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Abstract 
Model Driven Architecture (MDA) is an emerging technology that is supposed to provide 
a technical framework for information integration and tools interoperation; many UML 
tools claim to be compliant with it. Model-to-model transformations are essential in 
MDA. This article describes foundations for UML-based  transformation tools. We 
introduce the NEREUS language to cope with concepts of UML metamodel. A 
transformational system to translate OCL to NEREUS was defined. In this framework, 
we describe the NEREUS process to forward engineering UML static models to object-
oriented code. Eiffel was the language of choice in which to show the feasibility of our 
approach. Transformations are supported by a library of reusable components and by a 
system of transformation rules that allow translating UML/OCL constructions to 
NEREUS specifications and Eiffel step-by-step.  

1 INTRODUCTION  

The standardization of UML regarded as notation leads to improvements in CASE 
(Computer Aided Software Engineering) tools, methods and standard modeling libraries. 
UML is used in many ways and different domains for expressing different types of 
concepts such as language independent software specification, high-level architecture, 
website structure, workflow specification and business modeling. It has been applied 
successfully to build systems for different types of applications running on any type and 
combination of hardware, operating system, programming language and network 
[OMG03]. 

In the marketplace there are numerous UML CASE tools that differ widely in 
functionality, usability, performance and platforms [Case03]. They are having a 
significant impact on the software development industry. However, the support that they 
provide has numerous gaps. Many tools can generate some code from a model, but that 
usually goes no further than the generation of some template code. Reasoning about 
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models of systems is well supported by automated theorem prover and model checkers, 
however these tools are not integrated into UML-based environments. Also, these tools 
provide limited facilities for refactoring and reverse engineering. 

The OMG is promoting the MDA that is supposed to provide a technical framework 
for information integration and tools inter-operation based on the separation of platform 
specific models (PSM) from platform independent models (PIM). Many tools claim to 
compliant with MDA. It is still evolving and some problems have been detected in the 
transformation processes that require flexible code generation mechanisms [Kleppe03].  

Formal and semi-formal techniques can play complementary roles in MDA-based 
software development processes. We consider this integration beneficial for both semi-
formal and formal specification techniques. On the one hand, semi-formal techniques 
have the ability to visualize language constructions allowing a great difference in the 
productivity of the specification process, especially when the graphical view is supported 
by means of good tools. On the other hand, formal specifications allow us to produce a 
precise and analyzable software specification and automate model-to-model 
transformations. The combination of UML and formal specifications offers the best of 
both worlds to software developer. 

In this article we describe foundations for MDA-based forward engineering. 
Metamodeling is one key of the MDA. In this direction, we define the NEREUS language 
to cope with concepts of UML metamodel. In particular this language is relation-centric, 
that is it expresses different kinds of relations (dependency, association, aggregation, 
composition) as primitives to develop specifications. Much more information can be 
included in the specification metamodel using the combination of UML and OCL (Object 
Constraint Language) [Warmer03]. A transformational system to translate OCL  to 
NEREUS was defined. NEREUS can be viewed as a communication bridge between 
UML and other algebraic languages and between UML and object oriented languages.  

The UML/OCL is used to generate  high-level specifications which are independent 
of any implementation technology. These specifications are tailored to specify 
realizations that fit a specific technology, which in turn are used to generate the code. 
Eiffel was the language of choice in which to show the feasibility of our approach. The 
process is based on the adaptation of reusable components that are defined in a 
framework that fits MDA. All of the proposed transformations can be automated; they 
can be integrated into iterative and incremental software development processes 
supported by the UML-based tools. Following this approach we can use the 
transformations of the forward engineering process and apply them backwad to reverse 
engineer code to a UML diagram. 

The structure of the rest of this article is as follows. Section 2 discusses related work. 
Section 3 gives a brief description of the NEREUS language. Section 4 describes the 
NEREUS process to forward engineering UML models. Section 5 analyses a mapping 
from UML/OCL to NEREUS. Section 6 describes how to transform NEREUS 
specifications into Eiffel. Finally, Section 7 concludes and discusses further work.  
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2 RELATED WORK 

Object orientation and formal languages 

In the early 1980s, new specification languages or extensions of formal languages to 
support object-oriented concepts began to develop. Among them the different extensions 
of the Z language, for example Z++ [Lano91], OBJECT-Z [Smith00] or OOZE 
[Alencar91] can be mentioned. Another language with object-oriented characteristics is 
FOOPS [Rappanotti92].  

Larch/Smalltalk was the first language with subtype and inheritance specification 
[Cheon94] . Larch/C++ is another language with similar characteristics [Leavens96].  

CASL-LTL, an extension of CASL [Astesiano02], has been provided to deal with 
reactivity [Reggio99].   

BON is an object-oriented method possessing graphical and textual languages for 
specifying classes, their relations and assertions, written in first-order predicate logic 
[Paige02].  

Among the most recent languages, JML is a behavioral interface specification 
language for formally specifying the behavior and interfaces of Java classes and functions 
[Leavens02]. GSBLoo is an extension of GSBL with constructions that allow the 
expression of different kinds of UML relations  [Favre01]. 

Semi-formal and formal modeling techniques  

Various works analyzed the integration of semiformal techniques and object-oriented 
designs with formal techniques. [Bordeau95] introduces a method to derive Larch 
specifications from class diagrams. [France97] describes the formalization of FUSION 
models in Z.  

A lot of work has been carried out dealing with the semantics for UML models. The 
PreciseUML Group, pUML, was created in 1997 with the goal of giving precision to 
UML [Evans98]. It is difficult to compare the existing results and to see how to integrate 
them in order to define a standard semantics since they specify different UML subsets 
and they are based on different formalisms.  

