
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 5, July - August 2005

Cite this column as follows:Anthony J H Simons: “The Theory of Classification Part 19: The
Proliferation of Parameters”, in Journal of Object Technology, vol. 4, no. 5, July-August 2005,
pp.37-48 http://www.jot.fm/issues/issue_2005_07/column4

The Theory of Classification Part 19:
The Proliferation of Parameters

Anthony J H Simons, Department of Computer Science, University of
Sheffield, UK

1 INTRODUCTION

The Theory of Classification is an informal series of articles considering the formal
notions of type and class in object-oriented languages. The series began by constructing
models of objects, types, and inheritance, then branched out into interesting areas such as
mixins, multiple inheritance and generic classes. Most recently, we returned to the core
argument that simple types and subtyping are formally different concepts from
polymorphic classes and subclassing. The previous article [1] described how object-
oriented languages were unclear about the distinction between simple and polymorphic
types, so we described one possible approach in which class names (which are used like
type identifiers) were interpreted unambiguously either as simple types, or polymorphic
classes, according to context.

In the current article, we consider in more detail the kinds of manipulations
performed upon polymorphic class-types. These are expressed using function-bounded
type parameters of the form: τ <: F[τ], where F is a type function, describing the shape of
the interface that the type τ is expected to satisfy [2]. In the following, we motivate the
need for parameters and bounded parameters, then examine what happens when we
require a language to express all of its polymorphism in this way. The result is a
proliferation of parameters and constraints, which has both good and bad consequences.
On the positive side, it is clear over what types the polymorphic variables may range. On
the negative side, the syntax of such languages becomes inflated with parameters and is
therefore somewhat unwieldy.

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_07/column4

THE THEORY OF CLASSIFICATION PART 19: THE PROLIFERATION OF PARAMETERS

38 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

2 POLYMORPHISM NEEDS PARAMETERS

Throughout this series, we have made it clear that wherever polymorphism is intended,
this formally requires the use of a type parameter, to stand for the group of types over
which the function is defined [3]. For example, consider how the identity function applies
to a value of any type and returns an identical value, and the result is of the same type as
the argument. To define such a function in C++, we must use the template mechanism:

template <class T>
T identity (const T arg) // argument is not modified
{ return arg; // returns a copy of arg
}

in which the line “template <class T>” introduces the type parameter T, which
stands for any type. This function can be applied to values of many different types in
C++, including primitive types, pointers and structured object types:

int x = identity(5); // returns an int
double y = identity(3.14); // returns a double
Point* p = identity(new Point); // returns a Point* pointer
Point q = identity(Point(2, 3)); // returns a Point value

The polymorphic function appears to be “smart” because it somehow detects the type of
its argument and returns a value of the exact same type. In C++ this is accomplished by
the compiler, which statically detects the argument’s type and creates a specific
instantiation of the template function at compile time. In fact, for every distinct
instantiation of the identity function, the compiler must generate a new copy of the
identity function. In the end, it is as if the above program contained four different identity
functions, with the overloaded type signatures:

int identity(int arg);
double identity(double arg);
Point* identity(Point* arg);
Point identity(Point arg);

and then C++’s normal rules for selecting one or other overloaded function were used to
determine which function to apply.

In the λ-calculus, which is a very simple symbol-manipulation system, we bind the
type parameter explicitly, supplying the intended type. The calculus cannot detect by
itself that a value has any particular type unless we tell it so. All polymorphic functions
therefore accept type arguments and value arguments, in that order [3]. The identity
function is defined:

identity : ∀τ . τ → τ // for all τ, accept a τ and return a τ
identity = λτ . λ(arg : τ) . arg // bind τ, then bind arg : τ, then return arg

VOL. 4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 39

and we apply it to values of different types in the following style, in which we supply
first the type argument, then a value argument of that type:

identity int 5 ⇒ 5
identity double 3.14 ⇒ 3.14

Readers will recall that a λ-function simply binds its arguments in a left-to-right fashion
and so doesn’t need to put the arguments in parentheses. In earlier articles, we have
sometimes adopted the convention of wrapping type arguments in brackets [] and value
arguments in parentheses () to help the reader visualise what is going on inside the
function.

