summarizes our proposal, and Section 6 applies these concepts to the representation of
associations in a practical way. Finally, Section 7 contains the conclusions of this paper.
We quote, by section and page numbers as usual, current version 1.5 of the UML
Standard [UML], since version 2.0 is not yet approved and available to the general
public. Thus, “[UML 2-110]” means “[UML] sect. 2, p. 110”.

2 IS EVERY COMMUNICATION LINK AN INSTANCE OF AN
ASSOCIATION?

Consider the following example. In Figure 1(a) there is a class diagram with a one-way
association from class Owner to class Bank, and another one-way association from class
Owner to class Account. In Figure 1(b) there is a collaboration diagram where an object
of class Owner sends a message to an object of class Bank containing an object of class
Account as argument, and the Bank object uses this Account object to send it a
message: the owner object communicates its bank to close its account.

Owner Bank

closeAccount(anAccount: Account)

Account

close()

myBank

myAccount

(a)

o : Owner myBank : Bank

myAccount : Account

<<parameter>>
1.1: close()

1: closeAccount(myAccount)

(b)

Figure 1. (a) Class diagram with classes Owner, Bank and Account, and two associations among them.
(b) Collaboration diagram using a stereotyped «parameter» link without any existing association

Bank→Account in the class diagram

In UML this interaction is usually modeled using a stereotyped «parameter» link from
the Bank object to the Account object. Is this a true link, or is it only a graphical fiction?
Does this link require an association between the Bank and Account classes? If not,

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 85

does this mean that the link is not an instance of any association? This question is far
from having being clarified, as recent research demonstrates [Stevens 02]1.

The Standard is rather contradictory in this respect, and gives two different solutions
to this problem:

• Sometimes a message does not use a communication link. After stating that a
message instance (a.k.a. stimulus) “uses a link between the sender and the
receiver for communication”, the Standard acknowledges some special situations
in which this communication link may be missing: “if the receiver is an argument
inside the current activation, a local or global variable, or if the stimulus is sent to
the sender instance itself” [UML 2-110]. Therefore, the link
myBank→myAccount in Figure 1(b) would be a graphical fiction, and no
association is required between Bank and Account.

• Sometimes a link is not an instance of an association. The Standard defines five
standard stereotypes for LinkEnd («global», «local», «parameter», and
«self», in addition to the redundant «association») to handle those same
special situations [UML 2-100], where we find communication without
associations. Therefore, the link myBank→myAccount in Figure 1(b) would be a
true link, yet a link that is not derived from the existence of an association
between Bank and Account, but from “other circumstances”. Again, no
association is required between Bank and Account.

Classifier AssociationEnd Association
1..1

participant 0..*

association 2..*

connection 1..1

Instance

1..*

classifier

0..*

LinkEnd

1..1

associationEnd

0..*

1..1
instance 0..*

linkEnd
Link

1..1

association

0..*

2..*

connection 1..1

Stimulus

0..1

communicationLink

0..*

1..1
receiver

0..*

1..1

sender

0..*

Figure 2. Metamodel of communication links extracted from Figures 2-6, 2-16 and 2-17 in the Standard

The first solution is consistent with the statement that a link is an instance of an
association, represented in the metamodel by a mandatory Association that specifies

1 See also the contributions to The Precise UML Group mailing list [pUML] during the years 2000-2001
under the subjects “Links & messages”, “Link as instance, tuple, path”, “Sets and bags”, and
“Dependencies and associations”, where the authors played an active role. Other similar problems
involving compound navigation expressions and stereotyped «self» links are described in a recent paper
by the authors [Génova 03a].

UML ASSOCIATIONS: A STRUCTURAL AND CONTEXTUAL VIEW

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

the Link (multiplicity 1..1 on the role Link.association, see Figure 2), and it is also
consistent with the statement that the link is optionally used by a message for
communication (multiplicity 0..1 on the role Stimulus.communicationLink):
sometimes the message uses a link (which is an instance of an association), and
sometimes the message does not use any link (so no association involved).

The second solution breaks the principle that every link is an instance of an
association, and it contradicts the first solution: if the communication link is optional,
what is the sense of defining these special stereotyped links? But it is consistent with the
common representation of interactions in collaboration diagrams, where a message
always uses a link (a rule that is broken in the first solution)2.

