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Java wildcards is a new programming mechanism shipped with the Java 5.0 release,
introduced to provide a flexible subtyping mechanism for generic types. Safety is re-
tained by providing rather peculiar and non-trivial mechanisms to restrict access to a
class functionalities (methods and fields), which are currently not deeply described in
the Java Language Specification. In this paper we develop on the theory of variant
parametric types from which wildcards originated, and study a framework to describe
these access restriction issues in detail, promoting the understanding and fruitful ex-
ploitation of this new programming concept.
Our work is both technical and conceptual. On the one hand, we provide an abstract
characterisation of formal rules to access restriction, then instantiated to the particular
implementation of wildcards in current Java. On the other hand, we show that such a
characterisation induces a natural description and understanding of access restriction
in terms of the ability of (instances of) a generic class to produce/consume elements
of the abstracted type.

1 INTRODUCTION

The characterisation of the different kinds of type polymorphism that can be ex-
pressed within object-oriented programming languages is well known since almost
twenty years, and features inclusion polymorphism and parametric polymorphism as
the two possible universal forms of polymorphism [2]. Despite this peer relationship
in the classification, inclusion and parametric polymorphism have never been equal
in the history of object orientation.

Inclusion polymorphism — typically achieved through the combination of inher-
itance and subtyping — is considered one of the fundamental pillars of the object-
oriented paradigm, whereas parametric polymorphism ended up being absent from
many object-oriented languages, and was introduced in major ones only in later
versions. This predominance of inclusion polymorphism actually stems from valid
language level arguments [9], and is supported by a clear and well-known domain
interpretation [3] through the ’is-a’ specialisation relation — describing which con-
cepts of the system to be modelled can be represented by the language construct.

Even Java, though introduced relatively recently, did completely without para-
metric polymorphism until its version J2SE 5.0 (October 2004) [13] — also internally
known as JDK 1.5. 1 In fact, differently from e.g. C++, Java initially strived to

1Similar argument applies to C#, which, even though younger than Java, included generics
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be a strictly single paradigm language: it was object-oriented from the start and
has purposefully avoided to break new grounds, choosing instead to keep only the
simplest, most time-tested features. However, with this new version of Java the
language makes a set of new constructs available to the programmer. Mainly, para-
metric polymorphism has been added to Java through support for generic classes
in the style of GJ language [12]; differently from C++ templates, Java generics rely
on F-bounded polymorphism [1], which is more heavily based on static typing and
better fits Java compilation schema. Such a proposal is actually known and stud-
ied since 1998 (see also [5]) and its main applicability can be considered as being
relatively well understood.

However, the release of Java generics comes equipped with a fairly new mech-
anism called wildcards [14], which supports so-called use-site variance: it is the
result of applying to the Java programming language the construct known as vari-
ant parametric types (VPTs), evaluated for inclusion in Java as it appeared in [6]2.
Wildcards parameterised types (WPTs) are types of the kind List<? extends T>,
List<? super T>, List<?> — where T is any reference type. They are used to factor
over a number of different instantiations of the same generic class: e.g. any List<T>

where T is subtype of Number can be passed to where a List<? extends Number>

is expected. This construct provides a means by which subtyping (inclusive poly-
morphism) can better integrate with generics (parametric polymorphism), and finds
many applications, e.g. in the Java Collections Framework.

In exchange of the flexible subtyping, a WPT limits the way in which fields and
methods of a generic class can be accessed — for instance a Number element cannot
be put into a list with type List<? extends Number> through method add(), only
the null element can. The details of such access restrictions are actually very
peculiar and subtle: they are actually grounded on the formal theory of VPTs as
described in [6], though some modifications are to be applied to fit the wildcards
context. However, the details of this issue are mostly neglected in the Java Language
Specification (JLS) [7], making the usage of wildcards in the design of new libraries
quite obscure in several situations.

The goal of this paper is to provide a conceptual description and interpretation
of such restriction rules, which could help programmers to exploit the wildcards
construct so as to meaningfully represent concepts and entities in their program.
This is achieved by developing a framework where semantic aspects of wildcards
can be understood in terms of access restrictions to a class operations (methods
and fields), leading to a natural interpretation in terms of a generic class ability to
produce/consume elements of the abstracted types.

The remainder of this article is as follows. In Section 2, we deepen the motivation
of this work, showing how the current J2SE and JLS versions provide little support
to the understanding of how WPTs can be usefully leveraged to build new libraries.
In Section 3, we address the problem in an abstract way, describing the rationale

only in its recent 2.0 version [10].
2More on that can be found in the third edition of the Java Language Specification [7].
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of access restriction rules and a general implementation for them in what we call
the “use-site variance” framework — a generalisation to both VPTs and WPTs. In
Section 4 we describe how such rules are specialised to the case of WPTs, providing
thorough insights in the semantics of this construct and comparison with respect to
VPTs. In Section 5, the production/consumption interpretation of access restriction
is provided and put to test in some existing applications of the Java Collections
Framework. Section 6 concludes providing final remarks.