Second-order functions like the above are really two functions, one nested inside the
other. The outer function is a type-function and the inner function is a value-function. In
the above examples, we supplied both the type argument and then the value argument. If
we only supply the first type argument, then the result we get back is the second function,
which is the body of the first function, in which the type parameter τ has been replaced:

identity int ⇒ λ(arg : int) . arg // replace τ by int: {int/τ}
identity double ⇒ λ(arg : double) . arg // replace τ by double: {double/τ}

and this models the effect of C++’s type instantiation, since it returns a specific version of
the identity function, ready to be applied to a value of one particular type.

3 CLASSES NEED BOUNDED PARAMETERS

Throughout this series, we have argued that class-types are also polymorphic things and
therefore need to be modelled using type parameters [3, 4, 1]. The main difference
between a universal polymorphic function, such as identity, and the kinds of function that
belong to a restricted class, such as plus, minus, times and divide, is that we want these
functions to apply not just to any old type, but only to those types which are considered to
be “at least some kind of number”. In earlier articles, we demonstrated that this required
the introduction of constraints, or bounds on the type parameter. We defined the interface
of a number class using a type function:

GenNumber = λσ.{plus : σ → σ, minus : σ → σ, times : σ → σ, divide : σ → σ}
and then used this to constrain a type parameter, in the function-bounded style [2, 4]:

∀(τ <: GenNumber[τ]) . (… some definition involving τ …)
How does this constraint express what we mean by a class? The intention is that τ may
only range over certain types in a type family [3]. What the constraint literally says is “all
types τ that are subtypes of the type you get when you apply GenNumber to the τ type”.

To unpack this further, recall that we started with a simple model of objects as
records, whose labelled fields are functions, representing the object’s methods. The types

THE THEORY OF CLASSIFICATION PART 19: THE PROLIFERATION OF PARAMETERS

40 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

of objects are therefore represented by record types, whose fields are the corresponding
type signatures of the object’s methods. The notion of subtyping we need, in order to
understand this constraint, is therefore record subtyping [5]. The record subtyping rule
permits a type with more fields to be a subtype of a type with fewer fields.

So, returning to the original problem, imagine that we expect the Integer type to
belong to the class of numbers. Therefore, Integer must be one of the types that satisfies
the above constraint, in other words, we expect the following to be true:

Integer <: GenNumber[Integer], which we can re-express as:

Integer <: {plus : Integer → Integer, minus : Integer → Integer,
 times : Integer → Integer, divide : Integer → Integer}

by applying GenNumber[Integer] and seeing what kind of record-type we get when we
substitute {Integer / σ} in the body of the generator. So, what this constraint is really
saying is that the Integer type must have at least as many methods as the record type on
the right-hand side. This is easy enough to satisfy if we give Integer all of those methods;
and we could possibly give it more methods, such as: modulo : Integer → Integer, which
returns a remainder.

So, this kind of bounded type parameter captures exactly the sort of constraint we
need when defining groups of functions that apply to all the types in a given class and
only to those types. We may write the polymorphic type of plus and minus in the style of
methods:

∀(τ <: GenNumber[τ]) . τ.plus : τ → τ
 ∀(τ <: GenNumber[τ]) . τ.minus : τ → τ

This says that, for all numeric types τ, selecting the plus or minus methods from an object
of type τ will return a function that accepts the remaining argument of the same type τ
and this will also return a result of the type τ. Alternatively, we can write the
polymorphic type of plus and minus in the style of regular functions:

plus : ∀(τ <: GenNumber[τ]) . τ → (τ → τ)
minus : ∀(τ <: GenNumber[τ]) . τ → (τ → τ)

which are now clearly seen to accept two arguments, the first of which is the receiver
object, from which the method is to be selected. The remaining argument and result type
are as above.

4 BOUNDED PARAMETERS IN FUNCTIONAL LANGUAGES

Our notion of a class is exactly the same as the notion of type classes in the strongly-
typed functional programming languages. The language Haskell [6] defines polymorphic
functions using type parameters and sometimes needs to assert that these parameters

VOL. 4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 41

range over certain restricted classes of types. In the following example of a polymorphic
function to compute the length of a list, “[]” denotes a list-type and “a” denotes a
type parameter:

length :: [a] -> Int
length nil = 0 -- empty case
length (head : tail) = 1 + length tail -- non-empty case

The first line is a type signature, saying that length takes a list of any polymorphic
element type “[a]” and returns a result of the Int type. This is a universal polymorphic
function, rather like identity earlier. The length can be computed, irrespective of what
type of element we choose for the list.