[Bruel98] describes how to formalize UML models using Z, and [Breu97] does a 
similar job using stream-oriented algebraic specifications. Additionally, [Gogolla97] does 
this by transforming UML to TROLL and  [Overgaard98] achieves it by using 
operational semantics. U2B [Snook00] transforms UML models to B [Abrial96]. [Kim00, 
Kim02] formalize UML by using OBJECT-Z. [Reggio01] presents a general framework 
of the semantics of UML, where the different kinds of diagrams within a UML model are 
given individual semantics and then such semantics are composed to get the semantics on 
the overall model. [MCumber01] propose a general framework for formalizing UML 
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diagrams in terms of different formal languages using a mapping from UML metamodels 
and formal languages metamodels.  

Other works describe advanced metamodeling techniques that allow the 
enhancement of UML. [Gogolla02] analyzes the UML metamodel part dealing with 
stereotypes, and make various suggestions for improving the definition and use of 
stereotypes. [Barbier03] introduces a formal definition for the semantics of the Whole-
Part relation that can be incorporated into version 2.0 of UML. 

UML-based tools 

In the marketplace, there are about 100 UML CASE tools that differ widely in 
functionality, usability, performance and platforms [Case03]. Current UML tools can 
help with the mechanics of drawing and exporting UML diagrams, eliminating syntactic 
errors and consistency errors between diagrams and supporting code generation and 
reverse engineering.  

A number of tools claiming to support OCL have emerged.  For example, the main 
task of USE tool [Ziemann03] is to validate and verify specifications consisting of 
UML/OCL class diagrams. Key [Ahrendt02] is a tool based on Together [Case03] 
enhanced with functionality for formal specification and deductive verification. 

 Our work describes foundations for MDA-based forward engineering. The 
following differences between our approach and some of the existing ones are worth 
mentioning. In the first place, NEREUS is more expressive than other algebraic 
languages and more suitable for representing certain aspects of the UML metamodel. As 
GSBLoo  is relation-centric: it expresses different kinds of relations as primitives to 
develop specifications [Favre01]. The characteristics that distinguishes NEREUS from  
GSBLoo is its neutrality language. NEREUS can be viewed as an intermediate notation 
open to many algebraic languages such as CASL or Larch. In particular, we define the 
semantics of NEREUS in terms of the CASL language. On the other hand, a system of 
transformation rules to translate OCL to NEREUS is introduced. 

We define a framework for reuse that fits MDA very closely. Component models are 
defined in three different levels of abstraction: Platform Independent Component Model 
(PICM), Platform Specific Component Model (PSCM) and Implementation Component 
Model (IMC). A transformational approach for the integration of UML/OCL with 
NEREUS is introduced. We propose to define PIM and PSMs by integrating UML/OCL 
and NEREUS specifications. Also, we define how to transform PIMs into PSMs. 
Transformations are supported by reusable components and by a system of 
transformation rules that allow translating NEREUS specifications to object-oriented 
code step-by-step. 
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3 FORMALIZATION OF THE UML STATIC VIEW  

The concept of transformation of models is central to the realization of the benefits of 
MDA [OMG03]. To enable automatic transformation of a model, we need the UML 
metamodel that is written in a well-defined language.  

The strongest point in UML metamodel is the modeling of class diagrams and well-
formed rules in OCL. In this direction, we propose the NEREUS language to cope with 
the UML metamodel. NEREUS is suitable to build specifications in which the structural 
aspects are important. NEREUS is relation-centric, that is it expresses different kinds of 
relations (dependency, association, aggregation, composition) as primitives to develop 
specifications.  

NEREUS is an intermediate notation open to many other formal languages. In 
particular, we define its semantics  by giving a precise formal meaning to each of the 
construction of the NEREUS in terms of the CASL language, due to it is a unifier of 
proven algebraic languages [Astesiano02].  

NEREUS allows us to develop PIM and PSMs that are full of information about 
systems to be implemented. 

The NEREUS Language 

NEREUS consists of several constructions to express classes, associations and packages. 
Fig 1 shows the relation between UML static models and NEREUS. 

 
   
 
 

 
 
 
 
 
 
                                            
 
 
 
Fig. 1:  UML versus NEREUS  
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The syntax of a basic specification is shown in Fig. 2. NEREUS distinguishes variable 
parts in a specification by means of explicit parameterization. The elements of 
<parameterList> are pairs C1-> C2 where C1 is the formal generic parameter 
constrained by an existing class C2 (only subclasses of C2 will be a valid actual 
parameter). 

 
CLASS className [<parameterList>] 
IMPORTS <importList> 
INHERITS <inheritsList> 
ASSOCIATES <associatesList> 
DEFERRED 
FUNCTIONS <functionList> 
EFFECTIVE 
TYPE <sortList> 
FUNCTIONS <functionList> 
AXIOMS  <varList> 
<axiomList> 
END-CLASS 
 

ASSOCIATION <relationName> 
IS <constructorTypeName> [ ...: Class1; ...:Class2; 
...:Role1; ...:Role2; ...:mult1; ...:mult2; ...:visibility1; 
...: visibility2] 
CONSTRAINED BY <constraintList> 
END 
 
 
PACKAGE <packageName> 
IMPORTS <importsList> 
INHERITS <inheritsList> 
<elements> 
END-PACKAGE 

 
                     Fig. 2: NEREUS Syntax 

 
The IMPORTS clause expresses dependency relations. The specification of the new 

class is based on the imported specifications declared in <importList> and their public 
operations may be used in the new specification. 

