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A new acceleration technology for Java embedded virtual machines is presented in
this paper. Based on the selective dynamic compilation technique, this technology
addresses the J2ME/CLDC (Java 2 Micro Edition for Connected Limited Device
Configuration) platform. The primary objective of our work is to come up with an
efficient, lightweight and low-footprint accelerated embedded Java Virtual Machine.
This is achieved by the means of integrating a selective dynamic compiler that we
called E-Bunny into the J2ME/CLDC virtual machine KVM. This paper presents the
motivations, the architecture, the design and the implementation issues of E-Bunny
and how we addressed them. Experimental results on the performance of our modified
KVM demonstrate that we accomplished a speedup of 400% with respect to the
Sun’s latest version of KVM. This experimentation was carried on using standard
J2ME benchmarks.

1 MOTIVATIONS AND BACKGROUND

With the advent and rising popularity of wireless systems, there is a proliferation of
small internet-enabled devices (e.g. PDAs, cell phones, pagers, etc.). In this context,
Java is emerging as a standard execution environment due to its security, portability,
mobility and network support features. In particular, J2ME/CLDC (Java 2 Micro-
Edition for Connected Limited Device Configuration) [13] is now recognized as the
standard Java platform in the domain of mobile wireless devices such as pagers,
handheld PDAs, TV set-top boxes, appliances, etc. It gained big momentum and
is now standardized by the Java Community Process (JCP) and adopted by many
standardization bodies such as 3GPP, MEXE and OMA. Another factor that has
amplified the wide industrial adoption of J2ME/CLDC is the broad range of Java
based solutions that are available in the market. All these factors make Java and
J2ME/CLDC an ideal solution for software development in the arena of embedded
systems.

The heart of J2ME/CLDC technology is Sun’s Kilobyte Virtual Machine (KVM)
[14]. The KVM is a Java virtual machine initially designed with the constraints of
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low-end mobile devices in mind. The performance and the security of the KVM will
be two key factors in the successful deployment of Java technology in wireless and
embedded systems.

The primary intent of our research initiative is to dramatically improve the per-
formance of J2ME/CLDC virtual machines such as the KVM.

Lately, a surge of interest has been expressed in the acceleration of Java vir-
tual machines for embedded systems. Two main approaches have been explored:
hardware and software acceleration.

For hardware acceleration, a plethora of companies (Zucotto Wireless [3], Na-
zomi [4], etc.), had proposed Java processors that execute in silicon Java bytecodes.
Although these hardware accelerators achieve a significant speedup in terms of vir-
tual machine performance, it remains that their use comes with a high price in terms
of power consumption. This energy issue is really damaging especially in the case
of low-end mobile devices. Moreover, the cost (royalties, licensing, etc.) of these
hardware acceleration technologies is an additional obstacle to their adoption by
the industry. These drawbacks of hardware acceleration created an interesting but
challenging niche for software acceleration of embedded Java virtual machines.

For software acceleration, a large spectrum of techniques has been advanced
[1, 5, 6, 7, 12, 16]. These techniques could be classified into 4 categories: general
optimizations, ahead-of-time optimizations, just-in-time compilation and selective
dynamic compilation. General optimizations consist in designing and implementing
more efficient virtual machine components (better garbage collector, fast thread-
ing system, accelerated lookups, etc.). Ahead-of-time optimizations consist in using
extensive static analysis (flow analysis, annotated type analysis, abstract interpre-
tation, etc.) to optimize programs before execution. Just-in-time (JIT) compilation
consists of the dynamic compilation of Java executables (bytecode). This dynamic
compilation is achieved thanks to a compiler that is embedded in the Java virtual
machine. The compiler is in charge of translating bytecode into the native code
of the host platform on which the code is being executed. The selective dynamic
compilation consists in compiling, on the fly, into native code only a selected set of
methods that are performance-critical.

Experience demonstrated that general and ahead-of-time optimizations can lead
to reasonable accelerations. However, they cannot compete with just-in-time and
selective dynamic compilation in reaching big speedups (for instance an acceleration
of more than 200 %) [15].

It is established that just-in-time compilers require a lot of memory to store the
dynamic compiler and the binary code that it generates. The compilation process
also implements sophisticated flow analysis and register allocation algorithms in or-
der to generate optimized and high-quality native code. JIT compilers allow to reach
high speedup but the static analysis that they use induces a significant overhead in
terms of memory and time. This makes JIT compilers much more appropriate for
J2SE (Java 2 Standard Edition) and J2EE (Java 2 Enterprise Edition) platforms.
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Selective dynamic compilation deviates from the JIT compilation by selecting
and compiling, on the fly, only those fragments of the class files that are frequently
executed. These code fragments are generally referred to as hotspots. For instance,
one can select only those methods that are frequently invoked and convert them
to native code. By doing so, significant acceleration of the virtual machine could
be reached since efficient optimizations are concentrated on performance critical
fragments of the program. Another major advantage of this approach is to reduce
memory overhead because only a part of a program is converted to native code. This
makes selective dynamic compilation more adequate for embedded systems than JIT
compilers.

