
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Cite this article as follows: Jia Liu: “Feature Interactions and Software Derivatives”, in Journal of
Object Technology, vol. 4, no. 3, Special issue: 6th GPCE Young Researchers Workshop 2004,
April 2005, pp. 13-19. http://www.jot.fm/issues/issue_2005_04/article2

JOURNAL OF OBJECT TECHNOLOGY

Vol. 4, No. 3
Special issue: 6th GPCE Young Researchers Workshop 2004

Feature Interactions and Software
Derivatives

Jia Liu, Department of Computer Sciences, University of Texas at Austin, U.S.A.

Abstract
Feature Oriented Programming (FOP) merges the studies of feature modularity,
generative programming, and compositional programming. We advance FOP by
proposing the concept of software derivatives, which represent feature interactions. We
apply the theory of software derivatives to refactoring legacy Java applications into FOP
designs.

1 INTRODUCTION

Compositional programming and automated software engineering are important to the
future of software development [1]. Our research is Feature Oriented Programming
(FOP), which merges the studies of feature modularity, generative programming and
compositional programming. FOP is a general theory of generative programming that
arose from software product-lines. Programs — or product-line members — are
differentiated by the features that they implement, where a feature is a unit of functionality
that can be shared by many members. It raises the study of features as a fundamental form
of software modularity, and shows how feature modules lead to systematic, general, and
automatic approaches to software synthesis and evolution [2]. An FOP model of a domain
is an algebra, where each operator implements a feature. The design of a program is an
expression, which is a composition of operators (features).

Feature interactions are a key part of feature-oriented designs. A feature interaction
occurs when one or more features modify or influence another feature. There are many
ways in which features can interact (e.g., [3][4]): we focus on a common form of
interactions that are static and structural: how a feature influences (or changes) the source
code of another. We propose to improve existing work on FOP and develop an algebraic
theory of structural feature interactions. Because FOP represents program designs as
expressions, the influence of a feature on another feature can be captured by the concept
of a derivative which is governed by algebraic laws. We begin by explaining the core ideas
of FOP, and then derivatives.

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_04/article2

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

 FEATURE INTERACTIONS AND SOFTWARE DERIVATIVES §2

2 FOP AND AHEAD

AHEAD (Algebraic Hierarchical Equations for Application Design) is a realization of FOP
based on step-wise refinement, domain algebras, and encapsulation [5]. A fundamental premise
of AHEAD is that programs are constants and refinements are functions that add features to
programs. Consider the following constants that represent base programs with different
features:

f // program with feature f
g // program with feature g

A refinement is a function that takes a program as input and produces a refined or feature-
augmented program as output:

i • x // adds feature i to program x
j • x // adds feature j to program x

where • is function composition. The design of an application is a named composition of
operators called an equation:

prog1 = i • f // program with features i and f
prog2 = j • g // program with features j and g
prog3 = i • j • g // program with features i,j,g
Thus, the features of an application can be determined by inspecting its equation. An

AHEAD model or domain model is an algebra whose operators are these constants and
functions. The set of programs that can be synthesized by composing these operators is the
model’s product-line [5].

Code synthesis in FOP is straightforward: method and class extensions follow common
notions of inheritance. Figure 1a shows a class K that has three members: methods A(), B(), and
variable C. Figure 1b shows an extension of K written in an extended-Java language where class
extensions are prefaced by the special keyword “refines” . We also introduce a new keyword
“Super” to specify references from a refining method to a target method. This particular
example encapsulates extensions to methods A() and B() and adds a new variable D. The
composition of this base class and extension is Figure 1c: composite methods A() and B() are
present, plus the remaining members of the base and extension. Although we have illustrated the
effects of composition using substitution, there are many other techniques that can realize these
ideas, such as mixins [6] and program transformations [7].

refines class K {
void A(){ Super.A();w; }
void B(){ q;Super.B(); }
String D;

}

class K {
void A(){ x;y;w; }
void B(){ q;m;n; }
int C;
String D;

}

(b) (c)

Figure 1: Class Definition and Extension

class K {
void A(){ x;y; }
void B(){ m;n; }
int C;

}

(a)

§3 SOFTWARE DERIVATIVES

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 15

3 SOFTWARE DERIVATIVES

Feature Interactions and Optionality

In his 1997 paper, Prehofer presented an FOP model of a stack product line [4]. We present a
modified version of his example. The product line consists of three features: stack, counter, and
undo. stack implements basic stack operations such as push and pop; counter adds a local
counter to keep track the size of the stack; undo provides an undo function that restores the state
of the stack as it was before the last modification. We show the implementations of these
features in Figure 2a-c.

This is a design commonly seen in
FOP. There is a kernel feature (stack)
that introduces the underlying class
structure of the program and defines the
most basic operations. Each new feature
extends the base program by adding a
coherent set of new functionalities.
Note that every new feature is built
upon existing features, so that it can
make proper refinements to integrate
the new functionalities into the
program. For example, feature undo is
written with the full knowledge of stack
and counter, and for every stack
operation it inserts the backup of the
stack body and the counter. To generate
programs from this product-line,
features are composed in order, e.g.
counter•stack yields a stack with
counter, and undo•counter•stack
produces a full-featured stack.

