/#—JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering. ©JOT, 2005

Vol. 4, No. 3
Special issue: GPCE Young Researchers Workshop 2004

Component-Based Software Development with
Aspect-Oriented Programming

Michael Eichberg, Departement of Computer Science, Darmstadt University
of Technology, Germany

Middleware for component-based software development already provides some sepa-
ration of concerns between the components implementing the business functionality
and the component environment implementing the infrastructural services. However,
the implementation of the services is usually not modularized, making it hard to adapt
the platform to application specific needs, to exchange services to cope with changing
requirements or to use it on different devices. Also, mapping components to objects
results in code where the crosscutting concerns encapsulated in the middleware show
up at several places, complicating the programming model and making the component
code dependent on the used component framework. In this paper an approach to solve
these problems based on the ideas of aspect-oriented programming is proposed.

1 INTRODUCTION

Current middleware for component-based software development (CBSD) based on
the Enterprise Java Beans(EJB) or CORBA Component Model provide good sep-
aration of concerns between the business logic (implemented by the components)
and the technical infrastructure needed to run the business logic (implemented by
the container). The container implements middleware services e.g., to authenticate
users, to make an application remotely accessible, to provide transaction handling,
etc., and invokes such services at appropriate points during the execution of the
business logic in a transparent way. Without the dedicated support by the compo-
nent middleware the implementation, respectively the invocation and orchestration
of middleware services, would be scattered around and tangled with the business
logic. Component middleware modularizes this crosscutting.

However, we can observe two main problems with this modularization. The first
problem concerns the separation of the business logic from the middleware services.
Current approaches force the developer to map component concepts onto language
constructs designed to express lower-level concepts such as objects (i.e., Java classes
and interfaces in EJBs), often involving coding conventions. The encapsulated mid-
dleware services appear at several places in the application code like the tip of an
iceberg. This complicates the programming model and defeats the benefits of static
type checking. A more direct support for the concept of distributed components in
the programming model would make the business logic modeled in the components
more maintainable and will foster the reusability. Second, middleware services while
well separated from the business logic are themselves generally not well modular-

Cite this article as follows: Michael Eichberg: "Component-Based Software Development
with Aspect-Oriented Programming", in Journal of Object Technology, vol. 4, no.
3, April 2005, Special issue: GPCE Young Researchers Workshop 2004, pp. 21-26,
http://www.jot.fm/issues/issue 2005 04/article3

http://www.jot.fm/issues/issue_2005_04/article3

G#_/ COMPONENT-BASED SOFTWARE DEVELOPMENT WITH ASPECT-ORIENTED PROGRAMMING

ized from each other. A modularization of the services provided by the container
into well encapsulated and decoupled modules is important to support adaptable
component environments that can be tailored to specific application’s needs. The
vision is a virtual container reified per component type / application out of a set of
services that are composed on-demand.

Motivated by these observations, an approach is proposed to apply aspect-
oriented programming (AOP) to the design of middleware frameworks, basically
modeling each service in a separate aspect. The platform that is proposed, is named
Alice. Tt uses standard Java 1.5 annotations |?]| to specify a component’s proper-
ties. At deployment-time these properties are evaluated and used by the services
(aspects) to select join points. One can think of annotations as a lightweight means
to extend object-oriented languages with component concepts.

In the next section we outline problems of current AOP approaches. Based on
this analysis the concept of Alice is presented. A short summary and discussion of
future work ends the paper.

2 DEFICIENCIES OF CURRENT AOP APPROACHES

In this section, we basically discuss the deficiencies of AspectJ [?] with regard to
support for modularizing middleware services. AspectJ was chosen because it is
the most mature AOP approaches currently available. The author is well aware
that a large number of approaches (e.g.: [?,7,7,7,7]) exist that also try to address
these problems, but unfortunately a detailed discussion is out of scope for this
paper. However, the problems discussed in the following basically apply to the
other approaches as well.

AspectJ provides a good starting point as an approach for addressing the defi-
ciencies of current component middleware outlined in the introduction. In principle,
it can be used to modularize individual middleware services, while not constraining
the development of components in any particular way, i.e. the component model is
not fixed. AspectJ is already successfully used in many projects [?,7,7?], especially
for the implementation of infrastructural services [?,7,?]. However, as discussed in
the following, AspectJ still lacks some important features: 1. Support for sophis-
ticated code generation / transformation is required. E.g., to implement a service
like passivation [?] it is necessary that all references to the component can be fully
controlled by the service, otherwise, the service could be bypassed leading to a faulty
runtime behavior. For this purpose, a proxy class can be generated that ensures that
the component does not pass a reference to itself (this) to any other component -
the proxy object is passed instead. 2. Certain services (aspects) are applicable to a
class only if the latter has certain properties. E.g., in order for a passivation service
to be applicable to a class, all fields have to be serializable. Hence, it is necessary
to check the properties of a class before applying an aspect. Though, AspectJ can
be used to enforce design properties [?, 7| the support to enforce structural prop-
erties is too limited [?]. 3. Further, AspectJ provides no standard way to express