NEREUS distinguishes subclassing from subsorting. Subsorting is like inheritance of 
behavior, while subclassing relies on the module viewpoint of classes. Subclassing is 
expressed  in  the INHERITS clause, the specification of the class  is  built from the union 
of the specifications of the classes appearing in the <inheritsList>. Subsortings are 
declared by the following syntax s1, s2, s3,...,sn  < s. Operations declared on some sort are 
automatically inherit by its subsorts. 

NEREUS allows us to define local instances of a class in the IMPORTS and 
INHERITS clauses by the syntax  className [<bindingList>] where the elements of 
<bindingList> can be pairs of sorts s1: s2, and/or pairs of operations o1:o2 with o2 and 
s2 belonging to the own part of ClassName. References to parameterized specifications 
always instantiate the parameters. The sort of interest of a class (if any) is also implicitly 
renamed each time the class is substituted or renamed. 

NEREUS distinguishes deferred and effective parts. The DEFERRED clause 
declares new sorts or operations that are incompletely defined. The EFFECTIVE clause 
either declares new sorts or operations that are completely defined, or completes the 
definition of some inherited sort or operation. 

Operations are declared in FUNCTIONS clause. In NEREUS it is possible to specify 
any of the three levels of visibility for operations: public, protected and private. These are 
expressed by prefixing the symbols : + (public), # (protected), and  - (private).  



 
 
 
 
 
 

VOL. 4, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 135 

NEREUS supports higher-order operations (a function f is higher-order if functional 
sorts appear in a parameter sort or the result sort of f). In the context of OCL Collection 
formalization,  second-order operations are required. It is possible to limit the scope of 
the declarations of auxiliary symbols by using  local definitions. 

NEREUS provides a taxonomy of constructor types that classifies binary 
associations according to kind (aggregation, composition, association, association class, 
qualified association), degree (unary, binary), navigability (unidirectional, bidirectional), 
connectivity (one-to one, one-to-many, many-to-many). New associations can be defined 
by the syntax shown in Fig. 2. The IS clause expresses the instantiation of 
<constructorTypename> with classes, roles, visibility, and multiplicity. The 
CONSTRAINED-BY clause allows the specification of static constraints in first order 
logic.  

The package is the mechanism provided by NEREUS for grouping classes and 
associations and controls its visibility (Fig. 2). <importsList> lists the imported 
packages; <inheritList> lists the inherited packages and <elements> are classes, 
associations and packages. 

Several useful predefined types are offered in NEREUS, for example Collection, Set, 
Sequence, Bag, Boolean, String, Nat and enumerated types.  

A detailed description may be found in [Favre03b]. In the next sections we give 
several examples that illustrate NEREUS specifications.  

4 MDA-BASED FORWARD ENGINEERING OF UML STATIC 
MODELS 

The MDA is  a framework for software development that is driven by models in different 
abstraction levels. Model-to-model transformations that can be automated are crucial in 
MDA. The MDA process is divided into three main steps [Kleppe03]: 

• Construct a model with a high level of abstraction that is called Platform 
Independent model (PIM). 

• Transform the PIM into one or more Platform Specific Models (PSM), each one 
suited for different technologies. 

• Transform the PSMs to code. 
The PIM, PSMs and code describe a system in different levels of abstraction. The  MDA 
also defines the relation between them.  

We define a MDA-based forward engineering of UML static models. We propose to 
define PIMs and PSMs by integrating UML/OCL and NEREUS specifications. A PSM is 
tailored to specify UML static models in terms of realizations that are available in one 
specific technology. For example, an Eiffel PSM is a model in terms of Eiffel libraries.  
The construction of a PSM and code is based on a number of reusable components that 
can be manipulated in order to adapt them to new applications. The final step is the 
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transformation of the PSM to code. Eiffel was the language of choice in which to 
experiment. Fig. 3 shows the main steps of the proposed process. 

There is a need for reusable and adaptable transformation components. Reusable 
components that will be used in a process based on MDA have also to be described in 
different abstraction levels. We define a framework for reuse that fits MDA very closely.  

Component models are defined in three different levels of abstraction: Platform 
Independent Component Model (PICM), Platform Specific Component Model (PSCM) 
and Implementation Component Model (IMC). The PICM level defines component 
model with a high-level of abstraction, which is independent of any implementation 
technology. A PICM is related to more than one PSCM, each suited for different 
technologies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3:  The MDA-based  process 
 

The PSCM level defines a component model that is tailored to specify realizations of the 
PICM components which are code in a specific language. 

We define specific reusable components for associations, OCL Collections and 
design patterns [Gamma95].  

A component is defined in three levels of abstraction that integrate NEREUS 
incomplete algebraic specifications, complete algebraic specifications and Eiffel code.  
Fig. 4 depicts a specific Association component. It describes a taxonomy of associations 
classified according to kind, degree, navigability and multiplicity. The first level 
describes a hierarchy of incomplete specifications of associations using NEREUS and 
OCL.  Every leaf in this level corresponds to sub-components at the second level. A 
realization sub-component is a tree of algebraic specifications: the root is the most 
abstract definition, the internal nodes correspond to different realizations of the root. For 
example, for a “binary, bi-directional and many-to-many” association, different 
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realizations through hashing, sequences, or trees could be associated. These sub-
components specify realizations starting from algebraic specifications of Eiffel libraries.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 
Figure 4. The component Association 

 

The implementation level associates each leaf of the realization level with different 
implementations in Eiffel. Implementation sub-components express how to implement 
associations and aggregations. For example, a bi-directional binary association with 
multiplicity “one-to-one” will be implemented as an attribute in each associated class 
containing a reference to the related object. On the contrary, if the association is “many-
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to-many”, the best approach is to implement the association as a different class in which 
each instance represents one link and its attributes. 