However, a problem exists in this
design. Suppose we want a stack with
undo operation but without a counter.
An intuitive way is to compose stack with undo by the composition undo•stack. A closer
examination, however, would reveal that this composition does not produce the stack we want.
The backup() method defined in undo backs up not only the stack body but also the counter. Now
that we do not have counter in our composition, it would reference a non-existent data member;
in other words, undo interacts with a non-existent feature! This reflects a general problem in
feature oriented designs: because we encapsulate into a feature its interactions with other
features, the feature breaks when one of its interacting features is not present in a system. This
is an undesirable effect that undermines feature reusability, as feature optionality is made more
difficult to achieve. It is especially harmful in software product-line designs, since product-line
members often only use a partial set of all features.

Figure 2: Feature Modules in Stack Product-

class stackOfChar {
String s = new String();

void push(char a) {
s = a + s;

}
void pop() {

s = s.substring(1);
}

}

(a) stack
refines class
stackOfChar {

int i = 0;

int size() { return i;
}

void push() {
 Super.push();
 i++;
}
void pop() {
 Super.pop();
 i--;
}

}

(b) counter

refines class
stackOfChar {

String s_bak;
int i_bak;

void backup() {
 s_bak = s;
 i_bak = i;
}
void undo() {
 s = s_bak;
 i = i_bak;
}
void push() {
 backup();
 Super.push();
}
void pop() {
 backup();
 Super.pop();
}

}

(c) undo

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

 FEATURE INTERACTIONS AND SOFTWARE DERIVATIVES §3

As the cause of
the problem is that
different feature
interactions are
encapsulated in the
same feature module,
we can improve the
feature design by
separating these
interactions into
different modules as
illustrated in Figure 3.
We restructure undo
into three parts: undo is
the base feature; undostack encapsulates its interactions with stack; and undocounter
encapsulates its interactions with counter. With this separation, we can compose the stack
program with any combination of features we desire. To build a stack with undo functions, we
use the composition undostack•undo•stack. For a full-featured stack, the composition is
undocounter•undostack•undo•counter•stack. The general composition rule is that if a feature is
present, the corresponding interaction module(s) must also be present. For example, as far as
feature undo is concerned, whenever feature counter is present, undocounter must be added to a
composition.

The value of this idea is clear: interactions and base features separate concerns. That is, the
semantics of interaction modules and base feature modules are fundamentally different.
However, the idea has its limitations. First, feature interactions are generally not limited
between two features; it is possible to have multi-feature interactions. Second, there is no
algebra or architectural model to express these ideas or to generate the correct compositions of
base features and interaction modules from higher-level specifications. We show how to remove
these limitations in the next section by presenting a series of ideas that generalize this solution.

Software Derivatives: Encapsulating Feature Interactions

Base features (e.g. undo) partition the set of methods and variables of an application or product-
line. That is, we generalize Prehofer’s example so that a base feature encapsulates any number
of methods and variables belonging to any number of classes, not just a single class. Further, we
require that no two base features define the same method or variable. Each method and variable
is either private or public. If private, a member represents an implementation detail that is not
exposed to other features (and hence can be ignored in our analyses). If public, a member is
visible to other features and is subject to modification in feature compositions.

Figure 3: Separating Feature Interactions

refines class
stackOfChar {

void backup() {}
void undo() {}
void push() {
 backup();
 super.push();
}
void pop() {
 backup();
 super.pop();
}

}

(a) undo

refines class
stackOfChar {

String s_bak;

void backup() {
 super.backup();
 s_bak = s;
}
void undo() {
 super.undo();
 s = s_bak;
}

}

(b) undostack

refines class
stackOfChar {

int i_bak;

void backup() {
 super.backup();
 i = i_bak;
}
void undo() {
 super.backup();
 i_bak = i;
}

}

(c) undocounter

§3 SOFTWARE DERIVATIVES

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 17

Interaction module XY expresses the concept of a derivative: how feature X changes with
respect to feature Y. Henceforth, we write XY as ∂X/∂Y. A derivative or feature interaction is a
module that encapsulates any number of methods and variables. Unlike base features, a
derivative can only extend public methods of a base feature: it cannot introduce new public
methods or variables. (It can introduce private members, but these are invisible to other
features). Thus, a derivative ∂X/∂Y encapsulates extensions to one or more public methods of X
made by Y.

Recognizing derivatives are operators, we now have a general way to express interactions
among multiple features, which can be seen as interactions of interactions. For example, the
interaction of X with ∂Z/∂Y is a second order derivative:

(∂/∂X)(∂Z/∂Y) = ∂2Z/∂X∂Y (1)

Such derivatives have a simple interpretation: ∂2Z/∂X∂Y is a module that encapsulates the
changes made to feature Z by the combined features X and Y (i.e., X•Y). Such a module
encapsulates extensions of public Z methods, such as:

void methodZ() {code references members introduced by X, Y, Z}

where methodZ is a method introduced by Z, and its body references members introduced
by features X, Y, and/or Z. Nth-order derivatives have a similar interpretation: ∂nA/(∂Bn...∂B1)
defines a module that extends methods introduced by A and references members in A, B1 … Bn.
A derivative is empty if it equals to the identity function Id.