However, the polymorphic function for list membership cannot be defined in quite
the same way. To determine list membership, the body of the elem function needs to be
able to compare the supplied value with successive elements of the supplied list, using the
equal function “==”. So, the polymorphic element type must be one that is in the class of
types possessing an equal function. In Haskell, this is represented by the constraint “Eq
a”, which has the sense “any polymorphic type a in the Eq class”. Elsewhere, Haskell
defines the Eq class as the class of all those types possessing “==” and “/=” (not equal).
The definition of elem is given by:

elem :: Eq a => a -> [a] -> Bool
elem x nil = False -- empty case
elem x (head : tail) -- non-empty case
 | x == head = True -- found the element
 | otherwise = elem x tail -- keep searching

in which the constraint “Eq a =>” on the first line has the sense: “provided that the type
a is a member of the Eq class, then this function takes an element of the type a and a list
of the type [a] and returns a Bool result”. The effect of this class constraint is to ensure
that elem can only apply to lists, whose elements have a well-defined equal function. If
this constraint were not present, then the Haskell compiler would refuse to compile the
definition of elem, because it could not guarantee that “x == head” was a well-typed
expression. This, by the way, contrasts with the approach taken in C++, which allows you
to write arbitrary expressions involving variables with parametric types, because C++
doesn’t compile or check any of its template definitions. It simply waits for these to be
instantiated, and then checks that all the calls are well-typed for each instantiation,
separately.

THE THEORY OF CLASSIFICATION PART 19: THE PROLIFERATION OF PARAMETERS

42 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

In the λ-calculus, we can express such a class of types with equality, using a type
generator to constrain the polymorphic type parameter to accept only types that have at
least the two functions equal and notEqual:

GenEqual = λσ.{equal : σ → Boolean, notEqual : σ → Boolean}

∀(τ <: GenEqual[τ]) . (… some definition involving τ …)
The above F-bound provides the exact meaning of Haskell’s “Eq a => …” constraint.
It was quite satisfying to find this convergence between the notion of class put forward in
the Theory of Classification, and the notion of “type classes” in functional programming
languages, because it means that we are all probably on the right track!

5 CLASSES WITHIN CLASSES NEED NESTED PARAMETERS

After a while, the realisation comes that everywhere you want polymorphism, you
formally need another type parameter. This has interesting consequences when you
consider more complex classes that are built up out of a number of other classes as their
“elements”. Simple examples include the kind of generic classes we considered in an
earlier article [7]. For example, if we have a List class whose self-type is expressed as the
parameter σ, and if this List has a method insert accepting elements of some other class,
whose polymorphic type is expressed as the parameter τ, then in which order should these
be declared?

The solution to this quandary is found by thinking about the notion of type
dependency. The element-type may exist by itself, but the list-type depends in some way
upon the element-type in its definition. That is, for whatever element type τ we imagine,
the list self-type σ somehow depends on the type of τ. This is natural, since we would
expect an IntegerList to depend on its Integer elements, whereas a RealList would have
Reals as its elements. We therefore introduce τ before σ, since this keeps within the
second-order λ-calculus, in which type parameters only range over simple types [3]. That
is, we introduce σ in a context in which τ is already bound to some actual type, so σ can
range over simple types also.

To see how the type parameters stack up, let us construct the type signature for a
generic List class with a method elem to test whether the inserted elements are members
of the list. From section 4 above, we know that this puts a constraint on the element type,
which must have an equal method to compare itself with other elements. Therefore, we
will first require a type generator to express the shape of the element type:

GenEqual = λτ.{equal : τ → Boolean, notEqual : τ → Boolean}

VOL. 4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 43

The shape of the list’s interface is expressed through a second type generator:

GenList = λτ.λσ.{insert : τ → σ, head : τ, tail : σ,
 length : Integer, elem : τ → Boolean}

which now recognises that there are two parameters involved. The first is τ for the
element-type. We can see this by applying GenList to some actual element type, say
Integer, to see what kind of type-expression this produces:

GenList[Integer] = λσ.{insert : Integer → σ, head : Integer, tail : σ,
 length : Integer, elem : Integer → Boolean}

The result substitutes {Integer/τ} in the body of the generator, returning a nested type
function beginning: λσ.{…}. This looks exactly like the shape of a regular type generator
for a non-generic class, and so it is. The second type parameter σ stands for the self-type
of this class. We need this because we are dealing with polymorphic classes, not simple
types. That is, the above definition is the minimum common interface for a variety of
different list-types, which might include more specialised list-types, such as sorted lists.

