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On theory and practice of Assertion 
Based Software Development 

Herbert Toth, SIEMENS AG Austria, PSE KB 

Abstract 
It is common agreement that software engineering can meet its challenges only if 
disciplined reuse and composition mechanisms can be established in both theory and 
practice. In this paper we provide a thorough analysis of the percolation pattern and 
three alternatives to it. As result  of this analysis we get that each of these alternative 
checking strategies ensures behavioral subtyping and therefore good reuse properties. 
However, none of them allows for modular reasoning due to missing success or failure 
conformance over class hierarchies. 

1 INTRODUCTION 

One of the real challenges for today’s software engineers is that they usually are 
requested by their customers to produce what I would like to call “frency” software. (No, 
you are completely wrong: similarities in pronounciation are purely accidental!)   
Customers want programs to be flexible, robust, efficient, non-expensive, correct, and 
moreover to be ready “yesterday” – and all this regardless of all the mostly negative 
impacts of various other project relevant circumstances. As in other engineering 
disciplines, reuse of existing components with well defined interfaces is regarded to be 
the only realistic approach to meet the needs of software industry. No surprise that a 
considerable number of programming languages and development methods have been 
proposed during the last three decades to help software engineers create such reusable 
abstractions. 

The concept of inheritance is one of the key features for the success of object-oriented 
progamming languages and design methods. Its main promise is to offer increased 
reusability and extendibility of software, and also supports the design of well-structured 
systems. However, these benefits do not come for free, and this is the reason why  the 
following vision from the late sixties still has not become reality to a large extent: 

"Software components (routines), to be widely applicable to different machines and 
users, should be available in families arranged according to precision, robustness, 
generality and time-space performance. Existing sources of components - 
manufacturers, software houses, users' groups and algorithm collections - lack the 
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breadth of interest or coherence of purpose to assemble more than one or two 
members of such families, yet software production in the large would be 
enormously helped by the availability of spectra of high quality routines, quite as 
mechanical design is abetted by the existence of families of structural shapes, 
screws or resistors."  [McIlroy69] 

  
The software engineering community had to undergo a painful and long learning 

process to accept the fact that the specification of various kinds of pieces of software is 
not only a topic of theoretical interest but also one of practical importance. Therefore it 
seems quite natural that finally we can find a considerable number of research activities 
and published results starting from  the mid-nineties with e.g. [Liskov94], and 
[Zaremski97]).  On the practical side, the basic foundations have been laid by Bertrand 
Meyer  with his concept of Design by Contract™ (DbC) as realized in the Eiffel language 
(see [Meyer92a] and [Meyer92b]). 

Thus, what has been common in the area of hardware design for approximately 
twenty years under the name design for testability, viz. to enhance the product with 
means to increase the observability of its behavior, only recently seems to gain some 
attention also within software industry. This is all the more strange, as software has 
gained a still and rapidly increasing part of responsibility for the well functioning of 
almost all the (really or only seemingly) important things of every day life. 

Some facts that certainly can be regarded as indicators of a growing attention on this 
kind of software development are collected in the following list: 

• In the second half of the nineties we can find an increasing interest in Eiffel, with 
SmallEiffel1 becoming the GNU Eiffel system; 

• a steadily increasing number of papers dealing with the concepts and the practical use of 
assertions in general have been published during the last few years (have a look to the 
references for some  examples); 

• the Assertion Definition Language (ADL)2 developed at Sun Labs; 
• newer Methods like Syntropy [Cook94], the Eiffel-related BON3 and Catalysis4 

[D’Souza99], provide means for the inclusion of assertions into their graphical models; 
• the Unified Modeling Language5 (UML) has as one of its parts  the Object Constraint 

Language6 (OCL), which has its root in the Syntropy method; 
• emerging support for assertions for Java (from which even the ANSI C assert mechanism 

has been removed) and C++ (see e.g. the iContract tool7 and Jass8, or the overview in 
section 3.4 of [Maley00] for C++). 

If we want to implement some contract mechanism, the first question that arises is 
"How to (re)build  the Eiffel DbC mechanism in C++ or Java ?”. Or, in a more pushing 
                                                           
1 See http://smarteiffel.loria.fr/  
2 See http://adl.opengroup.org/  
3 See http://www.bon-method.com/book_main.htm  
4 See http://www.trireme.com/catalysis/  or  http://www.catalysis.org  
5 See http://www-306.ibm.com/software/rational/uml/  
6 See http://www.klasse.nl/ocl/index.html  
7 See formerly at http://www.reliable-systems.com/tools/iContract/iContract.htm  
8 See http://semantik.informatik.uni-oldenburg.de/~jass/  
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ahead fashion: Are there any relevant new insights concerning the topic of assertion 
based programming during the last ten years that should be taken into account?  

Note 1: Using the term 'assertion based programming' indicates that our focus is on the 
role of assertions in software artefacts, i.e. in the current paper we do not consider their 
way from requirements into code. Some more aspects of assertion based software 
development are considered in section 4. 

Note 2: It was a definite goal to get this paper self-contained to a reasonable degree. 
Thus, expert readers will find some material already known to them but hopefully 
associated with some new aspects. The great benefit of this approach, however, is for 
newcomers to this area of software engineering who do not need to resort to other sources 
during their very first steps into the new domain.  