The component reuse is based on the application of reuse operators: Rename, Hide, 
Extend and Combine. These operators were defined on the three levels of components. A 
formal description of them and examples are included in [ Favre98]. 

The central part of the MDA is to automate the generation of a target model from a 
source model. In the following sections we describe the vital transformations in this 
process: how a UML/OCL static model is transformed into a NEREUS specification, and 
how this specification is transformed into Eiffel. 

5 FROM UML/OCL TO NEREUS 

In this section we describe how to transform specifications consisting of UML class 
diagrams together with OCL invariants and pre- and postconditions into a NEREUS 
specification. The text of the NEREUS specification is completed gradually. First, the 
signature and axioms are obtaining by instantiating the reusable scheme BOX_ . Next, 
associations are transformed by instantiating reusable schemes that exist in the 
component Association. Finally, OCL specifications are transformed using a set of 
transformation rules. Then, a specification that reflects all the information of UML 
diagram is constructed. Fig. 5 shows the main steps of this phase.  
 

 

  
Package UML                                                                                      GS                                                        NEREUS  

 

 

 
Fig. 5: From UML/OCL to NEREUS  

Fig. 6 shows the BOX_ scheme. The attribute mapping requires two operations: an access 
operation and a modifier. The access operation takes no arguments and returns the object 
to which the receiver is mapped to. The modifier takes one argument and changes the 
mapping of the receiver to that argument. In NEREUS no standard convention exists, but 
frequently we use names such as get_ and set_ for them. Association specification is 
constructed by instantiating the scheme ASSOCIATION_ (Fig. 7). 
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CLASS Name 
IMPORTS TP1,..., TPm, T-attr1, T-attr2,..., Tattrn 
INHERITS B1,B2,..., Bm 
ASSOCIATES  
<<Aggregation-E1>>,...,<<Aggregation-Em>>, 
<< Composition-C1>>,...,<<CompositionCk>>, 
<< Association-D1>>,...,<<Association-Dk>> 
EFFECTIVE 
TYPE Name 
FUNCTIONS 
createName : T-attr1 x ... x T-attrn -> Name 
seti : Name x T-attri -> Name 
geti: Name -> T-attri               1<=i<=n 

 

DEFERRED 
FUNCTIONS 
meth1: Name x TPi1 x TPi2  x TPin -> TPij 
... 
methr : Name x TPr1 x TPr2 ... x  TPin -> TPij 
AXIOMS 
{ t1,t1’: T-attr1; t2,t2’:T-attr2;...; tn,tn’:T-attrn} 
geti(create(t1,t2,...,tn)) = ti           1 ≤ i ≤ n  
 
seti (create (t1,t2,...,tn), ti’) = create (t1,t2,...ti’,...,tn)         
 
END-CLASS 

 

 
Fig. 6: The BOX_  Scheme 

 
 

ASSOCIATION ___ 
IS __ [__: Class1; __:Class2; __: Role1;__:Role2; 
__:Mult1; __:Mult2; __:Visibility1; __:Visibility2] 
CONSTRAINED BY __ 
END 

 
Fig. 7: The ASSOCIATION_  Scheme 

 
 
Fig. 8 shows a simple class diagram P&M in UML and NEREUS. P&M introduces two 
classes (Person and Meeting) and a bidirectional association between them. We have 
meetings in which persons may participate. The NEREUS specification is built by 
instantiating the scheme BOX_  and the scheme ASSOCIATION_ . 
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Fig. 8:Translating interfaces and relations 
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 P & M 

PACKAGE P&M 
CLASS Person 
IMPORTS String, Nat 
ASSOCIATES <<Participates>> 
EFFECTIVE 
TYPE  Person 
GENERATED-BY Create_Person 
FUNCTIONS 
createPerson: String x String x String -> Person 
name: Person -> String 
affiliation: Person -> String 
address: Person -> String 
set-name: Person x String -> Person 
set-affiliation : Person x String -> Person 
set-address: Person x String -> Person 
AXIOMS {p:Person; m: Meeting; s,  s1,  
s2, s3: String; pa: Participates} 
name(createPerson(s1,s2, s3)) = s1 
affiliation (createPerson (s1, s2, s3) ) = s2 
address (createPerson (s1, s2, s3)) = s3 
set-name ( createPerson (s1, s2, s3), s) =  
createPerson (s,s2,s3))  
set-affiliation (createPerson( s1,s2, s3), s) = 
createPerson (s1, s, s3))  
… 
END-CLASS 
CLASS Meeting 
IMPORTS String, Date, Boolean, Time 

ASSOCIATES <<Participates>> 
EFFECTIVE 
TYPE Meeting 
GENERATED-BY createMeeting 
FUNCTIONS 
createMeeting:  
String x Date x Date x Boolean  -> Meeting 
tittle: Meeting -> String 
start : Meeting -> Date 
end : Meeting -> Date 
isConfirmed : Meeting -> Boolean 
set-tittle: Meeting x String -> Meeting 
set-start : Meeting x Date -> Meeting 
set-end: Meeting x Date -> Meeting 
set-isConfirmed: Meeting x Boolean -> Boolean 
AXIOMS {s: String; d, d1,: Date; b:Boolean;…}
title( createMeeting (s, d, d1, b) ) =   s 
start ( createMeeting (s, d, d1, b)) = d 
end ( createMeeting (s, d, d1, b)) = d1 
isConfirmed ( createMeeting (s, d, d1, b)) = b 
... 
END-CLASS 
ASSOCIATION Participates 
IS Bidirectional-Set [Person: Class1; Meeting: 
Class2; participates: Role1; meetings: Role2; *: 
Mult1; * : Mult2; + : Visibility1; +: Visibility2] 
END 
END_PACKAGE 
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Fig. 9 shows an instantiation of Bidirectional-Set scheme: 
 