None of these two solutions is satisfactory. If links are optional, what is the
representation of a message that is sent through a missing link in a collaboration
diagram? The idea of a fictitious link does not seem a good one. In a previous paper we
rejected optional communication links and supported the idea of links that are not
instances of associations [Génova 03a]. However, we are not satisfied with this
conclusion, since a link, like an object, is a “concrete thing” (an instance); thus, a link,
like an object, requires a “type” that specifies its features; the type of an object is a class,
and the type of a link should be an association that specifies, among other features, the
classes of the linked objects, the navigability and changeability of the links, etc. If a link
had no type, we would not be able to describe which its properties are or how it is
supposed to behave3. Therefore, we will try to find a conceptually better solution that
avoids the problem of “baseless links”.

3 STATIC AND DYNAMIC ASSOCIATIONS

UML defines an association as a “semantic relationship” between classifiers [UML 2-19].
But what kind of semantic relationship? What does an association mean? How do we
identify “something” in the problem domain or in the solution domain that should be
modeled as an association? For example, which associations should exist in Figure 1(a)?
Should we add an association from Bank to Account to represent the existing
communication relationship?

Stevens has proposed the interesting distinction between static and dynamic
associations [Stevens 02], which would lead to define two subtypes of a generic
association concept in the metamodel:

• A static association expresses a structural relationship between classes (more
generally, between classifiers), typically implemented by means of mutual
references, that is, the code of each class will include at least an attribute holding

2 This problem is hidden in sequence diagrams, which do not show links explicitly.
3 There are some object-oriented untyped programming languages, such as Eiffel or Smalltalk, and even
though it is completely legitimate the use of UML to model systems implemented in these languages, UML
itself is strongly typed, likewise languages such as Java.

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 87

references to objects of the other class (the number of allowed references will
depend on the multiplicity).

• A dynamic association expresses a behavioral relationship between classes,
which typically implies that there will be in the implementation some kind of
message interchange between objects belonging to the associated classes (thus, we
can call this a communication relationship, too).

This distinction would be reflected in the metamodel by two new metaclasses,
StaticAssociation and DynamicAssociation, which would be subtypes of the
Association metaclass, which would then be an abstract metaclass. Moreover, Stevens
proposes the use of two stereotypes, «static» and «dynamic» (more properly
speaking, “keywords”), in order to distinguish them conveniently in a diagram. In the
example in Figure 1(a), the association between Owner and Account would be
«static», the association between Owner and Bank would be both «static» and
«dynamic» (or simply «static»), and there should be a «dynamic» association
between Bank and Account. However, this classification of associations requires some
remarks:

Static association

• An association being static does not mean that its links are fixed and do not
change over the system’s life. In a typical example, such as the works-for
association between Person and Company, we can expect frequent changes of
links between persons and companies. A static association does not mean the
“steadiness” of links, but that each class holds within its own static structure a
reference towards the other class, regardless of the messages received. Certainly,
in a real world’s problem there may be associations with links that do not change
(safe for creation at the beginning and destruction at the end), but this feature is
expressed in UML by the changeability property of an association end [UML 2-
22].

• A static association exists independently of communication, but it permits
message interchanges too, as we have seen in the example in Figure 1. However,
static associations are insufficient to model communication links, since there exist
links that are not instances of static associations.

• The existence of a static association can be deduced from the implementation,
without need of executing the code to check whether it exists or not. Nevertheless,
forward and reverse engineering of static associations is not at all trivial [Génova
03b].

Dynamic association

• The relationship between a dynamic association and the implementation is much
more obscure. We cannot tie the existence of a dynamic association to an actual
message interchange. First, determining the existence of a dynamic association
would require the observation of the code during execution in every possible case,

UML ASSOCIATIONS: A STRUCTURAL AND CONTEXTUAL VIEW

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

taking into account the interaction with the environment, too. This would involve
lots of technical difficulties, and would deprive the notion of dynamic association
of any practical usefulness, since we are interested in determining the existence of
such an association during the analysis and design phases (forward engineering);
checking it after examination of the executing code (reverse engineering) is not
enough. Second, in some cases the check would be an undecidable question by
principle: that is, in general we can’t tell, by inspecting the code, whether two
instances belonging to two certain classes will exchange a message, since this is a
problem of similar difficulty to Turing’s Halting Machine4. Therefore, we must
content ourselves with defining that there exists a dynamic association when there
is a potential message exchange.

• A message exchange requires that the sender has knowledge of the receiver, that
is, the sender will have some kind of reference towards the receiver. Nevertheless,
we don’t need to store this reference inside an attribute of the sender’s class (that
is, we don’t need the reference to derive from a static association); instead, the
receiver can be an argument or a return value of a previous message, or an object
created in the course of responding a message. In any case, the implementation of
a dynamic association requires some kind of reference as well, that is, a potential
message exchange requires the existence of a certain structure in the sender’s
class.