The paper is organized as follows: Section 2 provides the general conceptual back-
ground used subsequently: the various kinds of assertions are introduced, as well as the 
notions of specification and specification matching. The Liskov Substitution principle is 
presented as one of the cornerstones of reasoning about object-oriented software. In 
Section 3 we have a more detailed look on assertions in various software contexts and 
what the concepts of section 2 do mean in practical life, whereas section 4 takes a broader 
perspective and presents some hints on specification activities beyond the limits of mere 
code throughout the whole development process. A concluding section follows. 

I hope this paper will be said to have been written in the spirit of the both very wise 
and very tolerant view formulated by none other than Donald Knuth himself as follows 
[Knuth91]:  

"The best theory is inspired by practice. The best practice is inspired by theory." 

And I am sure, he is one of the few persons who must definitely know this from his own 
experience and work. 

2 THE CONCEPTUAL FRAMEWORK 

In order to provide a suitable bridge between the theoretical and practical aspects of 
assertion usage, this section is devoted to the presentation of  the basic notions and  the 
terminology that will be used during the rest of the paper.  

Peace of Code (PoC) is a generic name that we use for denoting routines (methods), 
classes, modules, libraries, programs, and components. In using this general term we do, 
of course, not forget about the wide range of complexity and the different requirements 
and challenges inherent to the above mentioned kinds of software. 

PoCs are made up of features (see e.g. [Mitchell02], p.21): Features are either 
attributes or routines (or methods). Some routines are functions, i.e. routines that return a 
value but do not change attributes. The other routines are procedures, some of them 
creators and others modifiers of objects. Attributes and functions together form the set of 
queries (return a result but do not change the visible properties of an object), procedures 
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are the commands that clients can use to change or create objects. Commands do not 
return results. 

Determing the behavioral relationship between PoCs is a central task for many 
software engineering activities such as reasoning about, reuse, extend or maintain code. 
Two basic notions in this context are behavioral subtyping and substitutability. The kind 
of behavioral relationship is determined by the assertions associated to the PoCs.  

Assertions: What and why.  

Software assertions are Boolean expressions that define the correct state of a program 
at a particular location in the code. Hence, assertions are not part of the working code, 
they say something about it, i.e. they are on a meta and not the coding level. Assertions 
can check method calls for proper invocation, method code for correct computation, class 
data states for consistency, and also individual statements for errors. Therefore, assertions 
may act in the following different roles: 
• Preconditions express the requirements that clients must satisfy whenever they call a 

PoC, and are therefore evaluated at their entry point. Preconditions are obligations 
for the client, and benefits for the server. 

• Postconditions inform about what the supplier (i.e. the PoC) guarantees on return, if 
the precondition has been satisfied on entry. They have to be evaluated at all(!) exit 
points of the PoC - if you allow more than one in your coding standard. 
Postconditions are obligations for the server, and benefits for the client. 

• In case you are participating in an OO project: Class Invariants define the 
consistency conditions for the state space of a class and must be satisfied by every 
instance of the class whenever this instance is externally accessible, i.e. after 
creation, and before and after any call to a public routine. Class invariants have to be 
evaluated at the entry and all exit points of all externally visible methods of a class. 
(Note that an invariant (i) is universal across an entire class and (ii) has a normative 
impact not only on already existing, but also on all methods eventually added in the 
future.) 

• Data assertions define conditions that must hold at a particular location in the code, 
whence they are evaluated only at their location in the code. You can take them for 
your own individually tailored and eventual only temporary tests. Data assertions do 
not contribute to software contracts in the sense outlined above and will not be 
further considered in this paper. 
(A special case of data assertions provided in the Eiffel language [Meyer92a] are 
loop invariants and loop variants: Like class invariants, which give a description of 
the internal consistency of the class as a whole, loop invariants characterize what 
must hold in each repetition of a loop. A loop variant is a strictly monotonic 
decreasing function that guarantees that the loop will terminate; its expression must 
remain positive, and it must decrease with each iteration.) 
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Specifications and specification matches  

Following [Chen00] we choose the generic and well-known 〈requirement, offer〉 or 
〈query, answer〉 or 〈problem, solution〉 situation as our general context of discussion 
because it covers all aspects we want to consider in more detail: Component retrieval 
uses the 〈query, component〉, software reuse the 〈client specification, method 
specification〉, and behavioral subtyping the 〈base class specification, derived class 
specification〉 pair. In fact, all three of them are examples of a general software reuse 
problem. Let us first recall some notions from [Chen00] in  

Definition 1. (a) A specification is a pair of predicates 〈Ppre, Ppost〉, where – as 
indicated - Ppre specifies the precondition, and Ppost the postcondition of a party involved 
in a deal. E.g. in the situation of component retrieval 〈Qpre, Qpost〉 would describe the 
specification of the query, and 〈Cpre, Cpost〉 the one of component C. 

(b) For a program or method C and a specification 〈p, q〉 the correctness formula 
(Hoare triple) {p}C{q} is informally interpreted as the truth of “program C started with p 
satisfied will terminate in a state such that q holds” (total correctness). 

(c) Given a query specification Q: 〈Qpre, Qpost〉, a component C is reusable for 
implementing Q, if {Qpre}C{Qpost} holds. 

(d) Specification matching is a method for finding reusable components fulfilling a 
query by matching the component with the query specification. Formally, a specification 
match is a function M: Spec × Spec → {true, false}, and given a match M and two 
specification S1 and S2 we say “S1 matches S2 according to M” if M(S1, S2) = true.  