This paper presents an extremely lightweight selective dynamic compiler for em-
bedded Java virtual machine called E-Bunny. It is built on top of KVM. The
contributions are threefold:

• Our system is the first academic work that targets CLDC-based embedded
Java virtual machines optimization by dynamic compilation. The remaining
systems are commercial products such as [15] and [17].

• Our solution, besides the compilation of all kind of bytecodes, covers the differ-
ent issues of the integration of a dynamic compiler into a virtual machine such
as multi-threading support, exception handling, garbage collection, switching
mechanism between the compiler and the interpreter modes, etc.

• Our solution is efficient. It allows to accelerate the performance by a factor of
4 while the memory footprint overhead does not exceed 138 KB.

The remainder of this paper is organized as follows. Section 2 highlights related
work relevant to the dynamic compilation in the embedded context. In section 3,
we present the architecture as well as the key ideas of our system. Design issues
are detailed in section 4. Section 5 presents the results of our implementation and
finally section 6 is a conclusion.

2 RELATED WORK

Dynamic compilation became a popular approach to optimize Java performance.
Almost all standard Java virtual machines [1, 2, 12, 20, 19] are endowed with a
dynamic compiler.

Java HotSpot VM [12], which is the core component of Java 2 Standard Edition,
is equipped with a selective dynamic compiler. Performance critical methods are
detected by means of a counter-based profiler with additional heuristics. These
heuristics investigate the caller methods in order to compile them with the triggering
method. On-Stack-Replacement is also used to trigger compilation while a method
is still running. The Java Hotspot VM dynamic compiler applies several classical
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optimizations and is considered as one of the most efficient in the market. Another
important reason of this efficiency is the aggressive method in-lining it applies.
Indeed, methods that are detected frequent are not only compiled but also in-lined.
The benefit of this optimization is that it produces larger blocks of code for the
compiler to perform optimizations. Operating on large blocks of code increases the
effectiveness of classical optimizations. However, using On-Stack-Replacement or
applying expensive optimizations such as aggressive method in-lining is not adequate
for embedded systems because they require important resources particularly memory
space.

IBM Jalapeño [1] is a Java virtual machine equipped with a Just-In-Time com-
piler with different levels of optimizations. That is, according to the frequency of
a method, this is compiled with the appropriate level of optimization. The profiler
used by Jalapeño is very complex and is part of a bigger system called Adaptive
Optimization System (AOS). As Java Hotspot VM, the features of IBM Jalapeño
cannot be applied in an embedded context due to lack of resources. For instance, a
Just-In-Time approach is not suitable because it requires that all methods are com-
piled, whereas, embedded systems lack the necessary memory to store all method
generated code.

Other Java virtual machines are endowed with dynamic compilers including IBM
JDK [19], Intel ORP [1], IBM Mixed-Mode-Compiler [20], Latte [21] and OpenJIT
[11].

Embedded systems lack hardware resources that are available in desktop sys-
tems such as hundreds megabytes of RAM or microprocessors operating at over 2
GHz. This sets several limitations on what dynamic compilation could accomplish
in embedded systems. In the sequel, we outline these limitations.

In the context of embedded systems, dynamic compilation should cope with two
major difficulties. First, the dynamic compiler should be maintained in memory
while the application is executing. This is very challenging because of the stringent
lack of memory resources. Second, heavyweight code optimizations are not afford-
able because of their overhead. However, without such optimizations, a dynamic
compiler produces a code of low quality and large quantity. This code requires ad-
ditional memory to be stored. It is worth mentioning that the produced native code
could be 8 times the size of the original bytecode [15]. Hence, embedded dynamic
compilers are required to be extremely frugal with memory resources. Another con-
sequence of the big size of native instructions compared to bytecode is the risk of
instruction cache overflow. Indeed, among the hardware limitations of embedded
systems is the reduced amount of on-chip processor instruction cache. The amount
of this resource is suitable for bytecode interpretation. However, due to its big size,
the machine code produced by the dynamic compiler can be several times larger
than the size of the available instruction cache [15]. This leads to several cache
misses that decreases the program performance.

Despite these difficulties, dynamic compilation is also used in CLDC-based em-
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bedded virtual machines [15, 17, 18]. However, except one paper about KJIT [18],
no detailed information about these systems is available in the literature due to
commercial reasons.