In summary, static associations are not enough to model communication links, therefore
we need the concept of dynamic associations, or something similar. But we cannot
distinguish between static and dynamic associations by saying that “static associations are
implemented as references, whereas dynamic associations are implemented as message
interchanges”. These definitions would not serve to distinguish two disjoint subtypes of
associations: as we have seen, static associations permit message interchanges, and
dynamic associations require the use of references5.

4 THE CONTEXT OF ASSOCIATIONS

If static/dynamic is not an adequate classification of associations, how can we distinguish
“normal” associations from other kinds of associations that seem relevant in modeling?
UML has five predefined stereotypes for links ends (in the metamodel, LinkEnd
metaclass) which are supposed to solve the dynamic associations issue, that is, how an

4 Consider the families of classes A1, A2, ... An and B1, B2, ... Bn, where the instances of the Ai class simulate
the behavior of the i-th Turing Machine, and they send a message to an instance of Bi on completion of the
simulation. Since it is undecidable, in general, whether the i-th Turing Machine will halt [Turing 36], it is
also undecidable whether the instance of Ai will send a message to the instance of Bi. Therefore, if we tie
the existence of a dynamic association to an actual message interchange, then we cannot decide whether
there exists such a dynamic association between Ai and Bi. This argument has been adapted from a similar
one by Stevens [Stevens 02].
5 Moreover, according to Stevens, we could even have associations that are static on one end and dynamic
on the other end.

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 89

instance can communicate with another instance without any existing (static) association
between the respective classes. The five stereotypes specify different ways in which an
instance is “visible”6 [UML 2-100]:

• «association»: the instance is visible via association.
• «global»: the instance is visible because it is in a global scope relative to the

link.
• «local»: the instance is visible because it is in a local scope relative to the link.
• «parameter»: the instance is visible because it is a parameter relative to the

link.
• «self»: the instance is visible because it is the dispatcher of a request.

For association ends (in the metamodel, AssociationEnd metaclass), we have the same
five stereotypes7, although their definitions are slightly different [UML 2-24]. It is worth
to copy them here and compare with the preceding ones, which are rather obscure:

• «association»: specifies a real association; default and redundant option,
although it can be used for emphasis.

• «global»: the target is a global value known to all elements, rather than an
actual association.

• «local»: the relationship represents a local variable inside the procedure, rather
than an actual association.

• «parameter»: the relationship represents a procedure parameter, rather than an
actual association.

• «self»: the relationship represents a reference to the object that owns the
operation or action, rather than an actual association.

The intention of the Standard in defining these five stereotypes is not very clear. On the
one hand, it seems that we should have a coherence rule, in the sense that a link end
having a certain stereotype implies the same stereotype for its corresponding association
end; but the Standard does not impose this restriction. On the other hand, the four
stereotypes «global», «local», «parameter», and «self» are apparently intended
to give a kind of access that is not properly derived from an association, but from other
circumstances, supporting the statement that there are communication links which are not
instances of “normal” associations (see the wording of the first stereotype, as opposed to
the others: “visible via association”, “real association”; this implies that the other four
stereotypes specify a kind of access that is not via a real association); that is, a
stereotyped link end would correspond to no association end, not even to one having the
same stereotype. But this would contradict the suggested coherence rule, and make the

6 Note how the Standard is imprecise in using the concept of visibility in these definitions. Instead of
“visible”, it should say “accessible”.
7 In fact, “link stereotypes” in UML 1.4 have been replaced in UML 1.5 by “link constraints”, while
“association stereotypes” have been kept as they were. This merely terminological change is not significant
for the issue. In the UML 2.0 draft version [UML2] association and link stereotypes have been reinterpreted
in the new Connector metaclass (p. 163), but the fundamental problem of “baseless links” remains
unsolved, since the type of the connector must be inferred according to a rule that is far from being simple.

UML ASSOCIATIONS: A STRUCTURAL AND CONTEXTUAL VIEW

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

stereotypes unnecessary for association ends (that is, they would be required for link ends
only)8.

Maybe this paradox is due to a careless writing of the Standard, rather than to a true
inconsistency. We may suppose that the intention was to state that every link is an
instance of an association, but there are “special” links that are not instances of normal
associations, but special implicit associations, which do exist without need of being
declared in the model, although the modeler can declare them in favor of clearness.