2 ISSUES WITH JAVA WILDCARDS

Consider the following generic class Vector<X> as allowed in Java 5.0, representing
a vector where the element type has been abstracted in a type variable X with
(upper)bound Object:

class Vector<X extends Object>{
private X[] xs;

Vector(X[] xs){ this.xs=xs; }
void setElement(X x, int pos){ xs[pos]=x; }
X getElement(int pos){ return xs[pos]; }
int size(){ return xs.length; }

}

From this definition, standard generic types of the kind Vector<T> are
available to programmers, obtained by instantiating the type parameter
X with an actual type T: such types include e.g. Vector<Integer>,
Vector<String> and Vector<Vector<String>>. Other types can then be
used which are called wildcard parameterized types (WPTs) [7]. They
are of the kind Vector<?>, Vector<? extends T> and Vector<? super T>:
e.g. types Vector<? extends Integer>, Vector<? super Integer> and
Vector<? extends Vector<? super Integer>>. These types are not used to cre-
ate objects in new expressions, but rather as sort of interfaces over standard
generic types: when accessing a method or a field of an object whose type is a
WPT, a capture conversion operation is first applied [7], turning the wildcard “?”,
“? extends T” or “? super T” into a fresh type variable with certain bounds —
and hence a WPT into a standard generic type. Let symbol <: express the subtype
relation, and NullType the type for the null expression, we have:

• Vector<?> is turned into Vector<X> with NullType<:X<:Object (any X);

• Vector<? extends T> is turned into Vector<X> with NullType<:X<:T (any
X smaller than T);

• Vector<? super T> is turned into Vector<X> with T<:X<:Object (any X

greater than T).
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Roughly speaking, a WPT can be understood as a generalisation of standard generic
types, where the type parameter is not an actual reference type, but rather a set
of such types — an “interval” expressed by the bounds. Subtyping between generic
types is e.g. simply expressed in terms of inclusion of such intervals: the WPT T is
a subtype of R, if the interval induced by T is included in R’s. Notable examples are
the following:

Covariance — if R<:T then Vector<R><:Vector<? extends T>, because of the
inclusion: [R,R]⊆[NullType,T]

Contravariance — if T<:R then Vector<R><:Vector<? super T>, because of the
inclusion: [R,R]⊆[T,Object]

Bivariance — Vector<R><:Vector<?> for any R, because of the inclusion:
[R,R]⊆[NullType,Object]

This interval intuition is pretty much what the JLS describes about the semantics
of WPTs. This description is actually quite compact and simple, and is sufficient per
se to describe how programmers can invoke libraries using wildcards. As an example,
consider interface List<E> in the Java Collections Framework (implementing the
root interface Collection<E>):

class List<E> implements Collection<E>, Iterable<E>{
...

void add(E o);

E get(int index);

Iterator<E> iterator();

boolean addAll(Collection<? extends E> c);

}

We can have:

List<Number> ln=...;

List<Integer> li=...;

ln.addAll(li); // OK because of WPTs subtyping

Method addAll() takes a collection c and adds all its elements into the receiver
list. The wildcard used in the argument type states that any Collection<T> can
be passed provided that T is a smaller type than the receiver’s element type E: e.g.
Collection<Integer> can be passed since a Collection<? extends Number> is
expected — Integer is contained in the interval [NullType,Number] induced by
the wildcard “? extends Number”.

In general, wildcards are shown to be useful to enlarge the applicability of meth-
ods of generic classes, which can now accept a wider range of arguments. However,
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the impact of wildcards goes beyond the mere coding of clients for the Java Collec-
tions Framework: it is reasonable to expect Java programmers to write their own
libraries leveraging the advantages of wildcards — at least for this construct to be
considered fully successful.

Subtleties arise when considering that the flexible subtyping of WPTs necessar-
ily comes in exchange of a limited access to their methods and fields. Going back to
method addAll() in class List<E>, any implementor of it should actually exploit
the formal argument c in a limited way, only in those cases that are safe for all the
possible actual arguments passed. This is a direct consequence of Liskov’s substi-
tutability principle [8]: the more objects can be passed, the less operations can be
applied. To have a first look at how the Java compiler allows/constrains method
access through WPTs, consider the following code:

Number n=...;

List<? extends Number> len=...;

List<? super Number> lsn=...;

len.add(n); // Not allowed!

len.add(null); // Allowed!

len.addAll(len); // Not allowed!

len.addAll(null); // Allowed!

lsn.add(n); // Allowed!

lsn.addAll(lsn); // Not Allowed!

Number n2=lsn.get(0); // Not Allowed!

Object o2=lsn.get(0); // Allowed!

Understanding the reasons for these constraints is currently completely left to the
programmer’s intuition. In simple situations this is possible: in the first case above,
one can recognise that n cannot be passed to len.add() since len could have as
type parameter any type E smaller than Number, hence it is not guaranteed that the
type of n — Number — is of a smaller type; other cases such as lsn.addAll(lsn)

are increasingly complex to guess.

Clearly identifying the access restriction applied to WPTs is a first step to-
wards a true understanding of their semantics, meaning, and applicability to model
real-domain concepts. In the end, this is necessary for the designer of a class sig-
nature to find a good balance between flexibility in client invocations (widening
a method applicability) and expressiveness in code implementation (restricting ac-
cess to arguments). By widening a method’s argument type from Collection<E>

to Collection<? extends E> one actually limits the accessibility to its methods:
what functionalities will the programmer be actually allowed to exploit? Are we
sure they are expressive enough to implement the intended meaning of the method?
These are the sort of issues our work here is meant to start addressing.
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3 ACCESS RESTRICTION IN THE USE-SITE VARIANCE FRAME-
WORK

In this section we present some design and typing issues related to the use-site
variance framework, under which the access restriction features of WPTs can be
understood and expressed. We basically rely on ideas of the type system described
in [6], but our semi-formal presentation here is novel: only the peculiar aspects
needed to deal with access restriction are considered, which are formulated in terms
of meta-rules for restrictions to be later specialised. We show that access restriction
can be understood in terms of widening method types — where handling of argument
and return types are fully dual.