What is the form of the F-bound constraint that ensures that our list self-type σ
ranges over only those lists which (i) have elements with an equal-method and (ii) have a
list-interface that includes all of the methods: insert, head, tail, length and elem? This is a
constraint constructed using both of the above two type generators:

∀(τ <: GenEqual[τ]).∀(σ <: GenList[τ, σ]).
 (… some definition involving τ and σ …)

What is interesting here is the double quantification. On the outside, we assert that the
element type τ may only range over subtypes of GenEqual[t], that is, types with at least
the methods: equal and notEqual. Then, on the inside, we assert that the self-type σ may
only range over subtypes of GenList[τ, σ], that is, types with at least the methods: insert,
head, tail, length and elem, provided that τ is of the earlier specified type. This is the way
in which the constraint for the list-type depends on the element-type. Translating this into
object-oriented programming terms, the polymorphic type of a class depends on the
polymorphic types of the other classes which it references internally. More precisely, it
depends on those classes which affect the shape of its external interface.

6 SUBCLASSING USES PARAMETER SUBSTITUTION

Assume now that we wish to derive a more specialised kind of List class, say a SortedList
of elements which are inserted automatically in ascending order. SortedList has two new
operations least and greatest, to return the smallest and largest elements and otherwise
has all the operations of a List. Below, we define the polymorphic type of the SortedList
class by inheritance, constructing the new constraint partly from information present in
the old one. Afterwards, we show how the new constraint preserves the old constraint.

THE THEORY OF CLASSIFICATION PART 19: THE PROLIFERATION OF PARAMETERS

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

To permit the sorting of elements when they are inserted, elements must be
comparable with each other using lessThan. This means that the constraint on the
element-type will be stronger than the one required for a plain List element. The new type
generator must at least have the interface of Equal, otherwise the old List membership
method elem would not work. The new generator GenComparable is therefore defined to
extend the interface of GenEqual:

GenComparable = λω.(GenEqual[ω] ∪ {lessThan : ω → Boolean,
 greaterThan : ω → Boolean})

= λω.{equal : ω → Boolean, notEqual : ω → Boolean,
 lessThan : ω → Boolean, greaterThan : ω → Boolean}

In the above, the new element type parameter is ω. This is introduced on the outside, then
the result is formed internally as the union of the old interface and the extra methods.
Note that the inherited interface is given by: GenEqual[ω]. This essentially applies the
old generator to the new parameter, and creates a record type in which {ω/τ} has been
substituted throughout:

GenEqual[ω] = {equal : ω → Boolean, notEqual : ω → Boolean}
and this inherited record type can be safely unioned with the additional method
signatures. A similar trick is used to extend the List generator to produce the SortedList
generator:

GenSortedList = λω.λψ.(GenList[ω, ψ] ∪ {least : ω, greatest : ω})

= λω.λψ.{ insert : ω → ψ head : ω, tail : ψ, length : Integer,
 elem : ω → Boolean, least : ω, greatest : ω}

Note again how this creates an inherited version of the old List interface by applying the
old generator to the new parameters: GenList[ω, ψ]. This returns a record type in which
{ω/τ, ψ/σ} have been substituted throughout:

GenList[ω, ψ] = { insert : ω → ψ head : ω, tail : ψ,
 length : Integer, elem : ω → Boolean}

and this inherited record type can be safely unioned with the new method signatures.
Previously, we noted that the reason for substituting parameters like this was to ensure, in
the inheriting class, that the self-type was consistently denoted by ψ (rather than a
mixture of new ψ and old σ) [3, 4]. Now that we are dealing with nested classes, the rules
must be applied recursively for the element type, which must be consistently ω
throughout.