22 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 3

3 ALICE

the interaction of a class with an aspect. When aspects are used to modularize
middleware services, an interface that allows the business logic to interact with an
aspectualized middleware services is needed, e.g., imagine a shopping cart or an
order processing component that - as part of its business logic - generates an invoice
or an order confirmation starting with “Dear Ms/Mr XYZ,...". In order to do so,
the component needs to access the data of the user making the order, but the iden-
tity of the user performing the transaction is usually known to the authentication
service - a typical crosscutting concern implemented as an aspect. Hence, we need
to be able to access the authentication service from the component to get the user.
4. Also the expressiveness and abstraction capabilities of the pointcut language is
too limited. In [?], Gybels and Brichau discuss the problem of arranged patterns,
roughly speaking, referring to the problem that often pointcut definitions are based
on naming conventions. This leads to a coupling between an aspect and the base
application (component).

3 ALICE

Alice is an aspect-oriented programming based approach that addresses the open
issues by enabling (a) the modularization of infrastructural services and (b) by pro-
viding a clean programming model that (c¢) does not tie a component to a specific
component framework. Nevertheless, a component will have a well defined compo-
nent model.

are statically checked

Restrictions o
o
lles on
uses (for weaving)

rvices

Transformation
/ Generation

%"-ﬁ to bind transformations
: manages

Environment:

ed in

Figure 1: An overview of Alice

An overview of Alice visualizing the important parts and their relationships is
shown in figure 1. As indicated by figure 1, a central feature of Alice is its use of
standard Java 1.5 annotations [?] in both the implementation of the components as
well as the implementation of the services. As far as the component programming
model is concerned, the main purpose of annotations is to provide additional meta
information about components they are associated with. By using annotations the
component developer defines (a) the type of the component and its business methods
as well as (b) how the component interacts with the environment; in other words a
component’s model is determined by the usage of specific annotations.

In its role of defining the type of a component, an annotation serves two pur-
poses. First, it can define implementation restrictions that have to be followed by

VOL 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 23

G#_/ COMPONENT-BASED SOFTWARE DEVELOPMENT WITH ASPECT-ORIENTED PROGRAMMING

the component developer and are statically checked at deployment time (e.g., syn-
chronization primitives must not be used or a business method must be public) [?].
The second role of annotations is to specify requirements on the component envi-
ronment. For example, the annotation @BusinessMethod in listing 1 only provides
the meta information that the method implements a part of the business logic while
the annotation @SessionHandling provides the meta information that we have a
session component as well as requires that a service is available at runtime that
provides session handling functionality.

@SessionHandling public class ShoppingCart{
@BusinessMethod public void addItem(Item item) { ... }
@BusinessMethod public void checkOut() {...}

}

R

Listing 1: Excerpt of the implementation of a ShoppingCart component

Additional predefined annotations are available if a component must interact with
a service. In addition, an annotation can be used by the services, as a means to
identify relevant points, where to join the execution. Similar to AspectJ a service
(aspect) in Alice defines pointcuts and advice. In addition, the developer of an
infrastructural service in Alice can rely on the knowledge that annotations imply
certain restrictions on the implementation of the components and uses the meta
information encoded by annotations as a means to safely identify join points. In
listing 2 an example pointcut and advice definition is shown. In this case the pointcut
selects all methods that are annotated with the BusinessMethod annotation and for
each join point selected by the pointcut the method onExecution is executed before.
Passed to the method are the context information that are available at a join point,
i.e. the receiver of the call or the current instance.

-

@Advice (pointcut="annotatedMethod(’BusinessMethod’)",type="before")
public void onExecution(Context context){ /* do somethingx/ }

(¥}

Listing 2: An example Pointcut and Advice

So far the programming model for components has been discussed. With regard
to programming the services, annotations serve two purposes: (a) to check the
applicability of transformations, and (b) to identify join points. The environment
has one part to handle the deployment of components and one part to handle the
interaction between a component and the services. At deployment the component
is verified to satisfy all implementation restrictions, that all necessary services are
available, and that the transformations are executed. After that, the functionality
of the environment is to enable the interaction between a component and a service.