Main Definitions

Our syntax and terminology here resembles that of VPTs reported in [6] for sim-
plicity, in particular we shorten the notation for (type parameter) annotations using
symbols * for “?”, + for “? extends” and - for “? super”. We let meta-variable C

range over classes, X over type variables, and define the syntax:

N ::= C<v1T1,..,vkTk> WPT
T,R,S ::= X | N Type
M ::= (T1,..,Tk)->T0 Method Type
v,w,z ::= o | + | - | * Type Parameter Annotation

Notation R[T/X] is used for the type obtained from R by substituting all the occur-
rences of variable X with T.

Any class C generates four kinds of types: (i) invariant types (standard generic
types, also called instance types) of the kind C<T> (written C<oT> in the formal
syntax for uniformity), (ii) covariant types of the kind C<+T>, (iii) contravariant
types of the kind C<-T>, and (iv) bivariant types of the kind C<*> (written C<*T>

for any T in the formal syntax for uniformity — these two forms being equivalent
[6]). Given the relationship between annotations and corresponding subtyping, we
introduce an order relation ≤ on annotations, defined as the reflexive and transitive
closure of relation {o ≤ +, o ≤ -, + ≤ *, - ≤ *}: its main property is that v≤w
implies C<vT><:C<wT>. Moreover, symbol ∨ is used for the upperbound of two
annotations, and we denote by v the operation of complementing annotation v,
defined as {o = o, + = -, - = +, * = *}.

Technically, in this paper we are concerned with the problem of typing the invo-
cation of a method m() or the access to a field f on a receiver that is given one of
the above types N. More briefly, we shall refer to the problem of accessing a method
m() or field f through type N.

For standard generic types such as C<T>, the problem is already solved by
the usual typing rules of GJ [12]. In particular, if class C<X> defines method
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To m(T1 x1,..,Tk xk){...} then accessing method m() through type C<T> yields
a method type of the kind (T1[T/X],..,Tk[T/X])->To[T/X], that is, returning
the type obtained from To substituting occurrences of X with actual type T, and
expecting as ith argument type Ti after substituting X with T. For instance, in-
voking method add() on a receiver with type List<Number> yields method type
(E[Number/E])->void[Number/E], that is (Number)->void — a Number element is
expected as argument, and a void element is returned, namely, no element.

This discussion naturally extends to the case of more type arguments as in class
D<X,Y>: the invariant type provides an instantiation to both type arguments X and
Y, which get substituted to the actual formal arguments when accessing a method.
Also, reading and writing a field have the same typing treatment as invoking a getter
or a setter method for that field. Moreover, we do not handle generic methods as
they are mostly orthogonal to our aim — e.g. the wildcard capture mechanism
described in [14, 7] being not related to access restriction properties. Thus, in this
paper, for simplicity we only deal with classes with one type argument, and focus
on accessing methods with only one argument — the other cases being a slight
generalisation. Our aim is then to give a generalisation to the above access schema,
finding rules for accessing a method m() through any WPT.

Schema of Access Restriction

This problem can be defined in abstract terms by an operator [.]
.−→ [.]: suppose

class C<X> defines a method m() with type (Ti)->To, then the notation

[(Ti)->To]
C:X7→vT−−−−−−→ [(Ti′)->To′]

is used to state that accessing m() through type C<vT> yields method type
(Ti′)->To′. Symbol ∆ ranges over elements of the kind C:X7→vT, carrying all the

information on a receiver instantiation — hence we generally write [M]
∆−→ [M′]3.

In particular, we are concerned with identifying sufficient conditions for a spe-
cific implementation of this operator to yield safe solutions, namely, solutions not
breaking type soundness of the language.

Following the idea of Liskov’s substitutability property, in order to retain safety
WPTs should exchange flexibility in subtyping with a limited access to methods.
For instance, since C<+T> is a supertype of all C<R> where R<:T, then all objects
of a type C<R> can be passed to where a C<+T> is expected, thus C<+T> should
provide only those functionalities common to all C<R> — otherwise, there would be
the risk of accessing a functionality on an object that does not provide it, breaking
soundness. In particular, C<+T> should provide a general functionality which is a
“restricted” version with respect to C<T>’s. A simple example is as follows:

3Note that, differently from [6], we make the ∆ environment carry the original class C, since we
generally need to recover the bound to the type variable X as reported in its class definition.
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List<+Number> l=new List<Integer>();

l.add(new Float(1.2)); // Should be prevented at compile-time

We see that the argument type to add() when accessed through List<+Number>

cannot be Number. So, while the “void add(Number n)” functionality is pro-
vided by type List<Number>, only a restricted version of it can be provided by
List<+Number>.

This notion of restriction is naturally captured by the concept of subtyping be-
tween method types: accessing a restricted version of a method amounts to retrieving
a greater method type, which in fact expresses a more general (less specific) method
type. Recall the contravariance subtyping rule for method types (function types): a
method type (Ti)->To is a subtype of (Ti′)->To′ if and only if Ti is a supertype of
Ti′ and To is a subtype of To′ — this guarantees to safely pass a (Ti)->To where a
(Ti′)->To′ is expected.

Accordingly, if e.g. MT=(TiT)->ToT is the type of method m() when accessed
through type C<T>, and M+T=(Ti+T)->To+T the one obtained through C<+T>, then
M+T should necessarily be greater than MT. This is because M+T should actually
be greater than any MR such that R<:T. Considering the above case, the type of
add() accessed through List<+Number> should be greater than the ones obtained
from List<Number>, List<Integer>, List<Float>. Similar discussion applies when
accessing a method through a type C<-T> or C<*>. In other words, the variability
enabled by a WPT requires a generalisation when accessing a method type.