The use of association and link stereotypes can be related to a principle in Software
Engineering which is most convenient to follow in order to understand and minimize the
dependencies among different design elements, known as the Law of Demeter9. It can be
summarized as follows: “Don’t talk to strangers”. In other words, when objects of two
classes have the potential to exchange a message (there exists a link between them), the
code of the sender’s class should demonstrate this clearly (the link conforms to a declared
association between these classes). That is, every communication link is an instance of an
association (static or dynamic), and every association must be declared in the code. The
Law of Demeter establishes that, in response to a message m(a

1
, a

2
, ... a

n
), an object o

can send messages only to the following objects (we add the equivalence with the UML
stereotypes):

• Other objects directly linked to o, that is, referenced by its attributes
(«association»).

• The o object itself («self»).
• A global object known to all other objects («global»)10.
• Any object received as argument in message m, that is, the a

1
, a

2
, ... a

n
 which are

objects rather than data values («parameter»).
• Objects created and destroyed by o in the course of its response to m («local»)11.

The default «association» stereotype is more or less equivalent to an explicit static
association, according to Stevens’s terminology. The «self» and «global»
stereotypes, on the other side, would be implicit static associations (they exist regardless
of message exchanges, or behavior). Finally, the «parameter» and «local»

8 We have already mentioned in Section 2 another contradiction in the Standard, when it states that the
communication link is not necessary in certain special situations (the same ones in which these stereotypes
are defined) [UML 2-110].
9 After the greek goddess Demeter. This law is a good-style rule in object-oriented systems design,
discovered in 1987 by Karl Lieberherr and Ian Holland [Lieberherr 89], who worked in the Demeter
Research Group (Northeastern University, Boston, USA). The law was later popularized in books by
Booch, Budd, Coleman, Larman, Page-Jones, Rumbaugh and others.
10 Stevens omits mentioning global objects in her exposition of the Law of Demeter [Stevens 02], but
Lieberherr and Holland include them “for pragmatic reasons”. This “global value that is known to all
elements” [UML 2-24] would be equivalent to a public class with a single instance, in application of the
Singleton design pattern [Gamma 94], so that it can be referenced without need of any instantiated link.
Stevens does not relate the Law of Demeter with the stereotypes, either.
11 Do not confuse this last case with the creation of an object which will continue to exist, linked to o, after
completion of the operation execution; the link with this object corresponds to the «association»
stereotype.

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 91

stereotypes, would map into implicit dynamic associations (they are directly related to
operation invocations, or messages). Nevertheless, as we have noted before, we are not
satisfied with Stevens’s denominations, “static association” and “dynamic association”,
since every association has static and dynamic properties (that is, every association is
involved in the structure and behavior of the system), therefore the static and dynamic
aspects are not adequate criteria to classify associations12. Besides, these terms may hide
the fact that every link is “dynamic”, in the sense that it is created and destroyed
dynamically (“static” links do change).

Instead, we propose this classification: structural associations («association»
stereotype) and contextual associations («self», «global», «parameter» and
«local» stereotypes), that is, associations that are valid depending on context13. We
recover this way a term coined by Rumbaugh to designate certain usage dependencies
between classes [Rumbaugh 98]. Table 1 summarizes both classifications.

Stereotype Stevens
(behavior)

Génova, Llorens & Fuentes
(context)

«association» Structural association
«self»

«global»

Static association

«parameter»

«local»

Dynamic
association

Contextual association

Table 1. Two possible classifications for associations

Finally, we must face the problem of links originated in navigation expressions
combining several (structural or contextual) associations. According to Stevens, a link of
this kind would be an instance of a derived association, to be considered as dynamic (or
contextual, in our classification), since it is not declared in the structure of the participant
classes. But note that the use of derived associations violates the Law of Demeter stated
above, since the sender object has no direct knowledge of the receiver object (they are not
connected by a “physical” link). Particularly, and in contrast with the other kinds of
contextual associations, in a derived association the sender object’s class does not know
the receiver object’s class14, that is, it does not know its interface, what kind of messages
it can receive. If the code used derived associations to send messages, it would introduce

12 An alternative terminology with a similar sense could be persistent associations (the links persist
between two different operation invocations of the class) against transient associations (the links exist only
within an operation invocation). It expresses the same concept, but the terminology is even less adequate
because it stresses excessively the temporal duration of the link, which can be brief or long in both cases.
13 Another important difference between structural and contextual associations: apparently, the arity of
contextual associations should be always 2, that is, only structural associations could be n-ary with n>2.
The use of n-ary associations for communication is a rather complex issue that we must leave for later
research.
14 In fact, the “type”, not the “class”. We can’t analyze here the confusion existing in UML between types
and classes [Simons 02].

