
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 6, Special Issue: Use Case Modeling at UML-2004, Aug 2005

Cite this article as follows: Gonzalo Génova, Juan Llorens: “The Emperor’s New Use Case”, in
Journal of Object Technology, Vol. 4, No. 6, Special Issue: Use Case Modeling at UML-2004,
Aug 2005 , pp. 81-94 http://www.jot.fm/issues/issue_2005_08/article7

The Emperor’s New Use Case
Gonzalo Génova and Juan Llorens
Computer Science Department, Carlos III University of Madrid

Abstract
Use cases are intended to specify system behavior from the user’s point of view. In
UML, use cases are meta-modeled as classifiers, trying to fit them within the general
object-oriented paradigm. Classifiers specify a set of instances, and use case instances
are said to be occurrences of emergent behaviors, that is, concrete system-actor
interactions. This idea poses some difficulties, since it is not clear how an interaction
can have classifier features such as attributes, operations and associations. Therefore,
we challenge the notion that use case instances are interactions. On the other side, if
we proceed on to the complete specification of system behavior by means of use cases,
we reach a notion of use case (a coordinated use of system operations) that is very
close to the traditional role with an associated protocol interface, therefore concluding
that use cases and protocols are not essentially different things.

Many, many years ago lived an emperor,
who thought so much of new clothes

that he spent all his money in order to obtain them;
his only ambition was to be always well dressed.

…
“But he has nothing on at all,” said a little child at last.

Hans Christian Andersen, The Emperor’s New Suit [Andersen 1837]

1 INTRODUCTION: IN DEFENSE OF USE CASES

Jacobson [Jacobson 92] originated the idea of use cases by observing that, despite the
huge number of potential executions, most applications are conceived in terms of a
relatively small number of typical interactions. Consequently, use cases have shown to be
very useful to elicit user requirements: the user (or better, the stakeholder) explains in a
simple way what he or she expects from the system to be built, by means of describing an
interaction with the system, including the information supplied by the user, and the
expected system answer. Usually, in this description it is revealed how the user thinks
about the system, and what the fundamental concepts in the domain are, hence analysis
classes are discovered. No doubt, the description of quasi-linear user-system interactions

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_08/article7

THE EMPEROR’S NEW USE CASE

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

aids in understanding system functional requirements, even though the final system will
surely not work in a quasi-linear form.

The next step for the software engineer is to formalize this simple interaction
description into a true requirements specification that properly defines the expected
system behavior, transforming user requirements into software requirements. If a use case
is defined as the specification of a set of interactions, then we are faced with the
following questions: Which interactions belong to the use case? What do all these
interactions have in common, an executed interaction pattern, or a goal to be achieved?

The less abstract way to specify a use case is through the description of a small set of
typical interactions, usually in textual form, such as main success scenario and main
variant and exceptional behaviors [Cockburn 00]. If we stop the use case specification at
this stage, then the interactions that we can say to belong to the use case are those that
conform to these few interaction patterns. A more abstract way to specify the use case is
by means of a full description of the allowed interactions. This requires a much more
elaborated textual form, which in many cases resembles too much the use of low level
pseudo-code, with all associated well-known problems; an improvement to this approach
is the use of a graphical form to specify the allowed interactions, such as activity or
statechart diagrams.

But software engineers cannot stop at this point. Beyond specifying the interaction
pattern, the crucial point to obtain a true black-box view of the system is the
identification of the interaction goal, so that any interaction that fulfills the goal will
belong to the use case, no matter what the steps followed in the interaction are. The
specification of the expected behavior through a contract (that is, pre- and post-
conditions) is the only way a software engineer can reach the proper level of abstraction
needed for a requirements specification. The expected functionality or service is not
completely specified without identifying its goal; it is the goal what makes the related
behavior coherent [Metz 01]. Moreover, the specification of an interaction pattern risks to
compromise design issues, by focusing on the interaction pattern, rather than the
interaction goal.

In other words, what the user really requires from the system (the true requirement to
be elicited) is not the interaction, but the observable result, or goal: system functionality,
at an abstract level, is given by the input/output relationship, not by the interaction
performed. The typical interaction description is only a very useful method the user has to
express in a simple way what he or she expects from the system, from where the
requirements engineer has to elicit the true requirements. The interaction is relevant only
to illustrate, to elicit requirements, but not to specify them. We must distinguish between
understanding a requirement and specifying it: a small set of typical stories is not enough
to specify the required system function. The home, sweet home for requirements
engineers can be reached walking through the path of interactions, but stopping midway
would leave the task unfinished.