(e) A specification match M is reuse ensuring, i.e. can ensure that a component C 
satisfies a query Q, if and only if for any C and Q, M(C,Q) ∧ {Cpre}C{Cpost} → 
{Qpre}C{Qpost}. 

A number of specification matches have been proposed for defining behavioral sub-
typing and component retrieval.  Figure 1 focuses on the first topic, whence the match 
functions are cast into the terminology of class and subclass (instead of query and 
component), denoted as C and SC (instead of Q and C), respectively; it is an extension of 
Figure 4 of [Penix99] which comprises the matches (4), (5), (6), (9) and (10) only. Here 
are the names of the specification matches: 

(1) exact pre/post (as in [Zaremski97] and [Chen00]) 
(2) exact pre 
(3) exact post 
(4) plug-in (as in [Zaremski97]) 
(5) weak plug-in (as in [Penix99]; called guarded plug-in in  [Zaremski97]) 
(6) satisfies (as in [Penix99]; called relaxed plug-in in [Chen00], plug-in 

compatibility in [Fischer97], and also used in [Liskov01], p. 176) 
(7) satisfies-and 
(8) guarded generalized predicate (as in [Chen00]) 
(9) plug-in post 
(10) weak post (as in [Penix99]; called guarded post in [Zaremski97]) 
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Figure 1: Specification matches 

Note: An arrow between two matches indicates that the match at the base of the 
arrow is stronger than (logically implies) the match at its end. The formal notation is 
abbreviated  by dropping the quantifiers and variables for the predicates. 

It has been shown in [Chen00] that exact pre/post, plug-in, satisfies, and guarded 
generalized predicate are reuse ensuring matches, and that satisfies and guarded 
generalized predicate are logically equivalent, i.e. (6)  (8). 

  

 

(2)  )()( postpostprepre CSCSCC →∧↔ (3)  )()( postpostprepre CSCSCC ↔∧→

(1)  )()( postpostprepre CSCSCC ↔∧↔

(4)  )()( postpostprepre CSCSCC →∧→

(5)  )()( postpostpreprepre CSCSCSCC →∧∧→

(6)  )()( postpostpreprepre CSCCSCC →∧∧→  

 (7)  ))((( postpostprepre CSCSCC →∧→  

 (8)  )]()[()( postprepostpreprepre CCSCSCSCC →→→∧→  

(9)  postpost CSC →

(10)  postpostpre CSCC →∧
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Plug-in compatibility 
As can be seen from the list above, satisfies or plug-in compatibility is a predominant 
match used in current literature. Furthermore, by Theorem 7 in [Chen00] it is a most 
general reuse-ensuring match, which is also shown by the arrow diagram in Figure 1. 
What other arguments for and properties of satisfies have been given? In [Liskov01] the 
match is split up in two rules: The precondition rule (Cpre → SCpre) means a weakening of 
the precondition, i.e. the subtype method requires less from its caller than the supertype 
method does. Thus we can be sure that the call to a subtype method will be legal if the 
call to the supertype method is. The effect of a call is taken into account by the 
postcondition rule (Cpre ∧ SCpost → Cpost) which means a strengthening of the 
postcondition, i.e. the subtype method delivers more to its caller than the supertype 
method does. The calling code depends on the supertype method’s postcondition only if 
the call also satisfies its precondition; hence, the postcondition rule’s antecedent is 
restricted to legal inputs of the supertype method. 

In the context of component retrieval, plug-in compatibility supports safe reuse 
[Fischer97]: Components found under this match function may be considered as black 
boxes and can be reused “as is” without any further modification.  

Some other aspects concerning the matches (4), (5), (6), (9) and (10) are mentioned in 
[Penix99]: plug-in, weak plug-in, and satisfies all require the precondition of the class 
(query) to be stronger then that of the subclass (component). They differ in the set of 
inputs for which a valid output is assured by the postcondidtion: plug-in checks the whole 
domain, weak plug-in restricts the check to the legal inputs of the component, and 
satisfies further restricts to the legal inputs of the problem. The plug-in post and weak 
post matches differ from the above three by not requiring all legal problem inputs to be 
legal component inputs; thus there could be problem inputs that cause unspecified 
behavior of the component. However, for any legal problem input that is also a legal 
component input, a valid output is computed. Therefore, components that match in one of 
these two ways provide a partial solution to the problem. 

Inheritance and behavioral subtyping  

As already mentioned in section 1, the object-oriented approach is very powerful for 
developing large software systems. Much of this power is due to the key concept of 
inheritance. However, the statically checks enforced by e.g. C++ or Java compilers upon 
derived classes test for such syntactic and typing restrictions only that guarantee the lack 
of runtime type errors. This is the contracting and specification level that has been used 
for too many years in the past by most software developers. Obviously, this is not enough 
to prevent surpising and often disastrous behavior of programs. 
That means, that checks done by compilers are only part of what is needed to reason 
about the behavior (i.e. the semantics) of software, especially for object-oriented systems 
when new subtypes are added. Behavioral subtyping is a technique for preventing 
unexpected behavior in a modular way: it ensures that any reasoning that has been done 
about the behavior of a piece of client code that uses objects of a base class C continues 
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to hold if the code is instead applied to objects of a subclass SC of C, i.e. it remains valid 
if calls to a method m are dispatched to mSC instead of to mC. This is the case if methods 
redefined in subclasses satisfy their base class specification, i.e. if they fulfill a reuse 
ensuring specification match. Thus, objects of new subtypes (instances of subclasses) “act 
like” objects of their supertypes, when used as if they were supertype objects. This is 
what the Liskov Substitution Principle (LSP) for object-oriented design states [Liskov88]: 

• In class hierarchies, it should be possible to treat a specialized object as if it were 
a base class object.  