These relations actually provide the two main ingredients for obtaining condi-
tions for safe access restriction. First of all, we observe that because of subtyping
for method types, the rules for access restriction are actually separated in the way
they handle argument and return type; thus we can write

[(Ti)->To]
∆−→ [(Ti′)->To′] ⇔ (Ti ⇓∆

- Ti′ and To ⇓∆
+ To′)

where, given a certain ∆, operator ⇓∆
- is used to obtain the argument type, whereas

⇓∆
+ to obtain the return type. These operators are inspired by the close operator

introduced in [6]; our work here adds the novel contribution of applying it in an
uniform and dual way to both argument and return types — whereas in [6] it is
applied to return types only.

Note that an element ∆ = C:X7→vT can be seen as introducing constraints in the
variability of X: X=T if v is o, X<:T if v is +, X:>T if v is -, and no constraint on X if
v is *.

Secondly, the conditions for these operators to be safe are obtained from the
subtyping relation as follows. Given a ∆ constraining variable X to range within

given bounds, operators ⇓∆
+ and ⇓∆

- determine a safe restriction relation
∆−→ if: (i)

when To ⇓∆
+ To′ then To′ is a supertype of To independently of the variability of X in

∆, and similarly, (ii) when Ti ⇓∆
- Ti′ then Ti′ is a subtype of Ti independently of the

variability of X in ∆. When To ⇓∆
+ To′ holds we say that To “upwardly-closes” to To′
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w ≤ v

X ⇓C:X7→wT
v T

[VAR]

R ⇓∆
v S

C<wR> ⇓∆
+ C<(v∨w)S>

[REC+]

R ⇓∆
v S w ≥ v

C<wR> ⇓∆
- C<wS>

[REC-]

Figure 1: Access Restriction Rules

through ∆: return type To′ will be greater then any allowed substitution of X to To.
Dually, when Ti ⇓∆

- Ti′ holds we say that Ti “downwardly-closes” to Ti′ through ∆:
the argument type Ti′ should be smaller then any allowed substitution of X applied
to Ti. In fact, these close operators yield a method type which is compatible with
the original one — it is more general — and that takes into account the possible
variability of X due to the receiver’s WPT4.

General Rules for Use-Site Variance

A possible implementation for the close operators is as defined by the inference
rules shown in Figure 1 — as usual, the top-side of such rules express a necessary
condition for the bottom-side to hold. In this section we mostly focus on presenting
examples of computation results of closing operators, leaving the discussion on their
interpretation to the next section.

Operator ⇓∆
v defines a binary relation between types, where the left-side is the

type to be closed and the right-side the result of closing (an upperbound with ⇓+
and a lowerbound with ⇓-). In the left-side, such rules are intended to be applied
to types including the type variable of ∆ — if this is not the case a type is to be
trivially considered closed to itself. Also note that being a relational operator, zero,
one or many results can be obtained in general from a type to be closed. We write
R 6⇓∆

v when for no type S we have R ⇓∆
v S.

Rule [VAR] corresponds to the basis of the recursive algorithm: a type variable
can be closed if the annotation in X’s instantiation w is smaller than the direction of
the close operator v. Basically, this rule is used to close a type variable to its bound
as declared in ∆, provided it is compatible with the direction of closing. Examples

4 Following the discussion in [6], this restriction approach can be seen in an abstract way as:
(i) considering the receiver in the domain of existential types, (ii) accessing the method type on
it, which yields an existential method type, (iii) obtaining a supertype of such method type in
the domain of WPTs. Thanks to this connection with existential types, this general technique —
which is a key design contribution of [6] — is shown to retain safety.
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of applications for this rule are as follows:

X ⇓C:X7→+T
+ T

X ⇓C:X7→-T
- T

X ⇓C:X7→oT
+ T

Rule [REC+] handles recursion through generic types of upward closing, finding
upperbounds. First, the argument R is closed itself using the direction v, then the
annotation to be used is obtained by “mixing” (through ∨ operator) v and the
original annotation w in R. This rule exploits the fact that (i) if S is an upperbound
to R then C<+S> is an upperbound to C<+R> (v = w = +), (ii) if S is a lowerbound
to R then C<-S> is an upperbound to C<-R> (v = w = -), and (iii) in the other
cases only the upperbound C<*> can be used. For instance, we have:

C<X> ⇓C:X7→+T
+ C<+T>

C<-X> ⇓C:X7→+T
+ C<*T>

C<-X> ⇓C:X7→-T
+ C<-T>

C<+C<X>> ⇓C:X7→+T
+ C<+C<+T>>

C<-C<X>> ⇓C:X7→+T
+ C<*C<+T>>

Finally, rule [REC-] dually handles recursion through generic types of downward
closing, finding lowerbounds. Argument R is closed to S using direction v: if w is
greater than the opposite of v, then, S is kept with annotation w. This rule exploits
the fact that (i) if S is an upperbound to R then C<-S> is a lowerbound to C<-R>

(v = + and w = -), (ii) if S is a lowerbound to R then C<+S> is a lowerbound to
C<+R> (v = - and w = +); the cases (iii) where v = o or w = * trivially close. For
instance, we have:

C<-X> ⇓C:X7→+T
- C<-T>

C<+X> ⇓C:X7→-T
- C<+T>

C<+C<-X>> ⇓C:X7→+T
- C<+C<-T>>

These rules are obtained as a generalisation of those in [6], translated in our
upward/downward dual schema.