The stronger constraint for our new SortedList class, which ensures that the type
paramter ψ ranges over only those types which are at least SortedLists of Comparable

VOL. 4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 45

elements, is given by a nested F-bound that is written in terms of the two new generators,
but is otherwise similar to the nested F-bound for a List:

∀(ω <: GenComparable[ω]).∀(ψ <: GenSortedList[ω, ψ]).
 (… some definition involving ω and ψ …)

7 SUBCLASSING IS THE INCREASING OF TYPE CONSTRAINTS

What is even more sophisticated in this model of inheritance is the preservation of the
constraints on all the type parameters. Technically, we are substituting parameters
bounded by one set of constraints with new parameters bounded by a different set of
constraints. Are the substitutions all legal? To do this, we check the expectations made
internally by the type generators.

When we apply: GenEqual[ω], we substitute {ω/τ}. Now, the τ-parameter expects to
receive a type satisfying: τ <: GenEqual[τ], in other words, a type with at least the
interface of the Equal class. It so happens that we are replacing one parameter with
another parameter, rather than an actual type. So instead, we have to consider all the
types that might be allowed by the new parameter. The new parameter ω expects to
receive a type satisfying: ω <: GenComparable[ω], in other words, any type with at least
the interface of the Comparable class. So, we have to ensure that all types that we could
substitute for ω will also be acceptable types for the parameter τ. Formally, we determine
this using the pointwise subtyping rule [4], checking the assertion:

∀τ . GenComparable[τ] <: GenEqual[τ]
By inspection, the Comparable interface includes the Equal interface, no matter what
value we supply for τ, so this substitution is proven legitimate.

A similar process happens when we apply: GenList[ω, ψ], causing the substitutions
{ω/τ, ψ/σ}. We follow the same argument for ω, and then a similar argument for ψ as it
replaces the parameter σ. Eventually, we conclude that any type which we could
substitute for ψ will also be an acceptable type for the parameter σ, as a result of the
pointwise rule:

∀τ . ∀σ . GenSortedList[τ, σ] <: GenList[τ, σ]
This expresses the assertion that the interfaces of SortedList and List stand in a pointwise
subtyping relationship, no matter what types we substitute for τ and σ. By inspection of
the two interfaces, we conclude this holds, so the substitution is proven legitimate.

In general, the derivation of subclasses follows a process of monotonic restriction
(steadily increasing, or stable constraint) on all the type parameters involved. The kinds
of restriction that are permitted can be modelled as a kind of commuting diagram, shown
in figure 1.

THE THEORY OF CLASSIFICATION PART 19: THE PROLIFERATION OF PARAMETERS

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

∀(τ <: GenEqual[τ]).
 ∀(σ <: GenList[τ, σ]) . σ

∀(ω <: GenComparable[ω]).
 ∀(γ <: GenList[ω, γ]) . γ

∀(ω <: GenComparable[ω]).
 ∀(ψ <: GenSortedList[ω, ψ]) . ψ

{ω/τ} ⇒ {γ/σ}

{ψ/γ}
{ω/τ, ψ/σ}

Figure 1: Commuting diagram of increasing constraints

This shows that you can start with a polymorphic list σ of elements τ with equality, and
can choose to restrict the element-type, giving a similar list γ of comparable elements ω
with less-than ordering, and then constrain the list further to a sorted list ψ with
comparable elements ω. Alternatively, both restrictions on the element-type and list-type
may be carried out simultaneously, which is illustrated by the diagonal path. A fourth
substitution path, changing a list σ to a sorted list ψ without changing the element type is
not possible, according to the diagram. This is because a sorted list depends on having a
comparable element-type.

One new thing that the diagram shows is that substituting one of the “type elements”
of the main class, here, the element-type of the list, leads to a change in the self-type also.
Merely choosing to substitute {ω/τ} with a more constrained element-type entails the
substitution of the self-type {γ/σ} in figure 1. This is something rarely considered in
informal treatments of object-oriented type systems. Why has the self-type of the list
changed? Well, the result of one access method is typed: head : τ for the original list; but
after we have substituted {ω/τ}, then we would expect this method to return a different
type: head : ω. Therefore, this must be the head of a different type of list. Jens Palsberg
and Michael Schwartzbach were the first to explore the consequential effects of type
substitutions to any significant degree in object-oriented type systems [8]. This is still a
relatively new area, the subject of continuing research.