• In other words: Object-oriented functions that use pointers or references to a 
base class must be able to use objects of a derived class without knowing it. 

The basic idea here is as simple as it is important: Inheriting classes should not perform 
any actions that will invalidate the assumptions made by (the client of) a parent class. Put 
differently, any object of a subtype must be substitutable for an object of a supertype in 
the hierarchy without any effect on the program’s observable behavior. If the Liskov 
Substitution Principle is followed, code using a base class pointer will never break after 
another class has been added to the inheritance tree.  

Modular reasoning  

An important concern in both object-oriented and component-based software 
development is how to reason about the extension of programs. The key requirement to 
be satisfied by any disciplined use of implementation inheritance (syntactic reuse) is the 
preservation of modular reasoning: It must be possible to establish properties of code 
using the static types of its expressions (especially of pointers to objects) without need to 
inspect any of the subclasses involved. That is, if the static type is T, then the dynamic 
type of the expression’s value must be a subtype of T. As argued above in connection 
with the LSP, this is not enough since the semantics is not taken into account: In order to 
preserve modular reasoning it is necessary that each subtype used in the program is a 
behavioral subtype of each of its supertypes. 

Modular reasoning is of paramount importance for extensible software systems, in 
which the set of subclasses of a given class is open. The advantage of modular reasoning 
is that unchanged methods of client code do not have to be respecified and reverified 
when new behavioral subtypes are added to class libraries. 

3 ASSERTIONS IN SOFTWARE ENGINEERING PRACTICE 

In this section we will look how some of the concepts introduced above can be 
transferred to software systems in practice. Bertrand Meyer has coined the phrase 
“Design by Contract” (DbC) to denote a software development style which (1) 
emphasises the importance of formal specifications, and (2) interleaves them with actual 
code. DbC is a systematic method of assertion usage and interpretation introduced as a 
standard feature of the Eiffel language [Meyer92a]. Without it, no trial would have ever 
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been made to provide a similar mechanism in other languages and, by no means, would 
we have discussion papers like this and the ones mentioned in the references. 

What is Design by Contract™ ? 

Software contracts have been invented to capture mutual obligations and benefits 
among classes, as they are e.g. needed in design patterns, where each of the involved 
classes is expected to exhibit a “proper” behavior. A software contract is the specification 
of the behavior of a class and its associated methods. The contract outlines the 
responsibilities of both the caller and the method being called. Failure to meet any of the 
responsibilities stated in the contract results in a breach of the contract, and indicates the 
existence of a bug somewhere in the design or implementation of the software or - one 
must not forget this possibility in earlier project phases - in the assertions themselves. 
Software contracts can be completely specified through the use of preconditions, 
postconditions, and class invariants in object-oriented software. 

DbC views software construction as based on contracts between clients (callers) and 
suppliers (routines). Each party expects some benefits from the contract, and accepts 
some obligations in return. As in human affairs, the contract document spells out these 
mutual benefits and obligations and protects both he client, by specifying how much 
should be done, and the supplier, by stating that the supplier is not liable for failing to 
carry out tasks outside of the specified scope. 

The DbC paradigm is as follow: The client’s obligation is to call a method only in a 
program state where both the class invariant and the method’s precondition hold. The 
method, in return, guarantees that the work specified in the postcondition has been done, 
and the class invariant is still respected. A precondition violation thus points out an error 
of the client, and a postcondition failure a bug in the implementation of the routine, which 
did not fulfill its promise. (Note: The phrase "An assertion fails" in real life means just 
the opposite: the assertion did its job well, because it has found a bug.) 

DbC is, in a way, the opposite of defensive programming, a method which re-
commends to protect every software module by as many checks as possible. This may 
result in redundancy and makes it also difficult to precisely assign responsibilities among 
modules. 

Class correctness 

Software contracts are a necessary prerequisite for being able to introduce a notion of 
correctness: If you do not state what your program should do, you are lacking the norm to 
which to compare what your program does in reality. In defining class correctness we 
follow [Meyer97], p. 370 (remember Definition 1,(b)): 
Definition 2. A class C is correct with respect to its specification if 

1. For any set of valid arguments xp to a creation procedure p: 
{DefaultC  ∧  prep(xp)}  p  {postp(xp) ∧ INVC} 

2. For every public method m and any set of valid arguments xm: 
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{prem(xm)  ∧  INVC}  m  { postm(xm)  ∧ INVC} 
where DefaultC denotes the assertion expressing that the attributes of C have the default 
values of their type. 

Contracts and inheritance.  

The basic rule governing the relationship between inheritance and assertions is that in a 
descendant class all the ancestors’ contracting assertions (i.e. routine pre- and 
postconditions, and the class invariants) still apply. (Remember: data assertions have only 
local impact.)  