4 ACCESS RESTRICTIONS OF JAVA WILDCARDS

We first note that the rules provided in previous section may cause close operators to
yield zero results. This would mean that a method becomes completely unaccessible
when invoked through a certain receiver. For instance we have:

X 6⇓C:X7→-T
+

X 6⇓C:X7→+T
-

C<X> 6⇓C:X7→-T
-

C<X> 6⇓C:X7→+T
-
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Considering the first case, it would mean that a method get() returning an element
of the type variable X cannot be invoked through a receiver C<-T>. In fact, whereas
T is a lowerbound for X, an upperbound is in fact not known: X cannot be upwardly
closed. Similarly, considering the second case, it would mean that a method set()

accepting an element of type variable X cannot be invoked through a receiver C<+T>.
The implementation of WPTs in Java 5.0 applies two basic variations to the above
rules so as to make them less restrictive, and in the end, ensuring that it is never
the case that a method cannot be invoked through a given receiver.

The first idea is that in the get() case, the type variable X has at least the
upperbound defined in the extend clause where X is declared, or Object if none
is specified — e.g. Objects can always be retrieved from any vector. Hence, the
following new rule is to be added:

X ⇓∆
+ bound(∆) [BOUND]

In conjunction with the other rules, we now have e.g. that:

X ⇓C:X7→-T
+ T

C<-X> ⇓∆
- C<-bound(∆)>

C<+C<X>> ⇓∆
- C<+C<-bound(∆)>>

In particular, the first case makes upward closing always return at least one result.

A dual consideration is that method set() could be invoked through type C<+T>
by passing the null value — since in fact NullType can always be considered a
lowerbound to each type variable. Seen in the context of access restriction, this
means that the two following top level rules defining the close operator w⇓∆

v for
WPTs are to be used:

R ⇓∆
v S

R w⇓∆
v S

[OK]

R 6⇓∆
v

R w⇓∆
v NullType

[NULL]

They state that if the standard close operators (⇓∆
v ) yields some result, than this

is a result for WPTs as well [OK], otherwise the result of downward closing yields
NullType [NULL]. The combination of these two adaptations is basically a point-
wise departure from original rules, ensuring methods to be accessible through any
receiver.

Another interesting issue with access restriction rules is that more results can be
provided when closing a type, e.g.:

C<C<-X>> ⇓C:X7→+T
+ C<+C<*T>>

C<C<-X>> ⇓C:X7→+T
+ C<-C<-T>>

To check this situation suffices it to note that the following code is correctly compiled
by the Java 5.0 compiler (both results of closing can be seen as return type of the
method):
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class C<X> extends Object{
C<C<? super X>> m(){

return null;

}
void meth(C<? extends Number> t){

C<? extends C<?>> t1=t.m();

C<? super C<? super Number>> t2=t.m();

}
}

The type of expression t.m() is precisely obtained by closing type C<C<? super X>>

(that is, C<C<-X>>) under the environment C:X7→+Number: as the code shows
this type is interpreted as being a subtype of both C<? extends C<?>> and
C<? super C<? super Number>> (that is, C<+C<*Number>> and C<-C<-Number>>).
But what is the type of t.m() anyway? As discussed in [6], this type is not a VPTs
(it is neither a wildcard) and cannot be directly expressed by a programmer: Java
5.0 represents it as the type “C<C<? super capture of ? extends Number>>”5, as
revealed by the error message obtained trying to assign t.m() to a wrong variable:

Integer t1=t.m();

-->

incompatible types

found : C<C<? super capture of ? extends Number>>

required: Integer

This type is implemented inside the compiler by a “capture” as described in
Section 2, that is, as the type C<C<? super Y>> where Y is a fresh type variable
with upperbound Number (and lowerbound NullType).

VPTs and Uniqueness

It is interesting here to show the differences between WPTs and VPTs. VPTs
basically adhere to the general restriction rules of Section 3. The only departure
is due to the need of simplifying the programmers’ understanding (and also the
implementation of static analysis in compilers): the original work of VPTs in [6]
proposed to avoid closure operators to yield more results. To this end, the following
more refined rule is used instead of [REC+]:

R ⇓∆
+ S

C<wR> ⇓∆
+ C<(+∨w)S>

[REC+U]

5 In type theory, this type can be understood as the existential type
∃X<:Number.C<(∃Y:>X.C<Y>)> [11].
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This rule guarantees the result of (both updward and downward) closing being
unique: it promotes “covariance propagation” for upward closing, since e.g. now
type C<C<-X>> only closes to C<+C<*T>> in environment C:X7→+T — it can be un-
derstood as simply “adding” the covariance symbol + at each level of nesting. Apart
from this issue, which only affects types with a complex parameterisation structure,
and from the idea of exploiting the trivial type variable bounds NullType and the
declared upperbound, VPTs and WPTs provide the same access restriction rules.

5 UNDERSTANDING RESTRICTIONS

Whereas the closure rules discussed in previous sections can actually be used to
compute method types when accessed through WPTs — and hence be used e.g.
to guide the implementation of a compiler —, it is clear that a more conceptual
description of their behaviour would be usuel, to be more fruitfully leveraged by
designers and programmers. A first step towards the understanding of restrictions
in use-site variance is made in [6], where VPTs are given an interpretation applicable
to collection classes only, referring to read-only and write-only views to a collection
induced by covariant and contravariant parametric types. For instance, given the
generic class List<X> for lists of elements, List<+Integer> is understood as the
type of those lists of integers which can only be read — since in VPTs, invoking
method set() is not allowed through List<+Integer>. Similarly, List<-Integer>
is the type of those lists that can only be written, and List<*> which can neither
be read nor written.