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 83

This is reflected in how the definition of a use case has evolved in the UML1, from
the notion of “typical usage” to the notion of “specified usage”. In UML 1, a use case is
defined as the specification of “a sequence of actions, including variants, that the entity
can perform, interacting with actors of the entity” [UML1, p. 2-132]. This definition is
accompanied, some pages below, by the following “note”, that does not strictly pertain to
the definition: “A pragmatic rule of use when defining use cases is that each use case
should yield some kind of observable result of value to (at least) one of its actors. This
ensures that the use cases are complete specifications and not just fragments” [UML1, p.
2-140]. In UML 2 this recommendation has been integrated in the definition, yielding a
much more refined and rigorous statement: “A use case is the specification of a set of
actions performed by a system, which yields an observable result that is, typically, of
value for one or more actors or other stakeholders of the system” [UML2, p. 519]2.

In the next Sections we will try to go deeper in the notion of use case, as it has been
formalized in the UML Specification.

2 USE CASE INSTANCES

Since Jacobson introduced them in his OOSE method [Jacobson 92], and specially after
their adoption by the UML, use cases have proliferated in the Software Engineering
industry as a means “to capture the requirements of a system, that is, what a system is
supposed to do” [UML2, p. 511]. The UML 2, which in many aspects is so different from
UML 1, has introduced few changes about use cases, apart from some minor
clarifications. Less than 20 pages in the use cases Chapter are devoted to use cases and
use case diagrams in the 640-pages Superstructure document [UML2, pp. 511-528], from
which only four pages deal specifically with the notion of a use case [UML2, pp. 519-
522]. The most significant improvement is the explicit introduction of the subject,
represented as a system boundary, which is “the system under consideration to which the
use cases apply” [UML2, p. 511], which may be “a physical system or any other element
that may have behavior, such as a component, subsystem or class” [UML2, p. 519]. This
notion of subject is meta-modeled as a classifier to which the use case is meta-associated
[UML2, p. 512] (see Figure 1).

1 In this article we compare versions 1.5 (March 2003) and 2.0 (August 2003) of the UML Specification [OMG 03a,
OMG 03b]. These documents will be quoted for clarity as “UML1” and “UML2”, followed by page number.
2 Anyway, Jacobson et al. did not ignore either the importance of the observable result: “A use case is a set of
transactions performed by a system, which yields an observable result of value for a particular actor” [Jacobson 97].

THE EMPEROR’S NEW USE CASE

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

Classifier

UseCase

BehavioredClassifier

*

*

+useCase

+subject

Figure 1. Use case and Subject in the UML 2 metamodel (extracted from Figures 312 and 401)

Since the beginning of OOSE [Jacobson 92], Jacobson et al. tried to conceptualize use
cases within the general object-oriented paradigm. Therefore, in all versions of UML, use
cases have been classifiers in the metamodel, that is, each use case is a specification of a
set of instances3; in other words, a use case specifies the features (intension) that all its
instances must conform to (extension). What are the instances of a use case? UML 2
gives an explicit answer to this question: “An instance of a use case refers to an
occurrence of the emergent behavior that conforms to the corresponding use case type.
Such instances are often described by interaction specifications” [UML2, p. 511]. Later
on, we find: “a use case is the specification of a set of actions performed by a system”,
and “an execution of a use case is an occurrence of emergent behavior” [UML2, p. 520].
This idea was even more clearly expressed in UML 1: “A use case instance is the
performance of a sequence of actions specified in a use case” [UML1, p. 2-133].
Summing up, a use case specifies a behavior, and its instances are concrete behaviors, or
concrete sequences of actions.

One of the points that is not clear about this notion is whether the actions specified in
the use case are system actions, actor actions, or both. Generally, it seems they are
“actions performed by the system” [UML2, p. 520], or actions that “the subject can
perform in collaboration with one or more actors” [UML2, p. 519], that is, system actions
issued by an actor’s message. This can be considered equivalent to an interaction, a
sequence of messages interchanged between actor and system, which includes not only
system actions, but, at least, also the actor’s action to send a message. Does the use case
describe isolated system behavior, or does the use case describe the actor-system
collaboration? In any case, it is explicitly stated that internal actions of the system or the
actor, which are not visible to one another, should not be included in the use case
description: “use cases define the offered behavior of the subject without reference to its
internal structure” [UML2, p. 519], “it is not possible to state anything about the internal
behavior of the actor apart from its communications with the subject” [UML2, p. 520].
This contrasts, however, with recognized textual techniques to describe use cases, which

3 “A classifier is a classification of instances — it describes a set of instances that have features in common” [UML2, p.
61].