UML ASSOCIATIONS: A STRUCTURAL AND CONTEXTUAL VIEW

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

obscure dependencies between classes, which indicates an unsafe design. This does not
preclude completely the use of derived associations (that is, compound navigation
expressions) for communication: instead of sending the message directly to the object (or
set of objects) selected by the navigation expression, you can first store the reference to
the target object in a local variable (so you have to specify its class and the dependency is
explicit), and then send the message to the object referenced by the local variable, so that
it turns to be the case of a «local» stereotype. We will see an example in Section 6.

5 A PROPOSAL FOR ASSOCIATION STEREOTYPES IN THE
UML STANDARD

In this Section we briefly propose the changes required to improve the semantics and
notation of association and link stereotypes, applying the ideas developed in the
preceding Section, especially the distinction between structural and contextual
associations, and the Law of Demeter.

This proposal implies a correction in the multiplicity of the
Stimulus.communicationLink role [UML 2-97] (change from 0..1 to 1..1), a new
definition of the stereotypes for AssociationEnd and LinkEnd metaclasses [UML 2-
24, 2-100], and a new explanation of how messages use links for communication [UML
2-110].

Associations

• Two types of association can be distinguished15. A structural association specifies
a relationship between classifiers that is defined in the static structure of the
associated classifiers themselves. A contextual association specifies a relationship
between classifiers that is valid within certain contexts of the associated classifiers
only.

• Every association must be declared in a well-formed model, in order to specify its
features and to avoid interactions that might be inconsistent with the rest of the
model.

• It is not necessary that every association appears in a class diagram. It is enough
that the association is represented in the underlying model.

• The different kinds of associations are distinguished by the stereotypes applied16.
• A derived association cannot have direct instances; in order to access objects

through compound navigation expressions, the navigation expression’s value must
be assigned before to a local variable.

15 This distinction is mainly conceptual. It might or might not be reflected in the metamodel by means of
two different metaclasses.
16 If the two metaclasses were added to the metamodel, then we would speak of keywords instead of
stereotypes.

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 93

Links

• In a well-formed model, every link is an instance of an association.
• During the initial phases of a model’s development, it is legal to represent links

without specifying its association.
• A link bears the same stereotype as its association.
• Every stimulus or message instance requires a communication link.

Stereotypes

Five predefined stereotypes are proposed for the Association and Link metaclasses,
the first one for structural associations, and the remaining ones for contextual
associations. Note that these stereotypes are not any more applied to association and link
ends, represented in the metamodel by the AssociationEnd and LinkEnd metaclasses,
but to associations and links themselves. We propose a new keyword for the first
stereotype, more adequate in our opinion than the current «association»17.

• «structural»: applied to an association that specifies structural links; default
and redundant option, but it can be used for emphasis.

• «self»: applied to a contextual reflexive association, implicit in every classifier,
that specifies the implicit link that every instance has towards itself; this
association has one-way navigability and 1..1 multiplicity on the target end, which
bears the selfTarget rolename.

• «global»: applied to the contextual association that specifies the link between
an instance and a global object known within the context of the instance; the
association has one-way navigability from the instance’s classifier towards the
global object’s classifier.

• «parameter»: applied to the contextual associations that specify the links
between an instance and the parameters of its behavioral features; these links exist
only within the context of the execution of those behavioral features, in response
to messages received by the instance; the association has one-way navigability
from the instance’s classifier towards the parameter’s classifier, and the rolename
on the target end is the parameter’s name.

• «local»: applied to the contextual associations that specify the links between an
instance and the instances locally created by its behavioral features as local
variables; these links exist only within the context of the execution of those
behavioral features, in response to messages received by the instance; the
association has ordinarily one-way navigability from the instance’s classifier
towards the local variable’s classifier, and the rolename on the target end is the
local variable’s name.

17 On the other side, it would be impossible to maintain the «association» keyword in this proposal,
since a stereotype cannot have the same name as the metaclass it applies to [UML 2-81]. In the current
version of UML, even though the keyword is inadequate and confusing, this rule is not formally violated,
because the stereotype is not applied to Association but to AssociationEnd.

UML ASSOCIATIONS: A STRUCTURAL AND CONTEXTUAL VIEW

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

6 REPRESENTATION OF CONTEXTUAL ASSOCIATIONS

From this point on, we are going to examine the representation of contextual associations,
in particular, how to represent these associations and their links in class diagrams, object
diagrams, and collaboration diagrams.