This interpretation has however some problems. First, it does not work well
with wildcards, as we showed that e.g. null elements can be written in a list
List<? extends Integer> anyway. Then, it applies to collection (and container)
classes only, as only for them the concepts of reading and writing are defined.
Moreover, this interpretation also falls short when collection classes have meth-
ods that go beyond simple setters or getters of elements X. For instance, a
method “boolean contains(X x)” in class List<X> cannot be invoked on a type
List<+Integer> even though it is not about writing the content of the list. Since
WPTs happen to be useful in a wider range of cases, including not only collection
classes with the above kinds of methods, but also others such as e.g. streams, refer-
ences, event producers and listeners classes, the need for a more broadly applicable
interpretation clearly arises.

Accordingly, we introduce a wider interpretation for WPTs and their features,
which generalises over the one in [6], and enables the understanding of a number of
possible application cases — this interpretation can be used with VPTs as well, the
few differences will be emphasised throughout. By exploiting the ideas explained
in the previous section, this is mainly achieved by seeing methods of generic classes
as functionalities to produce and consume elements (of the abstracted type), and
describing WPTs as views over that classes that prevent their ability to either pro-
duce or consume such elements. Since here we move to more practical aspects, we
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interface ReadCollection<X>{
X get(int pos);

}
interface WriteCollection<X>{

void put(X elm, int pos);

}
interface Collection<X>{

X get(int pos);

void put(X elm, int pos);

boolean contains(X elm);

}
interface Stream<X>{

X readNext();

void writeNext(X elm);

}

interface Reference<X>{
void initElement(X elm);

X resolve();

}
interface Generator<X>{

X produce();

}
interface Listener<X>{

void listen(X event);

}

Figure 2: Examples of Interfaces for generic managers of different sorts

get back to WPT syntax, writing types C<? extends T>, C<? super T> and C<?>

for C<+T>, C<-T> and C<*>.

Basic Ontology

As far as access restriction in WPTs is concerned, a generic class C<X> is interpreted
as a (generic) class of managers handling elements — that is, objects of the ab-
stracted type X. Methods of a generic class, with their arguments and result, are
correspondingly seen as functionalities provided by one such manager: some of them
may let these elements enter and escape the scope of the manager. This is achieved
by consuming and producing these elements (or managers of these elements), re-
spectively as actual arguments and return objects. A standard generic type such
as C<Integer> is used to create and handle a particular case of managers: those of
integer elements.

The concept of a “manager” should up to this point be considered in its broader
acceptation, as a generalisation of the concepts of collection, stream, reference, gen-
erator, listener, and the like — see Figure 2. In general, a write-only collection, an
output stream, and a listener can be seen as managers with functionalities that only
consume elements, while a read-only collection, an input stream, and a generator as
managers with functionalities that only produce elements. Certain classes, such as
Collection<X>, Stream<X>, and Reference<X> have both a production and con-
sumption character, and this is in fact the most frequent situation — as argued
e.g. in [4] and observed in the Java Collections Framework. WPTs are precisely
introduced to deal with these cases, to separately focus on the production or con-
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sumption ability of these “hybrid” classes, and distinguish them when necessary
and/or useful.

The WPTs C<? extends Integer>, C<? super Integer>, and C<?> — being
all supertypes of C<Integer> that impose some access restriction to its function-
alities — can be seen as interfaces over the class of managers C<Integer>. They
are used to reduce the original ability of a manager to produce and consume ele-
ments through C’s functionalities, which is exchanged by a more flexible subtyp-
ing. As a result of the definition of the close operators, which look for mini-
mal/maximal supertypes/subtypes independently of the type variable variability,
we have that: C<? extends Integer> prevents any ability to consume elements
of the abstracted type, and is hence called the production version of C<Integer>;
C<? super Integer> prevents any ability to produce elements of the abstracted
type, and is hence called the consumption version of C<Integer>; finally C<?> pre-
vents any production and consumption ability, and is hence called the closed version
of C<Integer>.

This production/consumption characterisation is provided to a class by propa-
gating it to all its methods. For a given type of elements T, we say that the signature
to C<? extends T> is obtained from C<T>’s by restricting all its functionalities to
their production version, and similarly C<? super T> to the consumption version,
and C<?> to the closed version. According to the general substitutability principle
[8], each such restriction amounts to widening the production of the functionality
(method return type) and narrowing the consumption of the functionality (method
argument types) with respect to C<T>’s original version. This limits the contexts
where the functionality can be applied, but consequently widens the set of managers
on which it can be safely invoked.

Basic Interpretation of Restrictions

We first analyse the case where the type variable of a generic class appears as method
argument and return type as it is — that is, not inside parameterisations. This is
actually a very common case e.g. in simple collection classes such as class Vector<X>
reported in Section 2. By applying the access restriction rules described in previous
section, and for a given type T, we can identify for each of the types Vector<T>,
Vector<? extends T>, Vector<? super T>, and Vector<?> a different signature
composed by the restricted versions of Vector’s methods. These are reported in Fig-
ure 3. The case of method getElement() in the signature for Vector<? extends T>

is read e.g. as follows: to obtain the return type we should (upwardly-)close the
declared return type X under the environment ∆ associating X to +T, which yields T.
Applying closure to an argument type needs instead downward closure: here int nat-
urally yields int again, for this is not a generic type containing the abstracted type
X. The cases of method setElement() in Vector<? extends T> and getElement()

in Vector<? super T> involve rules [NULL] and [BOUND] (Object is the declared
bound of X in Vector). Finally note that as one may expect from substitutability,
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signature to Vector<T>{ // Prod & Cons

void setElement(T x, int pos);

T getElement(int pos);

int size();

}
signature to Vector<? extends T>{ // Prod

void setElement(NullType x, int pos);

T getElement(int pos);

int size();

}
signature to Vector<? super T>{ // Cons

void setElement(T x, int pos);

Object getElement(int pos);

int size();

}
signature to Vector<?>{ // Closed

void setElement(NullType x, int pos);

Object getElement(int pos);

int size();

}

// X ⇓C:X7→oT
- T

// X ⇓C:X7→oT
+ T

// X ⇓C:X7→+T
- NullType

// X ⇓C:X7→+T
+ T

// X ⇓C:X7→-T
- T

// X ⇓C:X7→-T
+ bound(C,X)

// X ⇓C:X7→*T
- NullType

// X ⇓C:X7→*T
+ bound(C,X)

Figure 3: Viewpoints over a class Vector<X>

the signature to List<T> is that of a type smaller than both List<? extends T>

and List<? super T>’s, which are themselves smaller than List<?>’s.