KJIT [18] is a lightweight dynamic compiler that uses as its foundation the KVM.
KJIT does not use any form of profiling for the simple reason that all methods are
compiled. This strategy seems to be very heavyweight and only feasible in server
or desktop systems. The key idea to make this strategy adequate for embedded
Java virtual machines is to compile only a subset of bytecodes. The remaining
bytecodes continue to be handled by the interpreter. Indeed, whenever one of the
interpreted bytecodes is encountered, execution switches back from the compiled
mode to the interpreted mode. This requires an efficient handling of the switching
mechanism since this operation is highly frequent. This is achieved in KJIT by
pre-processing the bytecode before their compilation. The cost of pre-processing,
however, is an additional time required for pre-processing together with an additional
space required to store the generated bytecode. The latter is 30% larger than the
original bytecode.

CLDC Hotspot VM [15] is an embedded virtual machine introduced by Sun
Microsystems. As its name indicates, it is strongly inspired by the standard Java
Hotsopt VM. All features of Java Hotspot VM that can be adapted to resource-
constrained environments are applied. Among these features, we find a selective
dynamic compiler. Performance critical methods are detected by a single statistical
profiler. The compilation is performed in one pass. Three basic optimizations are
applied: constant folding, constant propagation and loop peeling. The memory
footprint required by CLDC Hotspot (including APIs) reaches 1 megabyte which
is almost the double of the space required by KVM. No more details are provided
about the CLDC Hotspot dynamic compiler.

3 ARCHITECTURE

E-Bunny is a selective dynamic compiler for embedded Java virtual machines that
uses as its foundation the KVM. In this section, we present the key features that
make E-Bunny an appropriate Java acceleration technology for embedded systems.
The major features of E-Bunny are:

• Reduced Memory Footprint: The footprint resulting from the integration
of the E-Bunny dynamic compiler does not exceed 150 KB. The key idea to
reduce the code size of E-Bunny is to merge the compilation processing of
some bytecodes. This is possible because several bytecodes have joint pro-
cessing (e.g. invokespecial, invokevirtual). This strategy is applied mainly for
some bytecodes that have fast versions [9](e.g. getstatic, getstatic fast, getstat-
icp fast, getstatic2 fast).

• Selective Compilation: Since selective dynamic compilation is the most
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adequate compilation-based acceleration technique for embedded systems, it
was adopted in E-Bunny. Only a subset of methods is compiled. The methods
are selected according to their invocation frequencies. The unit of compilation
is exclusively a method.

• Efficient Stack-Based Code Generation: For the compilation strategy, a
trade-off has to be made between the compilation cost and the generated code
quality. Although a register-based code is more efficient, we do not generate
such code because it requires more passes over the bytecode. In E-Bunny,
we generate a stack-based code because it requires only one pass over the
bytecode. Thus, a one-pass code generation strategy is adopted, without us-
ing neither intermediate representations nor heavyweight optimizations. Only
optimizations that might be applied in one pass are allowed.

• Using two stacks: Portability is an important issue in embedded systems.
Virtual machines with dynamic compilers are strongly machine-dependent be-
cause they compile the bytecode into the target machine native code. Thus, it
is unavoidable to become dependent on the target machine and consequently
less portable. CLDC Hotspot [15] and IBM Mixed-Mode [20] virtual machines,
which adopt a mixed-mode approach, use only the native stack for both inter-
pretation and compiled methods execution. However, the native stack is part
of the target machine architecture. This makes the virtual machine very de-
pendent on the target machine. Our dynamic compilation approach advocates
the use of two stacks (one for interpretation and one for compiled methods
execution) to preserve portability to a high extent. Hence, interpretation re-
mains totally machine-independent. Moreover, the platform-specific code is
isolated in specific modules. Future porting of E-Bunny to another platform
requires the modification or the re-creation of only these modules. However,
the drawback of this way to preserve portability is the complexity introduced
by the use of two stacks. Indeed, (1) method arguments must be transferred
between the two stacks when necessary, (2) the garbage collector must consider
the native stack when it scans the heap and (3) additional context information
must be added to the thread data structure.

• Multi-threading Support: Another challenge introduced by dynamic com-
pilation is the multi-threading support. Conventionally, each thread has its
own execution stack. Since our approach uses two kind of stacks, each thread
is assigned two stacks upon its creation: a Java stack to interpret methods
and a native stack to run compiled ones. For the Java stack, we adopt the
KVM way to manage the Java stacks. KVM allocates the Java stack from the
heap and manipulates it at a software level. For the native stack, the approach
adopted is to organize the native stack as a pool of segments and allocate a
segment to each thread. Thus, the native stack will be shared by all living
threads.

• LRU Algorithm for Cache Management: A limited memory space is
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Figure 1: E-Bunny Architecture

allocated to the compiled code. When this space is full, a cache strategy
based on a Least Recently Used (LRU) algorithm [10] is adopted to free the
necessary space.

The E-Bunny architecture is depicted in Figure 1. It includes four major com-
ponents: the execution engine, the profiler, the compiler and the cache manager.
Initially, all invoked Java methods are interpreted. During interpretation, a counter-
based profiler gathers profiling information. As the code is interpreted, the profiler
identifies hotspot methods. Once a method is recognized as hotspot, its bytecodes
are translated into native code by the compiler. The produced native code is stored
in the dynamic compiler cache. On future references to the same method, the cached
compiled method is executed instead of interpreting it. In the sequel, we highlight
the main components of the proposed embedded dynamic compiler architecture.