RELATION CLASS Bidirectional-Set             
-- Bidirectional /* to */ as Set 
INHERITS BinaryAssociation  [Class1 ->Person, Class2->Meeting]     
IMPORTS Set_Person: Set [Person], Set_Meeting: Set[Meeting] 
EFFECTIVE 
OPS  name,  frozen  , changeable  ,  addOnly  , getRole1, getRole2, getMult1,getMult2, 
getVisibility1, getVisibility2, isRelated, isEmpty, rightCardinality, leftCardinality 
create: Typename->Participates 
addLink:Participates(b) x Person(p) x Meeting(m)-> Participates 
   pre:  not isRelated(a,p,m) 
isRightLinked: Participates x Person -> Boolean 
isLeftLinked: Participates x Meeting -> Boolean 
getMeetings: Participates(a) x Person(p) -> Set_Meeting 
   pre: isRightLinked(a,p) 
getParticipants: Participates(a) x Meeting(m)->  Set_Person 
   pre: isLeftLinked(a,m) 
remove: Participates (a)  x Person (p)  x Meeting (m) ->  Participates 
   pre: isRelated(a,p,m)  
∀a:Participates; p,p1: Person; m,m1:Meeting; t:TypeName 
name(create(t))= t 
name(add(a,p,m)) = name(a) 
isEmpty (create(t))= True 
isEmpty(addLink(a,p,m))= False 
frozen  (a) = False     changeable  (a)= True  addOnly  (a) = False 
getRole1(a) = “ participants”  getRole2 (a)  = “meetings” 
getMult1(a) = *                    getMult2(a) = * 
getVisibility1(a) = +            getVisibility2(a) = + 
isRelated (create(t),p,m) = False 
isRelated(addLink(a,p,m),p1,m1) = (p=p1 and m=m1) or  isRelated (a,p1,m1)  
isRightLinked (create(t),p) = False 
isRightLinked (addLink (a,p,m),p1)= if p=p1 then True  else isRightLinked(a,p1) 
isLeftLinked(create(t),m)= False 
isLeftLinked(addLink(a,p,m),m1)= if m=m1 then True else isLeftLinked(a,m1) 
rightCardinality(create(t),p)= 0 
rightCardinality(addLink(a,p,m),p1) = 
 if p=p1 then 1 + rightCardinality(a,p1) else rightCardinality(a,p1) 
leftCardinality(create(t),m) = 0 
leftCardinality(addLink(a,p,m),m1)=   
if m=m1 then 1+ leftCardinality(a,m1)  else leftCardinality(a,m1) 
getMeetings(addLink(a,p,m),p1)=  
if p=p1 then  including (getMeetings(a,p1), m) else getMeetings(a,p1) 
getParticipants (addLink (a,p,m),m1) =  
 if m=m1 then including (getParticipants(a,m1) , m) else getParticipants(a,m1)  
remove(addLink(a,p,m),p1,m1) =   if (p=p1 and m=m1) then a else remove(a,p1,m1) 
END-RELATION 

 
Fig. 9:  The  association Participates 
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From OCL to NEREUS 

The Object Constraint Language (OCL) is a query and expression language for UML. 
Recently, a new version of OCL, version 2.0, has been defined [OMG03]. 

Analyzing OCL specifications we can derive axioms that will be included in the 
NEREUS specifications. Preconditions written in OCL are used to generate preconditions 
in NEREUS. Postconditions and invariants allow us to generate axioms in NEREUS. 

An operation can be specified in OCL by means of preconditions and postconditions 
by the following syntax: 

 
Typename :: OperationName (parameter1:Type1,...): ReturnType 
pre:_ some expression of self and parameter1 
post: Result = _ some function of self and parameter1 
 

 

self can be used in the expression to refer to the object on which an operation was called, 
and the name Result is the name of the returned object, if there is any. The names of the 
parameter (Parameter1,...) can also be used in the expression. 

The value of a property in a postcondition is the value upon completion of the 
operation. To refer to the value of a property at the start of the operation, the property 
name has to postfix with “@” followed by the keyword “pre”. Fig. 10 shows the OCL 
specifications linked to the package P&M (Fig. 8).This example was analyzed in 
[Hussmann99] and [Padawitz00]. 

 
context Meeting:: checkDate():Bool 
post: result = self.participants->collect(meetings) ->forAll(m | m<> self and 
m.isConfirmed implies (after(self.end,m.start) or after(m.end,self.start))) 

 
context Meeting::isConfirmed () 
post: result= self.checkdate() and self.numConfirmedParticipants > 2 

 
context Meeting :: duration ( ) : Time 
post: result = timeDifference (self.end, self.start) 

 
context  Person:: numMeeting ( ): Nat 
post: result = self.meetings -> size 

 
context  Person :: numConfirmedMeeting ( ) : Nat 
post: result= self.meetings -> select (isConfirmed) -> size 

 
 

Fig. 10: OCL Specifications of P&M 
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The transformation process of OCL specifications to NEREUS is supported by a system 
of transformation rules. Fig. 11 shows how to map some OCL expressions onto 
NEREUS.  
 