Inheritance of assertions guarantees that the behavior of a class is compatible with 
that of its ancestors: The assertions specify a range of acceptable behaviors for the routine 
and its eventual redefinitions which may specialize this range, but not violate it. In other 
words, as an honest subcontractor, as soon as you accept a contract,  you must be willing 
to do the job originally requested, or better than that, but not less. For use in the 
subsequent considerations let us introduce some  terminology in  
Definition 3. (a) An assertion A is said to be stronger than another assertion B, if it 
logically implies it, i.e. A  → B. If A is stronger than B, then B is said to be weaker than 
A. 

(b) What is actually checked at runtime for a derived class is usually called the 
effective or accumulated assertion. 

We will use the following terminology: Let C denote a class; we take C := CS 0 , and 
for k ≥ 1 CS k := CSS k 1− . Then we assume that SC is a subclass of C, SSC a subclass of 
SC, and generally that for k ≥ 1 CS k  is a subclass of CS k 1− . 

 

Failure and success conformance  
A contracting assertion (i.e. a precondition, a postcondition, or a class invariant) is said to 
be in a contractor position if it is used in a non-OO procedural context or in a base class, 
and it is in a subcontractor position, if it is used  in a derived class. 
Definition 4.  An (effective) assertion is failure (success) conformant if it is in a 
contractor position (the special and trivial case), or – if in a subcontractor position – if it 
fails (succeeds) exactly if all assertions of the same kind of all its parent classes also fail 
(succeed). In other words: if failure (success) can always be seen from the base class 
specification. 
More formally, using the generic term "effective constraint", we have 

• success conformance: if CS neffCon , then also CS neffCon 1− . 

• failure conformance: if CS neffCon¬ , then also CS neffCon 1−¬ . 
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An important question is: What do missing failure or success conformance mean in 
practice ? 
 

 effective preconditions effective postconditions 

success 
conformance 

Some cases, where subclass methods 
could be used, are invisible from base 
class specification. 
⇒ Clients miss some opportunities for 
valid use of subclass methods. 

Some cases, where subclass methods 
would do correct computation, are 
invisible from base class specification. 
⇒ Clients miss some cases of desired 
results from subclass methods. 

failure 
conformance 

Some cases, where subclass methods 
can not be used, are invisible from 
base class specification. 
⇒ Clients get an error where they do 
not expect one (since a subclass pre-
condition fails). 

Some cases, where subclass methods 
would do incorrect computation, are 
invisible from base class specification. 
⇒ Clients may not get delivered a 
result where they expect one (since a 
subclass postcondition fails). 

 
The straightforward conclusion is that failure conformance poses far more serious 

problems: Whereas missing success conformance does not result in bad situations but 
only in non-optimal organization of the work to be done, this is obviuosly not true when 
failure conformance is not available.  

 
Some laws of  propositional logic 

(T1)  A ∧ B  → A 
(T2)  A  → A ∨ B 
(T3)  True ∧ A ≡ A  
(T4)  False ∨ A ≡ A 
(T5)  A  → True ≡ True   
(T6)  A → False ≡ ¬ A 
(T7)  True → A ≡ A 
(T8)  False → A ≡ True   
(T9)  A  → B ≡ ¬A ∨ B 
(T10) A  ∧ (A  → B)  ≡ A  ∧ B 
(T11) A  ∧ (B  → A)  ≡ A  
(T12) A  ∧ B  → C  ≡ A → (B  → C)  
(T13) A → (B  → C) ≡ B → (A  → C)   
(T14) (A  → C) ∧ (B  → C)  ≡ (A ∨ B)  → C 
(T15) (A  → B) ∧ (A  → C)  ≡ A  → (B ∧ C)  

Table 1: Logical laws 
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The common percolation pattern and its properties 
For Java and C++ I do not know of any tool or macro or class API that does not follow 
the Eiffel model. So there is need to give a few remarks on it. Eiffel builds the assertions 
of derived classes by OR-ing (for preconditions) and AND-ing (for postconditions and 
class invariants), respectively, along the class hierarchy as shown below. This means that 
– instead of really checking the hierarchy properties of contracts on method level 
specifications – Eiffel constructs a correct hierarchy on the level of effective contracts. 
This kind of traversing the class hierarchy has been called the percolation pattern in 
[Binder99, Binder00].   

Let CeffPre  := Cpre, and for k ≥ 1 CS keffPre := pre
kCS  ∨ CS keffPre 1− ; thus 

CS keffPre 1− → CS keffPre , i.e. an effective superclass precondition implies that of its 

subclass by (T2). In an analogous way, using ∧ instead of ∨ the effective postconditions 
and class invariants are constructed for derived classes, e.g. with effPostC := Cpost, and for 
k ≥ 1 CS keffPost  := post

kCS  ∧  CS keffPost 1− ; thus CS keffPost  → CS keffPost 1−  i.e., an 
effective subclass postcondition implies that of its superclass, and likewise for effective 
class invariants, by (T1).  

Let us consider a simple example with the three classes C, SC, and SSC; thus, by our 
convention SSC is a subclass of SC, and SC a subclass of C. We further focus our 
attention on a call to a method mSSC redefined in SSC and, therefore, take a closer look at 
some of the possible configurations for mSSC with the help of Table 2. 