Interpreter

By interpreter, we mean the KVM’s interpreter. It is the only way in KVM to
execute Java programs. The interpreter is basically a loop that fetches, decodes and
interprets bytecodes of a given method. E-Bunny adopts a mixed-mode1 execution
approach. Therefore, the interpreter cooperates with the machine code execution
component to switch between the two modes: interpreted and native.

Machine Code Execution Component

The machine code execution component is responsible for invoking compiled meth-
ods. Basically, it looks for the corresponding machine code in the cache and then
executes it. In addition, this component is responsible for transferring, if any, meth-
ods arguments from one stack to the other. More details about this mechanism
are given in Section 4. When the machine code of a given method is executed, the

1Execution overlaps between interpretation mode and native code execution mode.
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cache must be set up-to-date according to the cache algorithm. The machine code
execution component triggers the cache update.

Profiler

A simple counter-based profiler is used in E-Bunny. A per-method counter is in-
cremented each time the method is invoked. A method is considered as hotspot
when its counter reaches an a-priori defined threshold. Consequently, a compilation
request is triggered. Our profiling strategy assumes that every method called by a
compiled method must be compiled. So, a compiled method cannot invoke an in-
terpreted method. The motivation behind this strategy is to reduce the complexity
of the switch mechanism between interpreted and native modes.

Compiler

The compiler is the core component of E-Bunny. It is triggered by the profiler.
Basically, it compiles Java methods to machine code. The E-Bunny compiler is
extremely lightweight. It goes through the bytecode in one pass and generates a
stack-based code. Unlike traditional compilers, neither intermediate representations
nor heavyweight optimizations are used. The compilation strategy is described in
Section 4.

Cache Manager

Once a method is recognized as hotspot and compiled, the corresponding machine
code needs to be stored in the heap. In E-Bunny, a fixed space, called the cache, is
pre-allocated in the heap to store the generated code. The cache is pre-allocated in
the permanent space of the heap to avoid any conflicts with the garbage collection
mechanism. Conventionally, the garbage collector does not scan the permanent
space. When the cache becomes full, the cache manager must select elements to
remove in order to free space for newly compiled methods. For this purpose an
LRU algorithm is used. This algorithm selects the method (or the methods) that
has (have) not been invoked for the largest period of time and removes it (or them)
from the cache. A queue is used to keep the chronological order of invoked methods.
This queue is updated each time a compiled method is invoked. The LRU algorithm
does not prevent methods from being recompiled several times, but our experiments
show that using an LRU algorithm reduces efficiently the re-compilation rate.
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4 DESIGN

In this section we discuss the design issues of E-Bunny. First, we detail the compila-
tion strategy. Second, we focus on a delicate aspect of selective dynamic compilation
which is the switch mechanism between interpreted and compiled modes. Then, we
illustrate how E-Bunny supports multi-threading. Finally, we describe the interac-
tion with the garbage collection mechanism.

Compilation Strategy

Our compilation strategy spans over a lightweight one pass compilation technique.
This strategy avoids complex computations performed by common compilers and
generates a code of reasonable quality. Indeed, the generated code is stack-based as
Java bytecode but uses many information computed at the compilation step (field
offsets, Constant Pool entry address etc.). These information are grafted in the
generated code in order to avoid unnecessary further re-computation.

Compiling a method goes through three steps. First, generating context saving
instructions (the prologue). Second, translating bytecodes into machine code in-
structions. Third, generating context restoration instructions (the epilogue). The
second step, which is the core step of our compilation strategy, consists in translating
each bytecode into a sequence of native instructions. We distinguish two categories
of bytecodes. The first kind includes bytecodes that are completely translated into
native instructions in a straight manner. They are called: simple bytecodes. The
second kind of bytecodes are more complex to translate and are called complex
bytecodes. E-Bunny targets Intel IA-32 architecture [8]. IA-32 is a 32 bit CISC
machine which provides eight general purpose registers (EAX, EBX, ECX, EDX, ESI,
EDI, EBP, ESP). EBP and ESP are dedicated to stack management. The remaining
registers fulfill different other tasks. Hence, compiling a method consists in gen-
erating assembly instructions that reproduces the bytecode behavior on an IA-32
platform.