 OCL NEREUS 

M-1   v (variable)  v (variable) 
M-2  

Type -> OperationName(parameter1:Type1,...): 
Rtype 

 
OperationName:TypexType1x...-> Rtype 
 

M-3 v. operation(v’) Operation (v,v’) 
M-4 v->operation (v’) Operation(v,v’) 
M-5 v.attribute attribute (v ) 
M-6 context A                 

object.rolename 
  

get_  (A, object) 

M-7 e.op  op (Translate NEREUS (e)) 
 
Let TranslateNEREUS be functions that translate logical 
expressions of OCL into first-order formalae in NEREUS. 

M-8 collection-> op (v:Elem/ |boolean-expr-with-v) 

op ::=select| forAll| reject| exists 

LOCAL 
OPS  
f: Elem -> Boolean 
∀ v : Elem 
f (v)= Translate NEREUS (boolean-expr-with-v ) 
WITHIN 
op (collection, f) 
END-LOCAL 
----------------------------------- 
opv (collection, [f(v)])                      Equivalent concise notation 
 

M-9 collection-> collect (v:Elem | expr-with-v) 

expr-with-v : S 

LOCAL 
OPS  
f: Elem -> S 
∀ v : Elem 
f (v)= Translate NEREUS (expr-with-v ) 
WITHIN 
collect (collection, f) 
END-LOCAL 
 
collectv (collection, [f(v)]) 
 

M-10 c->iterate (v:Elem; acc:Type = exp |  

expr-with-v-and-acc) 

LOCAL 
OPS  
f: Elem  x Type -> Type 
base: -> Type 
∀ v : Elem; acc: Type 
f(v,acc)=TranslateNEREUS(expr-with-v-and-acc) 
base = Translate NEREUS ( exp) 
WITHIN 
iterate (collection, f, base) 
END-LOCAL 
 

Fig. 11: Mapping basic expressions OCL  
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The following rules (Fig. 12) are used to generate the axioms for the Person and Meeting 
classes (Fig. 13). 
 

                   OCL                 NEREUS 
Rule 1 
T → Op (<parameterList>) : ReturnType 
post: expr  

 

OPS 
TranslateNEREUS (T → Op (<parameterList>) : 
ReturnType) 
 ∀  t : T, ... 
 TranslateNEREUS (exp) 
 

Rule 2 
T-> forAll|exists|select |reject  
(v :Type|  boolean-expr-with-v) 

 

 forAllv|existsv|selectv|rejectv (TranslateNEREUS (T),    
TranslateNEREUS (boolean-expr-with-v) 

 

Rule 3 
T -> collect ( v :type|v.property) 

 

collectv (Translate NEREUS (T),  
Translate NEREUS (v.property)) 

 
Rule 4 
 T ->iterate(e:Elem; acc:Type = expr 
                   |  Boolean-expr-with-e) 

 

iteratev (TranslateNEREUS (T), 
TranslateNEREUS(boolean-expr-with-e), 
TranslateNEREUS(expr)) 

 
 

Fig. 12: Transformation Rules 
 
 

 
CLASS Person 
... 
∀p:Person;  s,s’: String; Pa: Participates 
numConfirmedMeetings (p) =   
size(selectm (getMeetings(Pa,p), [isConfirmed (m)] )                Rule 1, 2 
numMeetings (p) = size (getMeetings (Pa, p))                           Reglas 1 
END-CLASS 
 
CLASS Meeting 
 
∀m,m1:Meeting;  s,s’:String; d,d’,d1,d1’:Date; b,b’:Boolean; Pa:Participates 
 
duration (m) = timeDifference (end(m),start(m))                         Rule 1 
isConfirmed (cancel(m)) = False 
isConfirmed (m)=checkDate(m) and NumConfirmedParticipants (m) > 2       Rule 1 
checkDate(m) =                                                                                              Rules  1, 2, 3 
forAllme (collectp   (getParticipants(Pa,m), [getMeetings (Pa, p)]), [consistent (m,me)] )                                                        
consistent(m,m1)= not (isConfirmed(m1)) or (end(m) < start(m1) or end(m1) < start(m)) 
 NumConfirmedParticipants (m) = size (getParticipants(Pa,m))  
END-CLASS 

 
 

Fig. 13: Translating OCL to NEREUS 
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6 FROM NEREUS TO EIFFEL 

This section discusses the main steps for transforming NEREUS constructions into Eiffel 
(Fig. 14). The Eiffel code is constructed gradually. First, associations and operation 
signature are translated. The transformation is supported by reusable components. From 
OCL and NEREUS specifications it is possible to construct  contracts on Eiffel and /or 
feature implementations by applying heuristics. 
 

 

  

   NEREUS                                                                                                                   EIFFEL     

 
 
 

Fig. 14:  The NEREUS/Eiffel phase 

Mapping Classes and Associations  

For generating code from some NEREUS specification we need transformation rules. For 
each class in NEREUS an Eiffel class is built.  

If a NEREUS class is incomplete, i.e., it contains sorts and operations in the clause 
DEFERRED, the keyword class in Eiffel is preceded by the keyword deferred. NEREUS 
and Eiffel have the same syntax for declaring class parameters. Then, this transformation 
is reduced to a trivial translation. 

The relation introduced in NEREUS using the clause IMPORTS will be translated 
into a client relation in Eiffel. The relation expressed through the keyword INHERITS in 
NEREUS will become an inheritance relation in Eiffel. This provides the mechanism to 
carry out modifications on the inherited classes that will allow adaptation. Also, 
subsortings will become inheritance relations. 