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 85

include these internal actions [Sendall 00], because they are useful to understand the
interaction.

On the other side, UML gives another different, only implicit, answer to the same
question, what are the instances of a use case? If we look at the instances that play the
role specified by the use case, then the instances of a use case are the instances of the
subject it applies to (remember the subject is a classifier itself). That is, if a use case
specifies a behavior, then a classifier that realizes or implements this behavior may be
said to be a subtype of the use case, and any instance of this classifier is an indirect
instance of the use case, much in the same way as an instance of a classifier realizing an
interface is an indirect instance of the interface [Steimann 00]. We can put it in another
way: since the use case specifies (the behavior of) a subject, therefore the instances (that
play the role) of the use case are those of the specified subject, which is the physical
system or element with behavior (a component, a subsystem or a class). That a use case
specifies a role is stated at least in two places, where it is shown that the use case does not
type the interaction, but one of the participants: “The behavior of a use case … may also
be described indirectly through a Collaboration that uses the use case and its actors as the
classifiers that type its parts” [UML2, p. 519]. “Use cases and actors may represent roles
in collaborations” [UML2, p. 522]. Summing up, use cases have no direct instances; they
only specify a behavior (a role) that can be realized (played) by instances of other
classifiers, which can be considered as indirect instances of the use case.

And here is the contradiction (see Figure 2). On the one side, the explicit notion that
a use case specifies a set of interactions; on the other side, the implicit notion that a use
case specifies a set of entities (that play a role in an interaction).

• First notion: the use case specifies an interaction between actor and system, that
is, a collaborative system-actor behavior. The use case types the interaction. Use
case instances are occurrences of emergent behavior, that is, concrete system-
actor interactions.

• Second notion: the use case specifies the behavior of the system, that is, the role
the system plays in the interaction. The use case types the system, whereas the
actor types the external agent interacting with the system. Use case instances are
the instances of the subject the use case applies to, that is, any concrete system
that conforms to the behavior specified.

THE EMPEROR’S NEW USE CASE

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

Actor
Use Case

System

Actor
(a)

Actor

Use Case

System External
Agent

(b)
Figure 2. Contradiction: does the use case specify a system-actor interaction (a), or does it specify the role

played by the system within the interaction (b)?

Obviously, these two notions cannot be simultaneously true. We are going to show
several arguments to support the second, implicit notion, against the first, explicit one.

3 USE CASE FEATURES

First of all, let’s look at the features of a use case. As any other classifier, a use case can
have structural and behavioral features: “operations and attributes are shown in a
compartment within the use case” [UML2, p. 522]. The meaning of use case attributes
and operations is not clearly explained in the UML Specification. Nothing at all is said in
the use cases Chapter of version 2. Apparently, however, the intention is more or less to
represent the state of the specified subject, and the messages it can answer4. This
interpretation is not contained in the UML Specification, but we can find it in the old
UML Reference Manual [Rumbaugh 98] and other places [Stevens 01a]. The Reference
Manual is useful here because it reflects the intention of the original authors. It is not part
of the UML Specification, and it corresponds roughly to version 1.3, but, where it has not
been explicitly ammended, we can consider the original intention is still valid: “The
attributes are used to represent the state of the use case – that is, the progress of executing
it. An operation represents a piece of work the use case can perform. It is not directly
callable from the outside, but may be used to describe the effect of the use case on the
system. The execution of an operation may be associated with the receipt of a message
from an actor. The operations act on the attributes of the use case, and indirectly on the
system or class that the use case is attached to” [Rumbaugh 98, p. 489].

In other words, use case attributes represent the state of the system that takes part in
the interaction; and use case operations represent actions performed by the system within
the context of the interaction. This is perfectly clear for an entity that realizes the use case

4 This is supported also by the way some authors map use cases to system operations [Sendall 00].

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 87

(the subject): it must provide attributes and operations to implement the features specified
in the use case. But what is the sense of an interaction, a collaboration among objects,
having attributes and operations? The answer to this question might be related to the
introduction of two new metaclasses in UML 2: Behavior and
BehavioredClassifier (see Figure 3).