Context Saving and Context Restoration

Context saving and context restoration instructions are used to re-establish the
calling method context after the execution exits from the callee method. Context
saving instructions figure on top of the method generated code. They carry out
three basic operations. First, save old EBP register value (of the calling method)
on the native stack. Second, assign a new value to EBP register (of the callee
method). Third, assign the new value of EBP to LastEBP field of the current
thread structure (CurrentThread->LastEBP =EBP). Actually, LastEBP is a new
field added to the thread data structure in E-Bunny. It gives for each thread the
EBP value of the last called compiled method. This information is used to two
purposes: garbage collection and exception handling. Context saving instructions
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//saving old value of EBP on the native stack
push EBP
//setting the new value of EBP
mov EBP, ESP
//CurrentThread->LastEBP = EBP
mov EAX,&CurrentThread->LastEBP
mov [EAX], EBP

Table 1: Context Saving

//restore the old value of EBP register
mov ESP, EBP
pop EBP
//CurrentThread->LastEBP = EBP
mov EAX,&CurrentThread->LastEBP
mov [EAX], EBP

Table 2: Context Restoration

in E-Bunny are illustrated in Table 1.

Context restoration instructions figure on the end of method generated code.
Since all Java methods finish by a return bytecode (ireturn, lreturn, areturn or re-
turn), context restoration instructions are generated when translating return byte-
codes. Context restoration instructions carry out two operations. First, restore the
old value of EBP register (saved on the native stack). Second, assign this value
to LastEBP field of CurrentThread data structure. Consequently, when returning
to the calling method, EBP register and CurrentThread->LastEBP are set to the
appropriate values. Context restoration instructions in E-Bunny are illustrated in
Table 2.

Simple Bytecodes Translation

The simple bytecode category includes loads (e.g. iload, iaload, ldc), stores (e.g.
astore, lastore), stack manipulation (e.g. pop, dup), arithmetic, logic and shift (e.g.
iadd, land, ishr, l2i) and branching (e.g. ifne, if icmpeq, goto) bytecodes. These

ILOAD (0x15)

Description : Load integer from local variable

Format : ILOAD <index>

Corresponding Assembly Instructions :

push [EBP + 4 * ( <FrameSize> - <index> + 3)]

Table 3: iload Bytecode Translation
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Figure 2: iload on the Native Stack

bytecodes are directly translated into stack-based machine code which reproduces
the interpreter behavior on the native stack. As an example, we give the translation
details of two bytecodes iload and ifeq. We have chosen iload bytecode to show how it
behaves on the native stack and ifeq bytecode to illustrate how E-Bunny translates
forward branching instructions in one pass.

The iload bytecode loads integer (32 bit value) from local variables to the top
of the stack (stack operand). It is directly mapped to a push instruction as shown
in Table 3. The symbols “[ ]” denote the content of the specified location. The
FrameSize variable is an integer that gives the number of local variables of the
current method. The displacement is multiplied by 4 because addresses in Intel 2

grow by 4. The value 3 in the offset of the push instruction denotes EIP register
and two empty spaces (space 1 and space 2) as illustrated in Figure 2. Notice that
space 1 and space 2 are left for the returned value of the method (see Section 4).

An important issue of the one pass translation strategy is how to deal with
control flow bytecodes (or branching bytecodes). In the sequel, we highlight this
issue and how it is processed in E-Bunny.

Control flow bytecodes are translated using a bytecode map table called BCNa-
tiveMap. It is an integer table that maps each bytecode index to its corresponding
machine instruction index. For instance, BCNativeMap[5] = 31 means that the
machine instructions corresponding to the fifth bytecode start at index 31 in the
NativeCode table. A BCNativeMap table is associated with each compiled method.
It is initialized to zero, and filled progressively when the translation of the method
is going on. At a given moment of translation, the BCNativeMap table is filled for
the scanned bytecodes and empty (zero values) for the rest.

To deal with control flow bytecodes, there are two situations: forward branches

2The terms Intel stack and native stack are used interchangeably.
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IFEQ (0x99)

Description : Branch if equal to zero

Format : IFEQ <offset>

PseudoCode :

If (BCNativeMap[currentBytecode + offset] == 0 )

//forward branching//

Generate Jump instruction without operand

Leave space for the operand

Else //backward branching//

Generate jump instruction

Compute offset operand

Generate operand

Endif

Translate next bytecodes ...

When reaching the target bytecode:

Compute the current offset

Fill the space left before by the computed offset

Corresponding Assembly Instructions :

pop EAX

cmp EAX, 0

jz <computed machine code offset>

Table 4: ifeq Bytecode Translation

and backward branches. The translation of backward branches is straightforward.
BCNativeMap table is used to get the target machine instruction index, and then
to generate the corresponding jump native instruction. However, the translation of
forward branches is more complex. Indeed, the corresponding BCNativeMap entry
of a forward branch is not resolved yet (contains zero) as the target bytecode is not
already compiled. The complete translation of the forward branching bytecode is
postponed until the target bytecode is reached. Actually, a jump native instruction
op-code (e.g. JL, JNE, JMP) is generated with an unresolved operand. Each next
bytecode is checked whether it is a target of an unresolved branching. In such case,
the corresponding offset is computed and then used to patch the unresolved operand
of the jump native instruction. To handle multiple unresolved forward branching,
a linked list is used. In Table 4, we give the translation algorithm of ifeq bytecode
and the corresponding machine instructions.
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PUTFIELD (0xb5)

Description : Set field value in object

Format : PUTFIELD <cp index>

Function used: Putfield()

Pre-conditions:

The following items must be on the top of native stack:

- ip (bytecode ip)

- field value

- objectref.