 
 Cpre SCpre effPreSC SSCpre effPreSSC 
1 false false false false false 
2 false false false true true 
3 false true true false true 
4 true false true false true 
5 true true true true true 

Table 2 Percolation pattern example for preconditions  

(Remember: The effective precondition of e.g. mSSC is given as effPreSSC := Cpre ∨ SCpre ∨ SSCpre, 
and effPreC := Cpre. In lines 3 and 4, denotes a precondition hierarchy violation) 

 
Analysing Table 2 for preconditions we see that the first two lines do not cause any 

problems: Line 1 reflects the failure conformance of effective preconditions in the 
percolation pattern, i.e. if CS neffPre¬ , then also CS neffPre 1−¬ ; and line 2 represents the 
case where mSSC accepts the call on basis of its own precondition. Also the situation 
shown in line 5 is straightforward.  
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But line 2 also shows a serious deficiency of the percolation pattern: it does not 
provide success conformance for preconditions, i.e. if CS neffPre , then also CS neffPre 1− . 
Thus, modular reasoning for clients of C is impossible on the basis of its specification. 
So, even in the absence of any proper hierarchy violation, the percolation pattern can 
cause considerable irritation of C's clients. 

 We also have some problems connected to lines 3 and 4: Consider line 3 which has a 
precondition hierarchy violation from SCpre to SSCpre, since SCpre → SSCpre ≡ false. mSSC 
will be executed although SSCpre itself evaluates to false, because due to OR-percolation 
effPreSSC  becomes true. (Note: Even if we had SSCpre ≡ true, clients of C would get 
cheated, since from Cpre they learn that performing mC or an overriding method like e.g. 
mSSC would not be executed, whereas mSSC in fact will be performed.) As an example 
imagine that SCpre(p) := p < 0 and SSCpre(p) := p ≥ 0, and take p = -5. This, I suspect, 
could give rise to some surprises. (This deficiency has first been mentioned in 
[Karaorman99, section 4.1].) Now for line 4: It gives an example where, although there is 
a hierarchy violation Cpre to SCpre, a client of C would not get cheated what concerns the 
execution of  mC or any of its overriding methods. But (s)he should be prepared for some 
surprises if – due to polymorphism - mSC or mSSC would  be called: for both of them the 
effective precondition evalutes to true, whereas the method specific one to false. 

Of course, we can easily find analogous situations for postconditions as can be seen 
from  Table 3:  

 
 Cpost SCpost effPostSC SSCpost effPostSSC 
1 false false false false false 
2 false false false true false 
3 true false false false false 
4 true true true false false 

5 true true true true true 

Table 3: Percolation pattern example for postconditions 

(Remember: The effective postcondition of e.g. mSSC is given as effPostSSC := Cpost  ∧ SCpost  ∧ 
SSCpost; and effPostC := Cpost. In line 2, denotes a postcondition hierarchy 
violation) 

 
Line 1 is straightforward, and line 6 reflects the success conformance of effective 

post-conditions in the percolation pattern, i.e. if CS neffPost , then also CS neffPost 1− . In 

line 2, although SSCpost ≡ true, the execution of mSSC would be reported to have produced 
a wrong result, since effPostSSC ≡ false. This is obviously due to the postcondition 
hierarchy violation SSCpost → SCpost ≡ false. Only a hierarchy error can cause this kind of  
undesired effect.  
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Lines 3 and 4 are examples of the missing failure conformance of postconditions (i.e. 
if CS neffPost¬ , then also CS neffPost 1−¬ ), again cheating a client who reasons on basis of 

C's specification. Such a situation occurs in case post
nCS  ≡ false and post

n CS 1−  ≡ true, 

whence 
post

nCS  →  post
n CS 1−  gives a valid logical implication. This demonstrates that 

implication validity is not a suitable criterion for hierarchy correctness. (Be aware, that 
the specification matches shown in Figure 1are focused on reusability.) 

 
The Eiffel approach fulfills the plug-in specification match; effective preconditions 

are failure but not success conformant, and effective postconditions and class invariants 
are success but not failure conformant. Thus, the widely used percolation pattern is 
neither pre-LSP nor post-LSP, and therefore it does not support modular reasoning. In 
other words, a reuse ensuring match is, in general, not sufficient for enabling modular 
reasoning. 

Besides these problems, the task of assigning blame for malformed class (and - in 
case of Java  - interface) hierarchies is a difficult one that is not performed correctly by 
existing tools; for an example see  [Findler01]. 

 

Alternative ways for hierarchy checks  
Due to the above mentioned disadvantages of the commonly used percolation pattern 

there is the need to search for alternatives. For that purpose we will take a closer look at 
three of the specification matches presented in Figure 1: plug-in, weak plug-in, and 
relaxed plug-in (satisfies). We will focus our discussion on a fixed (and therefore almost 
never explicitly mentioned) example method mC  defined in base class C, with 
redefinitions  mSC  and mSSC  in subclasses SC and SSC, respectively.  