Class and object diagrams

You will probably omit contextual associations in a class diagram representing the global
structure of the system or subsystem, and show only structural associations, to avoid
excessive clutter. Nonetheless, it is also possible, and sometimes convenient, to represent
a more particular context in a class diagram, using the stereotypes defined in the previous
Section to make contextual associations explicit. Rumbaugh proposes the representation
of contextual associations in a class diagram as usage dependencies [Rumbaugh 98], but
this presents some disadvantages. First, as we have shown in other places [Génova 01],
any association induces a dependency, so that it is not clear why we should represent
structural associations as proper associations, whereas contextual associations as
dependencies. Second, if a contextual association is represented as a dependency, we hide
its “association” character, with all its implications and features: instantiation,
multiplicity, changeability, navigability, visibility, etc. Third, if the goal is not to
overload the diagram, using dependencies instead of associations does not help a lot.

A good method to make explicit all the associations that affect a certain class may be
the representation of a contextual class diagram for each class operation, in addition to
the global structural class diagram where the class is defined. In Figure 3 we can see a
structural class diagram of a banking system, showing only the structural associations
connected to the Account class. This class defines the number and balance attributes
(of AccountNumber and Currency types, considered as basic data types), and the
issueTransfer operation, from the signature of which we can infer a contextual
association with the Account class itself, but no other contextual associations.

Account

- number : AccountNumber
- balance : Currency

+ issueTransfer(amount : Currency, target : Account)

Bank

Entry

- date : Date

Client

- name

0..*1..1

1..1

0..*

0..*

1..1

owner

Figure 3. Structural class diagram of a bank account

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 95

SystemClock Entry

Client Client

«structural»

«parameter»

«structural»«global»

«local»

Account

Account

«self»

0..*1..1

owner

1..1target

1..1 0..*

1..1
targetOwner

1..1
1..1

1..1
/ targetOwner

Figure 4. Contextual class diagram of the issueTransfer operation

The issueTransfer operation stores the relevant data of the transfer (current date,
target account number, target account owner’s name and transferred amount) as a new
entry into the account’s collection of entries, updates the account’s balance, and notifies
the target account so that it can update its data. The contextual class diagram for this
operation is shown in Figure 4, where all contextual associations are made explicit. The
structural association towards Entry is shown again, since it is relevant for the context of
the operation. Besides, the following contextual associations are represented:

• A «self» association with the account itself.
• A «global» association with SystemClock, which will provide the date and

time to be stored in the entry corresponding to the issued transfer.
• A «parameter» association with the target argument, of Account class, the

rolename of which is the name of the argument.
• The class representing the target account shows a structural association with its

owner, of Client class, so that there exists a derived contextual association that
is equivalent to the target.owner compound navigation expression18.

• In order to follow the Law of Demeter, this derived association is not directly
used, but its value is read and stored in the targetOwner local variable, from
which a «local» association with Client stems.

Figure 5 represents a different style of structural class diagram, in which, following
Rumbaugh’s suggestion, the contextual associations that are not structural associations at
the same time are expressed as usage dependencies. Therefore, the dependencies towards
Account, Entry and Client are omitted. In our opinion, our proposal is much more
expressive and useful to understand the relationships of Account with other classes.

18 The rolename is preceded by a slash (/) to indicate that is is a derived association [UML 3-93].

UML ASSOCIATIONS: A STRUCTURAL AND CONTEXTUAL VIEW

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

«use»Bank Account

0..*1..1

Client

0..*

1..1
owner

Entry

1..1

0..*

SystemClock

Figure 5. Structural class diagram of a bank account, with the contextual associations of the
issueTransfer operation expressed as usage dependencies

An object diagram represents a concrete system situation, some kind of snapshot of the
system state at a certain point of time [UML 3-35], with the involved objects and links.
An object diagram, like a class diagram, is “static”, in the sense that it does not represent
a behavior, but a structure. This does not preclude, however, showing contextual links in
an object diagram. Likewise class diagrams, if you want to represent the global system
state, you will show only structural links, but if you want to represent a particular context,
there is nothing against showing structural and contextual links together, with the
necessary stereotypes to distinguish them. This is another reason in favor of our
“contextual link” instead of Stevens’ “dynamic link” terminology, since showing
dynamic links in a static object diagram would seem contradictory.

Collaboration diagrams

An instance level collaboration diagram is similar to an object diagram with some
messages exchanged in the interaction, therefore the remarks of the preceding paragraph
are pertinent. In particular, even though contextual links have a special importance in a
collaboration diagram, you can represent structural links, too, since these form part of the
collaboration’s context, and they can be used to send messages, or as message arguments
or return values. Figure 6 shows a collaboration diagram corresponding to the
issueTransfer operation, with the concrete objects, links and messages exchanged
during the operation’s execution. The last message in the sequence is sent to the transfer’s
target account, so that it updates its entries reciprocally (the arguments are omitted for
simplicity).