4 FUTURE WORK & SUMMARY

The main goal of this work is to present a concise programming model that repre-
sents a significant improvement when compared with the current state-of-the-art in
CBSD. It allows the separation of infrastructural services in off-the-shelf reusable
aspects. This will be made possible by a set of annotations which are currently under

24 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 3

4 FUTURE WORK & SUMMARY

development and which are to be used by the component developer to provide addi-
tional information about the component and the join points for aspects. The aspect
developer uses the annotations to bind the functionality to a component without
requiring any knowledge about a components concrete implementation. Thus far,
compilation and execution speed of the prototype under development is not tar-
geted. Based on the specification of a set of service independent annotations, and
the implementation of a small set of services which rely on those annotations, the
approach will be assessed by developing a small demo application. Subject of the
assessment is the off-the-shelf reusability of a service, i.e. whether it is possible to
directly use a service or if adaption for a specific component or set of components
is still required. Further, we will assess the approach by determining the achieved
level of modularization between different services: two services will be considered
well modularized if they can be developed independently of each other.

REFERENCES

[1] J. Bloch. A Metadata Facility for the Java Programming Language. Java
Specification Request 175, SUN Microsystems, 2002.

|2] Tal Cohen and Joseph Gil. AspectJ2EE = AOP + J2EE - Towards an Aspect
Based, Programmable and Extensible Middleware Framework. In Proceedings
of ECOOP 2004. Springer.

|3] Adrian Colyer and Andrew Clement. Large-scale aosd for middleware. In
Proceedings of AOSD 2004. ACM Press.

|4] Frédéric Duclos, Jacky Estublier, and Philippe Morat. Describing and using non
functional aspects in component based applications. In Proceedings of AOSD
2002. ACM Press.

[5] Michael Eichberg, Mira Mezini, Thorsten Schéfer, Claus Beringer, and Karl-
Matthias Hamel. Enforcing system-wide properties. In Proceedings of ASWEC
2004. ITEEE Computer Society.

|6] Kris Gybels and Johan Brichau. Arranging Language Features for More Robust
Pattern-based Crosscuts. In Proceedings of AOSD 2003. ACM Press.

|7] JBoss Inc. JBoss AOP Betad. http://www.jboss.org, 2004.

|8] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffry Palm, and
William G. Griswold. An Overview of AspectJ. In Proceedings of ECOOP
2001. Springer.

|9] R. Laddad. AspectJ in Action. Manning, 2003.

VOL 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 25

G#_/ COMPONENT-BASED SOFTWARE DEVELOPMENT WITH ASPECT-ORIENTED PROGRAMMING

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

Martin Lippert and Cristina Videira Lopes. A study on exception detecton and
handling using aspect-oriented programming. In Proceedings of ICSE 2000.
ACM Press.

Awais Rashid and Ruzanna Chitchyan. Persistence as an aspect. In Proceedings
of AOSD 2003. ACM Press.

Mati Shomrat and Amiram Yehudai. Obvious or not? regulating architectural
decisions using aspect-oriented programming. In Proceedings of AOSD 2002.
ACM Press.

Sergio Soares, Eduardo Laureano, and Paulo Borba. Implementing distribution
and persistence aspects with aspectj. In Proceedings of OOPSLA 2002. ACM
Press.

Davy Suvee, Wim Vanderperren, and Viviane Jonckers. JAsCo: an aspect-
oriented approach tailored for component based software development. In Pro-
ceedings of AOSD 2003. ACM Press.

Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton. N
degrees of separation: Multi-dimensional separation of concerns. In Proceedings
of ICSE 1999. IEEE Computer Society Press.

Markus Volter, Alexander Schmid, and Eberhard Wolff. Server Component
Patterns: Component Infrastructures Illustrated with EJB. John Wiley & Sons,
November 2002.

Robert J. Walker, Elisa L. A. Baniassad, and Gail C. Murphy. An initial
assessment of aspect-oriented programming. In Proceedings of ICSE 1999. IEEE
Computer Society Press.

Charles Zhang and Hans-Arno Jacobsen. Refactoring Middleware with Aspects.
IEEFE Transactions on Parallel and Distributed Systems, 14, November 2003.

ABOUT THE AUTHORS

Michael Eichberg is a PhD student and research assistant at the
Software Technology Group at Darmstadt University of Technol-
ogy, Germany. He can be reached at eichberg@informatik.tu-
darmstadt.de. See also http://www.st.informatik.tu-
darmstadt.de/staff/Eichberg.

26

JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 3

mailto:eichberg@informatik.tu-darmstadt.de
mailto:eichberg@informatik.tu-darmstadt.de
http://www.st.informatik.tu-darmstadt.de/staff/Eichberg
http://www.st.informatik.tu-darmstadt.de/staff/Eichberg