(1) Let us first turn to the preconditions’ part, which is the same for all three 
specification matches we will examine. Throughout our discussion we assume the class 
hierarchy to be correct, i.e. the superclass precondition  implies that of its subclass. For a 
method we will check its specific precondition as well as the correctness of the class 
hierarchy. Thus, we get e.g. the following effective preconditions:  

C    : Cpre       
SC  : SCpre     ∧  (Cpre  → SCpre) 
SSC: SSCpre  ∧  (SCpre  → SSCpre)  ∧ (Cpre  → SCpre) 

Generalizing this gives 

CS neffPre  :=  S nCpre    ∧  preHierCheckn,    (pre) 

where:  preHierCheck0  :=  true,  
  preHierCheckn  :=  (S n-1Cpre → S nCpre)  ∧ preHierCheckn-1     
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         = ( )pre
i

pre
in

i
CSCS 11

0

+−

=
→Λ     (preh) 

Since we assume the hierarchy to be correct, i.e. preHierCheckn evaluates to true (or  
preHierCheckn for short), this means that  

pre
kCS = true implies ∀j ≥ k: pre

jCS = true 

(use (T8) and (T10) from Table 1). We thus have    

CS neffPre  ≡  pre
in

ki CSΛ = .     (epre) 

(2) Things become a little bit more complicated for postconditions. In order to ensure 
a reasonable basis for the comparison between the different checking strategies, we 
assume all the involved assertions and hierarchy checks to be fulfilled, as well as the 
method to be implemented correctly. 
 (2a) Plug-in match: A correct class hierarchy for plug-in match means that the subclass 
postcondition  implies that of its superclass. As in the precondition case, for a method we 
will check its specific postcondition as well as the correctness of the class hierarchy. 
Thus, we get e.g. the following effective postconditions:  

C    : Cpost       
SC  : SCpost     ∧  (SCpost  → Cpost) 
SSC: SSCpost  ∧  (SSCpost  → SCpost)  ∧ (SCpost  → Cpost) 

Generalizing this gives 

CS neffPost  :=  S nCpost    ∧  postHierCheckn,    (p) 

where:  postHierCheck0  :=  true,  
  postHierCheckn  :=  (S nCpost → S n-1Cpost)  ∧ postHierCheckn-1   

           = ( )post
i

post
in

i
CSCS 1

1

−

=
→Λ    (ph) 

Since we assume the hierarchy to be correct, i.e. postHierCheckn, this means that 

post
kCS  = true implies ∀j ≤ k: post

jCS  = true   (use (T8) and (T10) from Table 1). We 
thus have    

    CS neffPost  ≡  post
in

i CSΛ =0 .   (ep) 

(2b) Weak plug-in match: Under the same assumptions as before we get e.g. the 
following effective postconditions:  

C    : Cpost       
SC  : SCpost     ∧  (SCpre  ∧ SCpost  → Cpost) 
SSC: SSCpost  ∧  (SSCpre  ∧ SSCpost  → SCpost)  ∧ (SCpre  ∧ SCpost  → Cpost) 

Generalizing this gives 
w-

CS neffPost  :=  S nCpost    ∧  w-postHierCheckn,    (w) 
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where: w-postHierCheck0  :=  true,  
 w-postHierCheckn  :=  (S nCpre ∧ S nCpost → S n-1Cpost)  ∧ w-postHierCheckn-1  

           ( )post
i

post
i

pre
in

i
CSCSCS 1

1

−

=
→∧≡ Λ  

           ( )( )post
i

post
i

pre
in

i
CSCSCS 1

1

−

=
→→≡ Λ    (wh) 

Assuming pre
nCS and a correctly implemented method we also have post

nCS , whence 

we get post
n CS 1−  from (wh). Turning to the general case that nk,CS pre

k ≤  then we 

know that pre
in

ki CSΛ = ; thus we have ( )post
i

post
in

ki CSCS 1−
= →Λ  from (wh), and – since 

we also assume the hierarchy to be correct, i.e. w-postHierCheckn  – using logical law 
(T10) from Table 1 we finally get  

post
in

ki CSΛ −= 1       (ew) 

(2c) Relaxed plug-in match (satisfies): As for weak plug-in above, we assume all parts 
involved to be correct and valid, repectively. Thus, we get e.g. the following effective 
postconditions:   

C    : Cpost       
SC  : SCpost     ∧  (Cpre  ∧ SCpost  → Cpost) 
SSC: SSCpost  ∧  (SCpre  ∧ SSCpost  → SCpost)  ∧ (Cpre  ∧ SCpost  → Cpost) 

Generalizing this gives 
r-

CS neffPost  :=  S nCpost    ∧  r-postHierCheckn,    (r) 

where: r-postHierCheck0  :=  true,  
 r-postHierCheckn  :=  (S n-1Cpre ∧ S nCpost → S n-1Cpost)  ∧ r-postHierCheckn-1  

          ( )post
i

post
i

pre
in

i
CSCSCS 11

1

−−

=
→∧≡ Λ  

          ( )( )post
i

post
i

pre
in

i
CSCSCS 11

1

−−

=
→→≡ Λ   (rh) 

 

Assuming pre
nCS and a correctly implemented method we have post

nCS , but not more 

in this case. Turning to the general case that nk,CS pre
k ≤  then we know that 

pre
in

ki CSΛ = ; thus we have ( )post
i

post
in

ki CSCS →+−
=Λ 11  from (rh), and – since we also 

assume the hierarchy to be correct, i.e. postHierCheckn  - using logical law (T10) from 
Table 1 we finally get  
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 post
in

ki CSΛ =       (er) 

Comparing the three alternatives, we see that (ep) induces stronger postcondition 
constraints than (ew), which  is stronger than (er): (ep) → (ew) → (er) as was to be 
expected from the relationships between the underlying specification matches. Is there 
any gain compared to the percolation pattern ? Definitely yes: 

• Hierarchy errors are detected in all three versions for both pre- and post-
conditions. 