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 97

target : Account

sc : SystemClock a : Account

targetOwner : Client

e : Entry

«local»

«self»

«structural»

«parameter»

«global»

5: decBalance(amount)

1: currentDate:= getDate()
4: add(currentDate, targetAccount,
 ownerName, amount)

6: receiveTransfer()

3: ownerName:= getName()2: targetAccount:= getNumber()

{new}
{new}

{transient}{transient}

Figure 6. Collaboration diagram of the issueTransfer operation

Finally, a specification level collaboration diagram is similar to a class diagram, only it
represents classifier-roles and association-roles (ClassifierRole and
AssociationRole metaclasses) instead of classifiers and associations19, and message
types (Message metaclass) instead of message instances (Stimulus metaclass), so that
it shows interaction patterns instead of concrete interactions. Bearing in mind the
preceding remarks, it is clear that these diagrams can show both structural and contextual
associations, although the latter have special relevance.

CASE Tools

CASE tools could observe all these guidelines. Probably, it is not convenient, in
general, to require in a model that every link that appears in an object or collaboration
diagram must correspond to an association in a class diagram. In our approach, every link
is an instance of an association, but you don’t need to show every association in a
diagram: it is enough that these associations are represented in the underlying model,
even though they do not appear in any diagram. On the other side, the declaration of
«self» associations is superfluous, since every object has by principle a «self» link
with itself, so that every class has a default «self» one-way association with multiplicity
1..1: specifying them would provide no useful information to the model. With respect to
other structural and contextual links, it is convenient that the tool allows (even requires)
the specification of the corresponding structural or contextual associations, likewise a

19 In the metamodel, ClassifierRole is a subtype of Classifier, AssociationRole is a
subtype of Association, and AssociationEndRole is a subtype of AssociationEnd [UML 2-
113]. We are not going to study in detail specification level collaboration diagrams, maybe one of the
obscurest and worst solved points in the Standard [Steimann 00]. Nevertheless, our contextual class
diagrams are somewhat similar to specification level collaboration diagrams, but with a simpler approach
that avoids role metaclasses.

UML ASSOCIATIONS: A STRUCTURAL AND CONTEXTUAL VIEW

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

class is specified for every object20: in this way you avoid, specially for implicit
contextual associations, that the association properties remain unspecified or that the
modeler specifies an interaction that is inconsistent with the rest of the model. In some
contexts it may be relatively easy to suggest which these associations are. For example, if
you are developing a collaboration diagram that represents the execution of a class
operation, the context indicates that the receiver object has, besides the structural
associations of the class, a contextual association towards each operation parameter and
towards each one of its local variables.

7 CONCLUSIONS

In this paper we have examined in detail the issue of communication links,
highligting some misunderstandings and conflicts in the present definition of UML
(version 1.5). We have reaffirmed the principle that every link is an instance of an
association, and our analysis has lead us to the distinction between structural and
contextual associations, and to a new definition and application of association and link
stereotypes. This distinction is not based on the static or dynamic properties of
associations, since every association is (or at least may be) involved in the structure and
behavior of the modeled system. Instead, our classification is based on the context in
which associations are valid. The distinction is graphically expressed in diagrams using
the traditional association and link stereotypes, although they are not applied to
association and link ends any more, but to associations and links themselves. This work is
greatly indebted to a previous proposal by Perdita Stevens, which we have extensively
discussed. We hope it is not too late to consider our ideas for UML 2.0, although the new
Standard is expected to appear soon.

REFERENCES

[Gamma 94] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design
Patterns. Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[Génova 01] Gonzalo Génova. “Semantics of Navigability in UML Associations”.
Technical Report UC3M-TR-CS-2001-06, Computer Science Department,
Carlos III University of Madrid, November 2001, pp. 233-251.

[Génova 03a] Gonzalo Génova, Juan Llorens, Vicente Palacios. “Sending Messages in
UML”. Journal of Object Technology, vol. 2, no. 1, Jan-Feb 2003, pp. 99-115
(http://www.jot.fm/issues/issue_2003_01/article3).

20 In certain development phases of a software project, especially in the initial ones, it is convenient not to
specify an object’s class, and in the same way the specification of a link’s association should not be
mandatory. CASE tools can enable or disable this feature as it is convenient for the modeler.

http://www.jot.fm/issues/issue_2003_01/article3

VOL. 3, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 99

[Génova 03b] Gonzalo Génova, Juan Llorens, Carlos Ruiz del Castillo. “Mapping UML
Associations into Java Code”, in Journal of Object Technology, vol. 2, no. 5,
Sep-Oct 2003, pp. 135-162 (http://www.jot.fm/issues/issue_2003_09/article4).