8 CONCLUSIONS

We have shown how a proper treatment of object-oriented polymorphism involves the
use and manipulation of constrained type parameters. In particular, the polymorphic type
intended by a class identifier in object-oriented programs is quite a complex notion. It is a
parametric type, restricted to receive only types with a certain interface structure. But
more interestingly, the parametric type depends in turn on all the type elements of the
class in question. So, the polymorphic aliasing of one of these element-types may also
affect the type of the whole class. During the operation of inheritance, many type
substitutions are performed, both of the element-types and the class’s self-type. This

VOL. 4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 47

follows a pattern which gradually increases the constraints on all type parameters
monotonically, restricting the types which may eventually be valid members of the
subclass.

Very few attempts have been made so far to build a practical object-oriented
programming language based on entirely parametric treatments of polymorphism. One
attempt was by Simons et al. in the early 1990s [9, 10]. In the experimental language
Brunel, simple types were written in the usual way as: x:Integer; y:Boolean; and
polymorphic class-types were written using explicit type parameters: p:P, where
#Point[P] introduced the parameter and expressed the F-bound constraint that P is in
the class of Points. However, the language eventually proved unwieldy, due to the
stacking up of type parameters. Every class that itself contained further class-elements
had to declare the element-types up front. For larger classes, this was a considerably high
overhead and eventually was judged impractical for a real programming language. It
seems that the most practical way ahead should be to design languages that can keep
track automatically of all the complex, and interdependent type substitutions. This might
eventually lead to a whole new kind of compiler technology.

REFERENCES

[1] A J H Simons, “The theory of classification, part 18: Polymorphism through
the looking glass”, Journal of Object Technology, 4(4), May-June 2005, 7-18.
http://www.jot.fm/issues/issue_2005_05/column1

[2] P Canning, W Cook, W Hill, W Olthoff and J Mitchell, “F-bounded
polymorphism for object-oriented programming”, Proc. 4th Int. Conf. Func.
Prog. Lang. and Arch. (Imperial College, London, 1989), 273-280.

[3] A J H Simons, “The theory of classification, part 7: A class is a type family”,
Journal of Object Technology, 2(3), May-June 2003, 13-22.
http://www.jot.fm/issues/issue_2003_05/column2

[4] A J H Simons, “The theory of classification, part 8: Classification and
inheritance”, Journal of Object Technology, 2(4), July-August 2003, 55-64.
http://www.jot.fm/issues/issue_2003_07/index_html

[5] A J H Simons, “The theory of classification, part 4: Object types and
subtyping”, Journal of Object Technology, 1(5), November-December 2002,
27-35 http://www.jot.fm/issues/issue_2002_11/column2

[6] S Peyton-Jones et al., The Haskell 98 Language and Libraries: the Revised
Report (Cambridge, UK: CUP, 2003), 270pp. Also pub. as special edn.
Journal of Functional Programming, 13(1), January, 2003. Online version:
http://www.haskell.org/onlinereport/

http://www.jot.fm/issues/issue_2005_05/column1
http://www.jot.fm/issues/issue_2003_05/column2
http://www.jot.fm/issues/issue_2002_11/column2
http://www.haskell.org/onlinereport/

THE THEORY OF CLASSIFICATION PART 19: THE PROLIFERATION OF PARAMETERS

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

[7] A J H Simons, “The theory of classification, part 13: Template classes and
genericity”, Journal of Object Technology, 3 (7), July-August 2004,, 15-25.
http://www.jot.fm/issues/issue_2004_07/index_html

[8] J Palsberg and M I Schwartzbach, Object-Oriented Type Systems (Chichester:
John Wiley, 1994).

[8] A J H Simons, Low E-K and Ng Y-M, “An optimising delivery system for
object-oriented software”, Object-Oriented Systems, 1 (1) (1994), 21-44.

[9] A J H Simons, A Language with Class: The Theory of Classification
Exemplified in an Object-Oriented Programming Language, PhD Thesis,
Department of Computer Science, University of Sheffield (Sheffield, 1995),
255pp.

About the author
Anthony Simons is a Senior Lecturer and Director of Teaching Quality
in the Department of Computer Science, University of Sheffield, where
he leads object-oriented research in verification and testing, type theory
and language design, development methods and precise notations. He
can be reached at a.simons@dcs.shef.ac.uk.

http://www.jot.fm/issues/issue_2004_07/index_html
mailto:a.simons@dcs.shef.ac.uk