Post-conditions:

Set EAX to the fileld size:

1 when the field needs one memory word

2 when the field type is two memory words

Corresponding Assembly Instructions:

//push the ip on the Intel stack

push ip

mov ECX, &Putfield

call ECX

//popping the putfield arguments

//Switch// ECX

1 : add ESP, 12

2 : add ESP, 16

Table 5: putfield Bytecode Translation

Complex Bytecodes Translation

In KVM, interpretation of some bytecodes involves the use of some virtual machine
runtime services such as method lookup or field reference resolution. For example,
getfield bytecode uses field reference resolution subroutine to resolve the reference of
the appropriate field. In E-Bunny, bytecodes that require virtual machine services
are called complex bytecodes. Translating this kind of bytecodes is more complex. A
possible approach consists in generating the corresponding native code, instruction
by instruction, including virtual machine services. This yields a complex and a very
bulky code. The approach adopted in E-Bunny is to define for each bytecode a
specific function that calls necessary virtual machine services. These functions are
called from the native code. Hence, the generated machine code is compact and less
complex. Complex bytecodes category includes field access, objects creation, array
manipulation, method invocation, return, monitor, casting and exception bytecodes.
In the sequel we illustrate the translation mechanism of field access bytecodes and
exception bytecode (athrow).
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Field access bytecodes are putfield, getfield, putstatic, getstatic and their fast
versions. These bytecodes access to object fields using symbolic references, to get
or set their values. Such symbolic references have to be resolved so that the access
could be possible. In E-Bunny, for each bytecode a specific function is defined. For
getfield and getstatic, this function calls the field reference resolution subroutine and
returns the value of the field in EAX register (EAX:ECX for long values). This value
is then pushed on the native stack. For putfield and putstatic, this function calls the
field reference resolution subroutine, sets this field and returns the field size in the
EAX register. This value is then used to update the native stack. The translation
of putfield is given in Table 5. The cp index denotes a Constant Pool index. The
“Switch” operator is used to clarify the illustration. Actually, it is implemented
with jump instructions.

Method invocation bytecodes require a special care because they involve more
complex processing than other bytecodes. Furthermore they are performance criti-
cal (on average 11% of total bytecodes are method invocation bytecodes [16]). The
processing that method invocation bytecodes should carry out includes: performing
a method reference resolution, checking the validity of the receiver object, perform-
ing a dynamic method lookup, creating a new frame for the invoked method, etc.
Moreover, these bytecodes deal with the switch mechanism between interpreted and
compiled modes (more details about the switch mechanism are given in next section).

In E-Bunny, to translate invoke bytecodes, specific functions have been defined (
callVirtual for invokevirtual and invokespecial, callStatic for invokeStatic and callinter-
face for invokeinterface). These functions behave differently according to the kind of
the called method (compiled or native). The conventions adopted to design these
functions are the following: If the invoked method is native, the defined functions re-
solve the invoked method reference, check the validity of the receiving object, make
the method lookup, transfer the arguments form the native stack to the Java stack
(because the native functions consider the Java stack to get the arguments), invoke
the native functions and finally transfer returned value to Java stack. In addition,
these functions, set EAX register to 1 (to distinguish the native function call from
the compiled method invocation) and EDX register to an integer value necessary to
update the native stack.
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INVOKEVIRTUAL (0Xb6)

Description : Invoke instance method

Format : INVOKEVIRTUAL <cp Index>

Function used: callVirtual()

Pre-conditions:

The following items must be on the top of the Intel stack:

- ip (bytecode’s ip)

- one empty word

Post-conditions:

IF (called method is a C (native) function)

- EAX = 1

- The returned value is on the native stack

- EDX = integer value to update the native stack.

ELSE //called method is a compiled java method

- EAX = 0

- [ESP] = local variables number

- EDX = machine code address.

ENDIF

Corresponding Assembly instructions :

sub ESP,4 //leaving the first space

push ip //pushing ip (and the second space)

mov EAX, &callVirtual

call EAX

//Switch// EAX

1 : add ESP, EDX //updating the native stack

0 : mov EAX, [ESP] //getting space for locals

sub ESP, EAX //leaving space for locals

call EDX //launching the native code

add ESP, EAX //updating the native stack

POP FRAME FROM NATIVE

Table 6: invokevirtual Bytecode Translation
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ATHROW (0xbf)

Description : throws exception or error

Format : ATHROW

Function used: throwExc()

Pre-conditions:

The following item must be on top of the Intel stack:

- exception object reference

Post-conditions:

- jumps to the exception handler if any

- raise a virtual machine exception otherwise.