• Never will a routine with its own precondition evaluating to false be executed 
(remember Table 2, lines 3 and 4). 

However, concerning failure and success conformance, there is practically no 
improvement as the following tables show. Only the effective postconditions for plug in 
match can easily be seen to be  success conformant. (The '?' signs indicate that the 
associated precondition is not relevant in this case.)  

 

 Cpre SCpre effPreSC SSCpre effPreSSC

1 false false false true true 
2 true true true false false 

(epre)

 

 Cpost SCpost effPostSC SSCpost effPostSSC

1 true true true true true 
2 true true true false false 

(ep)

 

 Cpre / Cpost SCpre / SCpost effPostSC SSCpre / SCpost effPostSSC 
1 ? / true false / true false true / true true 
2 ? / true false / true true true / false false 

(ew)

 

 Cpre / Cpost SCpre / SCpost effPostSC SSCpre / SCpost effPostSSC 
1 false / true false / false false ? / true true 
2 false / true false / true true ? / false false 

(er)

 
  

How to make a choice among the three alternatives analysed above? Some arguments 
we propose are the following: 



 
ON THEORY AND PRACTICE OF ASSERTION BASED SOFTWARE DEVELOPMENT 

 
 
 
 

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2 

• Failure of success conformance for postconditions is probably the least harmful 
deficiencey. 

• Bookkeeping of a method's own precondition evaluation seems to be easier to 
implement than that of its superclass method – at least at a first glance. 

• The difference between (ew) and (er) is that the former does an additional check 
of post

n CS 1− only; thus the strengthening from (er) to (ew) is not very high, 
whence the loss of reuse possibilities should be modest. 

In summary, based on these considerations it seems reasonable to choose (ew) as the 
favourite checking strategy. 

4 SUMMARY AND CONCLUSIONS   

The main purpose of this paper was to present a thorough analysis of the commonly used 
Eiffel mechanism (also called 'percoaltion pattern') for dealing with contracts in class 
hierarchies. It has been shown that there are some inherent deficiencies in this strategy. 
As alternatives we have proposed three variants of so-called reuse ensuring specification 
matches, and it has been shown that they also do not avoid all of the problems we have 
found for the percolation pattern, but should nevertheless be preferred due to the fact that 
they really check the class hiearchy for behavior conformance, and make it impossible 
that a subclass method gets activated if its own precondition evaluates to false. 

During our analysis of Table 3 we have also seen that the use of implication validity 
as a criterion for hierarchy correctness may perhaps be an unsuitable choice. But this 
point needs further consideration. 

In order to fulfil my promise from Note 2 in section 1 concerning the self-
containedness of this paper, let me give a list with the most important aspect and benefits 
of DbC.  

• Writing contracts from the very beginning enforces developers to state what they 
are trying to do already during design. This definitely helps doing it right! 

• Assertion based programming in general, and DbC as a systematic and well defined 
variant of it, should be regarded as built in self tests and as a permanent online 
review that both help in early error detection and give the software developers a 
feeling about the correctness status of their programs. 

• Even a systematic use of contracts is, of course, not an a-priori static proof that 
some properties of the software are valid for all legal data sets; instead, it is a 
dynamic mechanism that checks the code for each single data set applied. At best 
you get something like an “inductive proof” that increases the confidence in the 
correctness of programs checked in this way. 

• Contracts can, and usually should, also serve as a basis for (technical) 
documentation, especially for an up-to-date description of interfaces. 
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• Contracts enable the top developers to express the intent behind their designs and 
hence to leave behind a clear statement of the original design, reducing the risk that 
further contributors or maintainers will destroy the software’s consistency and 
quality. 

• Contracts are a remarkable testing and debugging tool: (i) they save debugging time 
due to the improved observability, where failures occur close to the bugs; (ii) they 
express unambiguously what an author expects and what he garuantees in turn. So 
one has a clear statement not only of What Is (in the implementation part) but also 
of What Should Be (in the assertions part). And only under such circumstances one 
can definitely identify a discrepancy between the two; and (iii) they help you in 
designing and performing your tests. 

• You gain seamlessness, i.e. it is possible to use a single notation and a single set of 
concepts throughout the software life cycle, from analysis and design, to 
implementation and maintenance.  

• You may also overcome the programmer’s usual resistance against what they feel 
excessive documentation requests burdened upon them by higher management, if 
you advise them to write documentation in a form that has immediate operational 
impact on their work. 

• You can - and this is the most important of all the benefits - apply a win-win 
strategy using DbC with obvious advantages for both your customer and you as the 
developer of a software system (object-oriented or not). 

• "Self-standing contractually specified interfaces decouple clients and providers. 
The same interface may be used by a large number of different clients but also be 
supported by a large number of different providers." ([Szyperski98], p.72) 

 
All these ideas are not as new as you might perhaps believe from section 1. They date 

back to at least the late 60’s and the early 70’s. There is indeed  a long and tedious way in 
formal methods from the assigning of meanings to programs in [Floyd67] and the 
axiomatic basis of [Hoare69] to Abrial’s B-book [Abrial96] with its emphasis on  
assigning programs to meaning. Today’s average software engineer usually does not 
make use, and often does not even know, of formal methods and corresponding tools. 
However, I think it is high time to take advantage of some of their findings. DbC or a 
newer improved variant of it may eventually prove to be the bridge between current 
practice and theory. 
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