Mappings between Abstract and Concrete Feature Models

In Section we implicitly used two different feature models: an abstract model and a concrete
model. The concrete model was explicit — it was the set of all base features and all feature
interaction modules. For the stack example, a concrete model C contains five non-empty
operators — three base features and two derivatives:

C = { stack, counter, undo, ∂undo/∂stack, ∂undo/∂counter }

where operators of the concrete model are composed by •.
We also used an implicit abstract model — a set of abstract features where feature

interactions are implicit. An abstract feature X has the exactly the same methods of its concrete
base feature X, but the implementation of these methods is to be defined. For the stack example,
the abstract model A has three features:

A = { stack, counter, undo }

We use * to compose abstract features. (We will see shortly that * is different from •). The
product-line of model A allows at least the following compositions:

stack // stack
counter*stack // stack with counter
undo*stack // undoable stack
undo*counter*stack // undoable stack with counter

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 3

 FEATURE INTERACTIONS AND SOFTWARE DERIVATIVES §4

Implicit in the model is the mapping of an abstract expression — a * composition of
abstract features — to a concrete expression — a • composition of concrete features. Let X and
Y be abstract features and X*Y their composition. Let X, Y, and ∂Y/∂X denote the corresponding
concrete base features and their interaction. The relationship to map an abstract feature
expression to a concrete feature expression is:

X * Y = ∂X/∂Y • X • Y (2)

That is, composing abstract features X and Y is realized by composing their concrete base
features X and Y plus the changes Y makes to X. An example of this identity was seen earlier: we
saw that a “undoable stack” undo*stack maps to ∂undo/∂stack • undo • stack — that is, the
composition of the base undo and stack features with the interaction of undo with stack. (2)
elevates this relationship to a general identity.

Here is why (2) is useful: it specifies how a composition of abstract features can be
automatically translated to a composition of concrete features, which would otherwise be much
larger and much more difficult to write:

undo*counter*stack = ∂2undo/∂counter∂stack • ∂undo/∂counter • ∂undo/∂stack • undo

• ∂counter/∂stack • counter • stack

Some derivatives in this expression may be empty (such as ∂2undo/∂counter∂stack); we
only need to compose the non-empty ones. We can build a database or code repository of non-
empty base features and derivatives. Tools will translate abstract expressions into their
corresponding concrete expressions, then look up and retrieve the terms present in the
composition from the database. The retrieved modules are composed in the order dictated by
the concrete expression, and the target application is synthesized.

4 APPLICATION

A common software maintenance request is to add and remove features from an existing
application. If non-FOP designs are used, this task can be exorbitantly expensive. A challenge
problem is to refactor legacy applications which do not have FOP designs into an equivalent
form where they do have FOP designs, and thus can take advantage of FOP’s feature
extensibility. Our theory outlines a general solution to the feature refactoring problem.

Our software derivative model supports the refactoring of legacy applications into an FOP
design. Based on our theory on FOP, we envision a tool that helps a user to partition a legacy
application into abstract features by identifying data members and methods that each feature
introduces. Once this is done, the code for abstract features can be automatically refactored into
base features and derivatives. With an FOP design of a legacy application extracted, the
evolution of this application — by adding, removing and/or replacing features — should be
simplified. This work has broad applicability to domains where features are composed statically
to synthesize programs. We believe that most software-intensive domains fall into this category.

§4 APPLICATION

VOL. 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 19

REFERENCES
[1] D. Batory, “The Road to Utopia: A Future for Generative Programming”. Keynote

presentation at Dagstuhl for Domain-Specific Program Generation, March 23-28, 2003.
[2] J. Liu and D. Batory, “Automatic Remodularization and Optimized Synthesis of Product-

Families”. To appear in GPCE‘04.
[3] E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, W. K. Schure, and H. Velthuijsen,

“A Feature Interaction Benchmark for IN and Beyond”. Feature Interactions in
Telecommunications Systems, IOS Press, 1994.

[4] C. Prehofer, “Feature-Oriented Programming: A Fresh Look at Objects”. ECOOP, 1997.
[5] D. Batory, J.N. Sarvela, and A. Rauschmayer, “Scaling Step-Wise Refinement”. IEEE

Transactions on Software Engineering, June 2004.
[6] M. Van Hilst and D. Notkin, “Using Role Components to Implement Collaboration-Based

Designs”. OOPSLA, 1996.
[7] I. D. Baxter, “Design Maintenance Systems”. CACM, Vol. 55, No. 4 (1992).

About the author
Jia Liu received the BS degree in computer science from Peking University (1999) and the MS
degree in computer science from Univeristy of Texas at Austin (2003). He is currently a PhD
candidate at the Univeristy of Texas at Austin and a member of Product-Line Architechture
Research Group. He can be reached at jliu@cs.utexas.edu.

mailto:jliu@cs.utexas.edu