Associations are transformed by instantiating schemes that exist in the reusable 
component Association. For every ASSOCIATES clause, a scheme in the 
implementation level of the association component will be selected and instantiated. In 
these cases, the implementation level schemes suggest including reference attributes in 
the classes or introducing an intermediate class or container. Notice that the 
transformation of an association does not necessarily imply the existence of an associated 
class in the generated code as an efficient implementation can suggest including reference 
attributes in the involved classes. 

The scheme shown in Fig. 15 may be used to implement the Participates association 
(Fig. 8).  

 

 Translating  
classes  and  
associations 

Constructing 
contracts/  
implementations 

 
EIFFEL

  Reusable Schemes   Association Contracts                    Impl. 
Heuristics                   Heuristics.
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class Class1 
... 
feature {NONE} 
-- data members for association Association_Name 
rol2: UnboundedCollectionbyReference [Class2]; 
mult_rol1: MULTIPLICITY; 
--  operations for association Association_Name 
get_mult_rol2 : MULTIPLICITY is 
  do 
   Result:= mult_rol2 
  end; 
get_frozen_rol2 : BOOLEAN is 
  do 
             Result:= result_frozen1 
  end; 
add_only_rol2 : BOOLEAN is 
  do 
   Result:= result_add_only1 
                             end; 
changeable_rol2 : BOOLEAN is 
  do 
   Result:= result_changeable1 
  end; 
cardinality_rol2 : INTEGER is 
  do 
   Result:= rol2.count 
  end; 
set_ rol2 ( 
d:UnboundedCollectionbyReference [Class2]) is    
require 
get_mult_rol2.get_upper_bound  >=  d.count 
  do 
   rol2 := d 
  end; 
get_ rol2 : 
UnboundedCollectionbyReference[Class2] is 
  do  
   Result := rol2 
  end; 
remove_rol2 (e: Class2) is  
require 
is-related_rol2 (e) and not get_frozen_rol2 and   
not add-only_rol2 
  do 
   rol2. prune (e) 
  end; 
add_rol2 (e: Class2) is 
require is-related_rol2 (e) and not get_frozen_rol2 
cardinality_rol2get_mult_rol2.get_upper_bound  
 

              do 
  rol2. put (e)        
 end; 
add_rol2 (e:Class2) is 
require 
is-related_rol2 (e) and 
multiplicity_rol2get_mult_rol2.get_upper_bound and  
not get_frozen_rol2 
               do 
  rol2. put (e)        
 end; 
 is_related_rol2 (e: Class2): BOOLEAN is  
 do 
  Result:=rol2. has (e) 
 end; 
invariant 
mult_ rol2.get_lower_bound = LowerBound; 
mult_ rol2.get_upper_bound = Upper Bound; 
rol2.count >= LowerBound; 
rol2.count <= Upper Bound 
end – class Class1 
-------------------------------------------------------------------------
class Class2 
... 
feature {NONE} 
-- data members for association Association_Name 
rol1: UnbondedCollectionby Reference [Class1]; 
mult_rol1: MULTIPLICITY; 
--  operations for association Association_Name 
... 
add_rol1( e: Class1) is 
require 
is-related_rol1 (e) and and not get_frozen_rol1 and 
 multiplicity_rol1get_mult_rol1.get_upper_bound 
                    do 
  rol1. put (e)        
       end; 
 is_related_rol1 (e: Class2): BOOLEAN is  
        do 
  Result:=rol1. has (e) 
        end; 
invariant 
mult_ rol1.get_lower_bound = LowerBound; 
mult_ rol1.get_upper_bound = Upper Bound; 
rol1.count >= LowerBound; 
rol1.count <= Upper Bound 
end – class Class2 

 
Fig. 15: The Bidirectional_ Set*..*  Scheme 
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New code can be added by a textual substitution in the form 
[Class1: Person; Class2: Meeting; rol1: participants; rol2: meetings; 

UnboundedCollectionbyReference: UnboundedSetbyReference; result_frozen1: false; 
result_add_only1: false,......, LowerBound1:2; UpperBound: *; ..] 

For the association Participates the following will be in the code: 
• For each class there is a private attribute in the opposite class 
• The type of the newly created attribute is a Set and it will have corresponding get_ 

and set_ operations. 
Next, from the operation signatures, the interfaces for the features of the Eiffel class are 
generated. The translation of each operation has a different treatment according to the 
type of feature to which it makes reference (functions, procedures, variables, or 
constants). It should also be considered that of all the domains of an operation, the first 
one that coincides with the sort of the specified class is the object Current in Eiffel and it 
should be eliminated from the list of parameters of the resultant feature. Second order 
functionalities of collections are translated respecting the syntax of the Eiffel schemes for 
Collection classes. 

Constructing  Eiffel contracts and  implementations 

Eiffel provides an assertion language. Assertions are Boolean expressions of semantic 
properties of the classes. They can play the following roles: 

• Precondition: Expresses the requirements that the client must satisfy to call a 
routine. 

• Postcondition: Expresses the conditions that the routine guarantees on return. 
• Class invariant: Expresses the requirements that every object of the class must 

satisfy after its creation. 
The expression of the form old exp denotes the value that an attribute or expression exp 
had on routine entry. Current refers to the target object itself and Result is the name of 
the returned object, if there is any. 

Let TranslateEiffel be a function that expresses the translation of a NEREUS term to 
Eiffel.  TranslateEiffel op(es,e2,e3,...) (where es, e2, e3 ... are well-formed non-ground 
terms and es is a term of the sort of interest)  can be given in the following inductive way: 

 
TranslateEiffel op(es, e2, e3 ...) =  
TranslateEiffel es.op (TranslateEiffele2, TranslateEiffel e3....) 