Corresponding Assembly Instructions :

mov EAX, &throwExc

call EAX

Table 7: athrow Bytecode Translation

If the invoked method is compiled, these defined functions resolve the invoked
method reference, check the validity of the receiving object, make the method
lookup, get the machine code from the cache, update the latter and exit. We note
here that the defined function does not call the invoked method. Instead, the ma-
chine code address of the called method and the local variables number are returned
respectively in EDX register and in the top of the stack. These values are used
to prepare the invocation. After that, the method is invoked. When it exits, the
method context information is discarded using the value computed by the trans-
lated return bytecode. As an illustration of this mechanism, the translation of the
invokevirtual bytecode is given in Table 6.

Another important feature of the Java language is the exception handling mech-
anism. An exception is raised by the athrow bytecode. A major constraint that the
dynamic compilation should respect is to preserve exception handling semantics.
The dynamic compilation introduces new issues relevant to exception propagation.
Indeed, a compiled method could propagate an exception to an interpreted method.
E-Bunny handles the following situations:

• The method where the exception is thrown and the one where the exception is
caught, are both interpreted: the original virtual machine exception handling
mechanism is used.

• The method where the exception is thrown, is interpreted and the one where
the exception is caught is a compiled method. This case is excluded since the
adopted profiling strategy assumes that a compiled method cannot invoke an
interpreted one.

• The method, where the exception is thrown, is a compiled method. There are
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ALGORITHM 1 : Interpreter to native switch

Step1 : Transfer arguments

for (i <= NbrArguments)

push arg i

Step2 : Reserve space for local variables

Step3 : Reserve two words for the returned value

sub ESP, 8

Step4 : Call the compiled method generated code

call Method Machine code

Table 8: Interpreted to Native Switch Algorithm

two possible situations: the method catching the exception is either interpreted
or compiled. In order to locate the method handling the exception, first,
BCNativeMap is used to identify the bytecode corresponding to the native
instruction throwing the exception. Then, an exception handler lookup is
performed. If the method catching the exception (the method containing the
handler) is a compiled one then its BCNativeMap is used to locate the native
instruction corresponding to the bytecode handling the exception. A jump to
this instruction is performed. Otherwise, we switch to the interpreted mode
at the level of this bytecode.

The generated code for the athrow bytecode calls a specific function called throwExc.
This function uses the virtual machine exception handling functionality to locate the
exception handler. Then, it resumes the execution at the appropriate location. The
translation of athrow is illustrated in Table 7.

Switch Mechanism

In E-Bunny, compiled methods are executed in the native stack while interpreted
methods are interpreted in the Java stack located in the heap. Hence, execution of
Java programs overlaps between native stack and Java stack. The switch between
the two modes implies context transferring between the two stacks. We distinguish
two situations where the switch occurs between the two modes: interpreted to native
and native to interpreted.

The interpreted to native switch occurs when interpreting an invoke bytecode
and the invoked method happens to be compiled. Coming from the interpretation
mode, the called method arguments are on the top of the Java stack. The switch
to the native mode requires their transfer to the native stack. This is carried out
according to the algorithm in Table 8. The algorithm is based on the method frame
layout in the native stack, depicted in Figure 3.
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Figure 3: Switch Mechanism to the Native Mode

The switch from the native mode to the interpreted mode occurs in two situa-
tions. First, when a compiled method calls an interpreted method. Second, when a
compiled method exits and returns back to its interpreted caller method. The pro-
filing strategy we adopt assumes that every method called by a compiled method
should be compiled. The switch is then reduced only to the second situation (return
case). Handling this switch consists in transferring the returned value, if any, from
the native stack to the Java stack. The implementation of this action depends on
the returned value type as illustrated in Table 9.

Figure 3 shows the native stack in different phases of the switch. First, before
method call (a). Second, after algorithm 1 (b). Third, when the translated called
method exits (c). In (c), we assume that the called method returns a one word size
value (e.g. integer, short, reference, etc.).

Threads Management

A Java virtual machine provides a framework to run properly different threads.
Each thread has its own stack. In the interpreted mode, these stacks are created
and managed at a software level. Basically, thread stacks are allocated in the heap.
However, in E-Bunny, since two stacks are used, compiled methods have to be run
on a native stack. Consequently, threads should use the native stack.