In these very simple cases, the production/consumption metaphor works as fol-
lows: (i) applying the production abstraction to method setElement() makes it no
longer consuming elements of the abstracted type T — only the very specific null

value is accepted — while leaving getElement() and size() unchanged; dually, (ii)
applying the consumption abstraction to method getElement() makes it no longer
producing elements of the abstracted type T — only very general Object elements
are returned — while leaving setElement() and size() unchanged; finally, (iii)
applying production and consumption works in both ways, leaving unchanged only
the size() method. In practice, by simply looking at X’s position in a method’s
signature, one can deduce that getElement() is intrinsically a production function-
ality, method setElement() is a consumption one, and method size() is neither
a production nor a consumption one. In the end, signature List<? extends T>

forbids consumptions of elements of the abstracted type, List<? super T> forbids
production of elements of the abstracted type, and List<?> forbids both.

More generally, Figure 4 shows the restrictions applied to return types (top) and
argument types (bottom) in these cases, where columns range over possible receiver
types, rows over the original type (return/argument type), and the table cell reports
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ret C<T> C<? extends T> C<? super T> C<?>

X T T bound bound

arg C<T> C<? extends T> C<? super T> C<?>

X T NullType T NullType

Figure 4: Restriction rules for variables

the closed type. This figure shows that in the original signature, the restrictions
simply allow X to appear as return type in the production receiver C<? extends T>

and as argument in the consumption receiver C<? super T>. These restrictions are
a consequence of rules [VAR,BOUND,NULL].

Note that a method “boolean contains(X x);” in class Vector<X> would be
restricted similarly to method setElement() above — most notably only null can
be passed when invoked through a production type Vector<? extends T>. This
perfectly fits our interpretation, since both contains() and setElement() are con-
sumption functionalities.

The same interpretation can be applied to VPTs as well, which actually provides
a more restrictive access to methods. When the return type closes to the bound
and the argument type to NullType, VPTs actually make the method be com-
pletely inaccessible: in Figure 3, the signature to Vector<? extends T> would lack
setElementAt(), Vector<? super T> would lack getElementAt(), and Vector<?>

both setElementAt() and getElementAt().

First-Level Nesting of Type Variables

As a further step towards describing access restriction rules we consider the case
where the formal argument X appears inside a parameterisation, that is in a type
C<X>, C<? extends X>, C<? super X>, or implicitly in types C<?>.

Figure 5 shows the result of applying access restriction in this case. Follow-
ing rule [REC+], return types are widened by “joining” the variance annotation of
the receiver and that of the original return type as defined in the class. For in-
stance, getting a consumer D<? super X> of X elements from a production manager
C<? extends T> yields a manager D<?>, where neither production nor consumption
can be applied. This situation can be understood observing that both the restric-
tion of the manager providing the functionality C<? extends T> and the restriction
originally considered for the return type D<? super X> have to be applied, which
clearly results in a closed manager. This restriction is obtained by applying [REC+]
where inner types are closed directly exploiting rule [VAR].

The case of argument types (bottom of Figure 5) needs instead a more refined
view. It turns out that only four cases of restrictions over the argument actually lead
to a functionality consuming elements which are not null: (i) accepting a closed ab-
straction is allowed independently of the receiver, (ii) a consumer C<? super T> is
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allowed to accept a producer D<? extends T>, and (iii) a producer C<? extends T>

is allowed to accept a consumer D<? super T>. The first case is justified consider-
ing that any manager of T should be allowed to consume a closed abstraction of
T elements, for it never affects its original consumption/abstraction ability with
respect to T elements. The second case and third case are justified in terms of hid-
ing/encapsulation: a manager consuming T elements can do so by taking another
manager in its scope which produces such T elements, and viceversa, a manager
producing T elements can do so by taking another manager in its scope which con-
sumes such T elements. Other cases are instead not allowed: for instance a producer
C<? extends T> is not allowed to consume a producer D<? extends T> itself, as
this would allow C<? extends T> to consume T elements through D. The restriction
rule [REC-] is responsible for this behaviour.

Note that these parameterisation schemata actually do apply in the Java Col-
lections Framework. Consider for instance the following class List<X>:

class List<X>{
...

List<X> getTail(); // Tail getter

void setTail(List<X> l); // Tail setter

void addAll(List<? extends X> l); // From l to this

}

Signatures of its WPTs are then as follows:

signature to List<? extends T>{
...

List<? extends T> getTail(); // Produces a producer version of tail.

void setTail(NullType l); // No consumption of Ts

void addAll(NullType l); // No consumption of Ts

}
signature to List<? super T>{

...

List<? super T> getTail(); // Produces a consumer version of tail

void setTail(NullType l); // No consumption of Ts

void addAll(List<? extends T>); // Can consume a producer

}

In particular, notice that access restrictions properly deal with the read/write in-
terpretation over collections described in [6]. For instance, on a write-only List

— a consumer List<? super T> — one can access the tail (getTail()) retrieving
a write-only list, which can then be recursively updated. Moreover, it is safe to
consume a List<? extends T>, as it can be exploited to retrieve T elements, to be
possibly consumed by the receiver.