[Lieberherr 89] Karl J. Lieberherr, Ian M. Holland. “Assuring Good Style for Object-
Oriented Programs”. IEEE Software, vol. 6, no. 5, pp. 38-48 (1989). See also
Dr. Lieberherr’s web page about the Law of Demeter
(http://www.ccs.neu.edu/home/lieber/LoD.html).

[pUML] The Precise UML Group (http://www.cs.york.ac.uk/puml/).

[Rumbaugh 87] James Rumbaugh. “Relations as Semantic Constructs in an Object-
Oriented Language”, in Proceedings of the ACM Conference on Object-
Oriented Programming: Systems, Languages and Applications, pp. 466-481,
Orlando, Florida, 1987.

[Rumbaugh 98] James Rumbaugh. “Depending on Collaborations: Dependencies as
Contextual Associations”. Journal of Object Oriented Programming, vol. 11,
no. 4, pp. 5-9, July-August 1998.

[Simons 99] Anthony J.H. Simons, Ian Graham: “30 Things that Go Wrong in Object
Modelling with UML 1.3”. Chapter 17 in Haim Kilov, Bernhard Rumpe, Ian
Simmonds (eds.): Behavioral Specifications of Businesses and Systems, pp.
237-257. Kluwer Academic Publishers, 1999.

[Simons 02] Anthony J.H. Simons. “The Theory of Classification, Part 1: Perspectives on
Type Compatibility”, in Journal of Object Technology, vol. 1, no. 1, May-Jun
2002, pp. 55-61 (http://www.jot.fm/issues/issue_2002_05/column5).

[Steimann 00] Friedrich Steimann. “A Radical Revision of UML’s Role Concept”. The
Third International Conference on the Unified Modeling Language-
UML'2000, October 2-6, 2000, York, United Kingdom. Published in Lecture
Notes in Computer Science 1939, Springer, 2000, pp. 194-209.

[Stevens 02] Perdita Stevens. “On the Interpretation of Binary Associations in the Unified
Modelling Language”, Journal on Software and Systems Modeling, vol. 1, no.
1, pp. 68-79 (2002). A preliminar version in: Perdita Stevens. “On
Associations in the Unified Modeling Language”. The Fourth International
Conference on the Unified Modeling Language-UML'2001, October 1-5,
2001, Toronto, Ontario, Canada. Published in Lecture Notes in Computer
Science 2185, Springer, 2001, pp. 361-375.

[Turing 36] Alan Turing. “On Computable Numbers, With an Application to the
Entscheidungsproblem”. Proceedings of the London Mathematical Society,
Series 2, Volume 42, 1936. Reprinted in M. David (ed.), The Undecidable,
Raven Press, 1965.

[UML] Object Management Group. Unified Modeling Language Specification, Version
1.5, March 2003 (http://www.omg.org/).

http://www.jot.fm/issues/issue_2003_09/article4
http://www.ccs.neu.edu/home/lieber/LoD.html
(http://www.cs.york.ac.uk/puml/
http://www.jot.fm/issues/issue_2002_05/column5
http://www.omg.org/

UML ASSOCIATIONS: A STRUCTURAL AND CONTEXTUAL VIEW

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 7

[UML2] Object Management Group. Unified Modeling Language Superstructure
Specification, draft Version 2.0, August 2003 (http://www.omg.org/).

About the authors
Gonzalo Génova received in 2003 his PhD in Computer Science at the
Carlos III University of Madrid, Spain, where he is currently a Teaching
Assistant of Software Engineering and Advanced Software Design. His
main research subject is modeling and modeling languages in software
engineering. He can be reached at ggenova@inf.uc3m.es.

Juan Llorens is a Professor of the Computer Science Department at the
Carlos III University of Madrid, Spain, where he is the leader of the IE
(Information Engineering) research group. He is also a Visiting
Professor at Aland’s Institute of Technology - ATL, Mariehamn,
Finland. His current research involves the integration of Knowledge
technologies and Software Engineering techniques towards Software

and Information Reuse. He can be reached at llorens@inf.uc3m.es.

José M. Fuentes obtained in 2003 his MS degree in Computer Science
at the Carlos III University of Madrid. Now, he is a Teaching Assistant
at the Computer Science Department of that University and has led the
development of seCAKE (a new paradigm in CASE tools with reuse
support developed by the dTinf Company). His current research
includes software engineering, CASE tools, and knowledge

management tools and methodologies. He can be reached at jmfuentes@dtinf.es.

http://www.omg.org/
mailto:ggenova@inf.uc3m.es
mailto:llorens@inf.uc3m.es
mailto:jmfuentes@dtinf.es