 
Preconditions and axioms of a function written in NEREUS are used to generate 
preconditions and postconditions for routines and invariants for Eiffel classes.  

A NEREUS precondition, which is a well-formed term defined over functions and 
constants of the global environment classes, is automatically translated to Eiffel 
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precondition. Axioms are translated to Eiffel post-conditions, invariants and 
implementations. We define two heuristics to obtain postconditions and /or 
implementations in Eiffel: 

Invariant heuristics: It is possible to derive an invariant if it can establish a 
correspondence between the functions in an axiom A and the class attributes that only 
depend on the state of the object (that is to say, all the terms of the interest sort are 
variables). Then, TranslateEiffel (A) is the Eiffel invariant. 
 
                     NEREUS                           EIFFEL 
CLASS Bounded-Sequence [Elem] 
... 
∀ s: Bounded-Sequence; e: Elem 
full (s) = (capacity (s) = count (s)) 
empty (s) = (count(s) =0) 

class BOUNDED-Sequence [G] 
... 
capacity:INTEGER 
count: INTEGER 
full: BOOLEAN 
empty: BOOLEAN 
invariant 
full = (count = capacity) 
empty = (count = 0) 
 

CLASS Set [Elem] 
.... 
∀ s: Set; e: Elem 
                                                   Current 
has (s,e) implies count(extend (s, e)) =count (s) 
                                                       old 
not has (s,e) implies count(extend (s, e)) = 
                                   count (s) + 1 
 

class SET [G] 
 
... 
extend ( e : G) 
.... 
ensure 
old has (e) implies count = old count 
not old has (e) implies (count = old count + 1) 

CLASS Set [Elem] 
.... 
∀s: Set; e: Elem 
has (s, e) => not empty (s) 
        Result 

class SET[G] 
.... 
has (e : G) :BOOLEAN 
... 
ensure 
Result implies not empty 

CLASS Meeting 
... 
∀ p: Person 
numMeetings (p )= size( getParticipates (p)) 
 

class Meeting 
... 
numMeeting (p:PERSON) 
         do 
              Result := meetings.size() 
         end 

Fig. 16:  From axioms to contracts/implementations in Eiffel 
 

Postcondition / implementation heuristics: A postcondition can automatically be 
generated from one axiom if a term  e(<list-of-arguments>) which is associated to an 
operation op, can be distinguished within itself in such a way that any other term of the 
axiom depends upon the <list-of-arguments> or constants. Then, the postcondition will 
associate itself with the feature linked to the term and will obviously depend only upon 
the previous state of the method execution, upon the state after its execution and upon the 
method arguments. If the selected term  e is linked with a value belonging to the sort of 
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interest, it is associated with Current and the sort then it is associated to old.  If the 
selected term e is linked with a value the different sort, it is associated with Result. If the 
resulting expression is in the form Result =… it is possible to generate the body of the 
feature.The programmer can also incorporate assertions that reflect purely 
implementation aspects. Fig 16 shows examples of  transformations. 

For simple operations the body of the feature could be generated from OCL post-
conditions but frequently the body of the feature must be written. In that case, generating 
code for the pre and post-conditions ensures that the code conforms to the specification in 
the UML diagrams. 

In this article we show a small example of applying the NEREUS process. In more 
complex and realistic examples the code might be generated starting from components of 
design patterns[Gamma95].  

7 CONCLUSIONS 

In this article we describe foundations for MDA-based forward engineering. We define 
the NEREUS language to cope with concepts of UML metamodel and a system of 
transformation rules to translate OCL to NEREUS. Then, the UML metamodel can be 
formalized in NEREUS. We define the semantics of NEREUS by giving a precise formal 
meaning to each of the constructions of the NEREUS specification in terms of the CASL 
language. However, NEREUS is an intermediate notation open to many other formal 
languages. A rigorous semantics clarifies the intended meaning of the UML/OCL 
metamodel, ensures that no corner cases are left out, and provides a reference for 
implementation. 

UML/OCL class diagrams are used to generate NEREUS specifications, which in 
turn are used to generate the code. NEREUS allows us to keep a trace of structure of 
UML models in the specification structure that will make easier to maintain consistency 
between the various levels when the system evolves. The process is based on the 
adaptation of reusable components that are defined in a framework that fits MDA.  

All the UML model information (classes, associations and OCL specifications) are 
overturned in specifications having implementation implications. In particular, we show 
how to translate different kinds of UML associations to Eiffel. Also, we describe how to 
construct assertions and code from algebraic specifications.  

The proposed transformations preserve the integrity between specifications and code. 
Modifications at specification levels must be applied again to produce a new 
implementation. Most of the transformations can be undone, which provides great 
flexibility in code generation process supported by the existing UML CASE tools.  

The transformational approach has the advantage that it allows the automatic 
recording of the design decisions made during the code generation from the UML 
diagrams. Following this approach we can use the transformations and apply them 
backward to reverse engineer code to a UML diagram. 
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The transformation of algebraic specifications to Eiffel code was prototyped 
[Favre98]. Later works introduced an integration of the previous result with UML. The 
OCL/NEREUS transformation rules were prototyped [Favre00; Favre03a]. The obtained 
results show the feasibility of our approach.  

As a perspective to this work, we foresee the integration of our results in the existing 
UML CASE tools. Also, we foresee to use these foundations to define rigorous round-trip 
processes, which support working with design patterns. UML metamodel formalization in 
NEREUS could be used to establish the notion of behavioral equivalence that is 
fundamental for refactoring.  
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