In most of these cases VPTs behave similarly: the only difference is that where
argument types close to NullType or to the particular case D<? super bound>, VPTs
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ret C<T> C<? extends T> C<? super T> C<?>

D<X> D<T> D<? extends T> D<? super T> D<?>

D<? extends X> D<? extends T> D<? extends T> D<?> D<?>

D<? super X> D<? super T> D<?> D<? super T> D<?>

D<?> D<?> D<?> D<?> D<?>

arg C<T> C<? extends T> C<? super T> C<?>

D<X> D<T> NullType NullType NullType

D<? extends X> D<? extends T> NullType D<? extends T> NullType

D<? super X> D<? super T> D<? super T> D<? super bound> NullType

D<?> D<?> D<?> D<?> D<?>

Figure 5: Restriction rules for nested types

make such methods completely inaccessible. Note that in all such cases, however,
consumption of the abstracted elements is forbidden both in WPTs and VPTs.

Deeper Nestings

The case where type variable X occurs inside a more complex parameterisation such
as C<C<X>> are generally handled by rules [REC+] and [REC-] (when inner types
are treated with [REC+] and [REC-] recursively). As described in previous section,
however, such behaviours are characterised by loss of uniqueness, and become then
much more complicated to describe: in general, both return type and argument type
can be closed to more than one type. We can expect the occurrence of these cases
in programs to be less frequent, and in situations where any description would likely
tend to be less intuitively applicable — in our case it would e.g. be about a manager
producing/consuming a manager of managers and so on.

Still, we find here useful to provide some example application, at least to show
the connection with the description provided so far.

class Reference<X>{
...

X get();

void set(X x);

}
class Vector<X>{

...

void addAllRefs(Vector<? extends Reference<? extends X>> v);

Vector<Reference<X>> getAllRefs();

}

Method addAllRefs() takes a vector of references v, and stores their content —
X elements — into the receiver; dually, getAllRefs() produces a vector of refer-
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ences. Note that cases with deeper nesting likely occur when handling complex data
structures. When a method accepts a generic type, it is always useful to declare the
greater argument type possible according to the intended semantics of the method:
since v is going to be used as a producer of X elements — a producer of producers,
in particular —, its right type is Vector<? extends Reference<? extends X>>

instead of Vector<Reference<X>>. On the other hand, the return type to
getAllRefs() can be Vector<Reference<X>>, for no hypothesis can be made on
its production/consumption character. To understand how accessing these methods
is restricted by WPTs, we apply close rules obtaining:

Vector<? extends Vector<? extends X>> ⇓Vector:X7→+T
- NullType

Vector<Vector<X>> ⇓Vector:X7→+T
+ Vector<? extends Vector<? extends T>>

Vector<? extends Vector<? extends X>> ⇓Vector:X7→-T
-

Vector<? extends Vector<? extends T>>

Vector<Vector<X>> ⇓Vector:X7→-T
+ Vector<? extends Vector<? super T>>

That is, we have the interfaces:

signature to Vector<? extends T>{
...

void addAllRefs(NullType v);

Vector<? extends Reference<? extends T>> getAllRefs()

}
signature to Vector<? super T>{

...

void addAllRefs(Vector<? extends Reference<? extends T>>)...

Vector<? extends Reference<? super T>> getAllRefs()...

}

Through a production vector Vector<? extends T>, elements of the abstracted type
cannot be consumed by addAllRef() — this method has a purely consumption char-
acter, hence only null can be passed. On the other hand, invoking getAllRefs()

yields a purely production vector, that is a production vector including production
references — in the end, this ensures that elements X cannot be consumed through
the manager produced by Vector<? extends T>.

Through the consumption vector Vector<? super T>, the argument to
addAllRefs() remains unchanged, analogously to the case of method setProd() in
Figure 5. Instead, invoking getAllRefs() yields a production vector of consumption
references — that is, from the returned manager we can just obtain consumption of
X elements.

In spite of the intrinsic complexity in understanding these cases, we observe that
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semantic-driven design choices could lead to patterns of parameterisation where the
production/consumption interpretation still work reasonably.

As discussed in previous sections, VPTs here are more restrictive in that they
always yield one result for closure — still preserving the intended interpretation.

6 CONCLUSIONS

The ontological description provided in this paper improves the traditional interpre-
tation of variance based on read/write restrictions to collections. We generalise this
idea relying on the more general concept of manager of elements, and on restrictions
to its production/consumption functionalities. On the one hand, this allows us to
deal with other classes than collections, such as streams, references, event produc-
ers and listeners, and so on. On the other hand, it also tackles those cases where
methods are not necessarily used to “store” or “retrieve” elements through the class.

Being a general framework for use-site variance, the framework developed here
is not applicable to WPTs only, but to the apprach of VPTs in [6] as well. The
main difference is that VPTs are a bit more restrictive than WPTs: first, rules
[BOUND] and [NULL] are not defined in VPTs, hence some methods can even
become completely inaccessible; second, closure in VPTs always yield one solution,
picking the one characterised by the so-called covariance propagation. In spite of
these differences, the production/consumption interpretation described here works
for VPTs as well, refining the more classical read/write one.

The main future work of this research is likely to be rooted on devising a full
domain interpretation for Java generics, focussing on GJ-like F-bounded generics.
This is meant to pave the way towards a better understanding of the features of Java
generics, highlighting rooms for future extensions, developments, and applications.
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