In the current implementation, the native stack is organized as a pool of seg-
ments. A segment is assigned to a thread when the latter is created. The segment
pool management is based on a bit map. An entry of this map is a bit indicating
whether the corresponding segment is used or free. Therefore, each thread exe-
cutes its compiled methods in its own segment. A consequence of managing several
threads with two stacks is that each thread has two forms of context information.
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ALGORITHM 2 : Native to Interpreter return

Switch (returned value type size ) :

0 (void)

Nothing

1 (integer, reference, etc.)

pop value

pushStack(value)

2 (long)

pop lowHalf

pop highHalf

pushStack(highHalf )

pushStack(lowHalf )

Table 9: Native to Interpreted Switch Algorithm

The first is relevant to Java stack (e.g. sp: stack pointer, fp: frame pointer, lp:
locals pointer) and the second is relevant to the native stack (ESP, EBP and EIP
registers). The data structure representing the thread in the virtual machine holds
information representing both contexts (Figure 4).

Thread scheduling in the KVM is based on a round robin scheduling model. Each
thread keeps control during a time-slice. This is decremented after each bytecode
that may cause a control transfer (e.g. branching and invoke bytecodes). When the
time-slice becomes zero, the virtual machine stops the current thread and resumes
the next one in the running threads queue. Method compilation requires the support
of thread scheduling. To achieve this purpose, additional code is generated for
bytecodes causing transfer control. This code, mainly, decrements the ESI register,
dedicated to hold time-slice value, and triggers a thread switch when ESI reaches
the NULL value. In addition, a special care to save both contexts relevant to Java
and native stacks, is taken.

Garbage Collection Issues

KVM garbage collection is based on a mark-sweep with compaction algorithm. With
the selective approach of E-Bunny, compiled methods are executed on the native
stack. Consequently, the native stack may contain some object references. Since the
current garbage collection algorithm scans only the heap, the native stack will not
be considered, and then, object references on it neither will be marked nor updated.
Therefore, the current garbage collection algorithm is inefficient with a selective
approach.

The garbage collection algorithm has to be extended to deal with the native stack.
Precisely, translated method frames in native stack have to be scanned in order to
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Figure 4: Multi-threading in E-Bunny

mark and update object references. In E-Bunny, the garbage collection algorithm
is enhanced to address this issue. Mainly, the garbage collection functionalities are
modified to take into account the object references in the native stack. Indeed, for
both marking and updating loops, we check if the frame corresponds to a compiled
method or not. If the method is compiled we consider the native stack, otherwise
we consider the Java stack.

5 IMPLEMENTATION AND RESULTS

E-Bunny is implemented using the C programming language. In our experiments,
we used the GNU compiler to build the latest version of KVM (KVM 1.0.4) with
E-Bunny. Table 10 shows the executable size of KVM with and without E-Bunny.
The first column gives the total executable footprint of KVM without E-Bunny.
The second column gives the total executable footprint of KVM equipped with E-
Bunny dynamic compiler. Finally, column 3 of the table shows that using GCC to
build KVM with E-Bunny produces a footprint overhead of 64 KB. To summarize,
E-Bunny requires 64 KB for executable footprint overhead, 64 KB for storing trans-
lated methods and 10 KB for a map between bytecodes and native instructions which
is used for compiling control flow instructions and for exception handling mecha-
nism. Hence, the total memory resources required by E-Bunny dynamic compiler is
138 KB.

To evaluate the performance of E-Bunny, we have run CaffeineMark benchmark
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KVM E-Bunny Footprint
Overhead

144K 208 K 64 K

Table 10: Executable File Footprint overhead

Figure 5: CaffeineMark Scores of KVM 1.0.4 and E-Bunny with GCC

(without the float test) on the original version of KVM with and without E-Bunny.

E-Bunny produces an overall speedup of 4 over original KVM 1.0.4 (Overall score
in Figure 5). Moreover, we built the MIDP 2.0 profile, intended to CLDC devices,
using E-Bunny and we ran successfully several midlets. Figure 6 shows a snapshot
of MIDP emulator illustrating CaffeineMark midlet results.

6 CONCLUSION AND FUTURE WORK

We reported, a new acceleration technology for Java embedded virtual machines that
is based on selective dynamic compilation. This technology targets the J2ME/CLDC
(Java 2 Micro Edition for Connected Limited Device Configuration) platform. We
designed and implemented an efficient, lightweight and low-footprint accelerated
embedded Java Virtual Machine. This has been achieved by the means of integrating
a selective dynamic compiler, called E-Bunny, into the J2ME/CLDC virtual machine
KVM. We presented the motivations, the architecture, the design as well as the
technical issues of E-Bunny and how we addressed them. Experimental results
demonstrated that we accomplished a speedup of 400% with respect to the Sun’s
latest version of KVM.

Currently, many enhancements of E-Bunny are in progress. The major one
concerns the bidirectional smooth switching between the interpreted and compiled
modes. In fact, the profiling strategy adopted in the current version of E-Bunny,
which consists in compiling each method called from the compiled one, is less com-
plex to implement. However, it presents a drawback since it leads to compile non-
performance-critical methods. On the other hand, a more efficient centralized thread
scheduling is being implemented. This is expected to reduce the generated native
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Figure 6: CaffeineMark midlet ran by KVM 1.0.4 and by E-Bunny

code size.
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