{subsets ownedBehavior}

Classifier

UseCase

Behavior

Class

BehavioredClassifier

BehavioralFeature
*

*

useCase

subject

0..1 *
context ownedBehavior

0..1 0..1
classifierBehavior

0..1

*

specification

method

Figure 3. Behavior and BehavioredClassifier in the UML 2 metamodel (extracted from

Figures 312 and 401)

The new Behavior metaclass is defined as follows: “Behavior is a specification of how
its context classifier changes state over time” [UML2, p. 379]. “Instantiating a behavior is
referred to as invocating the behavior, an instantiated behavior is also called a behavior
execution” [UML2, p. 379]. For BehavioredClassifier, instead, we do not have a
proper definition, only a rather poor description that does not say what it is, only what it
has: “A classifier can have behavior specifications defined in its namespace. One of these
may specify the behavior of the classifier itself” [UML2, p. 383]. This corresponds to the
two meta-associations represented in Figure 3, between BehavioredClassifier and
Behavior. That is, a BehavioredClassifier is a kind of Classifier that can own
one or more Behaviors. In other words, a behaviored classifier is rather an ordinary
classifier with ordinary instances, only it can own behaviors5.

If a use case is “the specification of a set of actions performed by a system” [UML2,
p. 519], and a use case instance is “an occurrence of emergent behavior” [UML2, p. 520],
then a use case resembles greatly a Behavior, the instances of which are behavior
executions. However, UseCase is not a subtype of Behavior in the UML 2 metamodel,
but a subtype of BehavioredClassifier. Why? This manifests again the contradiction
exposed above (see Section 1): on the one side, UseCase is explicitly defined as a

5 In fact, one wonders why a Classifier owning BehavioralFeatures needs to be specialized as a
BehavioredClassifier to own Behaviors. This implies that an ordinary Classifier cannot
own a Behavior; instead, it must be specialized first. But this is strange, since the connection between
Classifier and Behavior already exists: “a behavioral feature is implemented (realized) by a behavior”
[UML2, p. 382] (see Figure 2).

THE EMPEROR’S NEW USE CASE

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

behavior specification; on the other side, UseCase subtypes BehavioredClassifier,
that is, it represents a kind of ordinary classifier that owns behaviors. Is a use case a
behavior, or does a use case own a behavior?

Interestingly, “a classifier behavior is always a definition of behavior and not an
illustration. It describes the sequence of state changes an instance of a classifier may
undergo in the course of its lifetime” [UML2, p. 380]. It seems here that, even though a
behavior can be described in different textual and graphical ways [UML2, p. 519], the
UML Specification recognizes that the most suitable way to specify system behavior is
through state machines. This confirms that a small set of typical stories is not enough to
specify a required system function.

A last word on Behavior. It subtypes Class, therefore it can have attributes as well
as operations. The UML Specification, which says nothing about use case features, says
very little about behavior attributes and operations, too: “When a behavior is invoked, its
attributes and parameters (if any) are created and appropriately initialized” [UML2, p.
381]. That is, a behavior attribute is similar to something that would be called a local
variable in a more traditional terminology. Even less is said about behavior operations:
we only know that a behavior can respond to events [UML2, p. 381], but it seems these
events are defined in the context object, not in the behavior itself; therefore, the meaning
of behavior operations remain obscure, so that they do not serve to clarify the possible
meaning of use case operations, if use cases are still to be considered behaviors.

Our second argument for preferring a use case to specify a set of entities instead of a
set of interactions has to do with another kind of structural feature, which is the use case-
actor association.

4 USE CASE-ACTOR ASSOCIATIONS

We all are used to the familiar representation of relationships between use cases and
actors in use case diagrams, like that of Figure 4. We naturally interpret the line that
connects the Client actor with the Withdraw money use case as “the client requires
that the ATM system provides a service or function to withdraw money”. This
relationship is represented as a solid line, which is the usual UML graphical symbol for
an association. In fact, it formally is a binary association [UML2, p. 520], which can have
some of the usual association adornments, such as multiplicity or navigability markers6.

6 Use cases “may have other associations and dependencies to other classifiers, e.g. to denote input/output, events and
behaviors” [UML2, p. 522], but “two use cases specifying the same subject cannot be associated since each of them
individually describes a complete usage of the subject” [UML2, p. 520]. Even though UML 2 has retained Include and
Extend relationships, this statement should be enough to discard included or extending use cases as true use cases, since
they usually are supposed to be mere fragments, not complete usage specifications. However, we are not going to insist
on this point. The interested reader is referred to a previous article by the authors [Génova 02].

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 89

ATM System

Client
Withdraw money

Figure 4. Simple use case diagram for an ATM System.

In the general sense, an association defines a semantic relationship “between classifiers”
[UML1, p. 2-19], or, more recently, “between typed instances” [UML2, p. 81]. In both
versions of the UML, the association specifies a set of tuples, “relating instances of the
classifiers” [UML1, p. 2-19], or, in the new version, “whose values refers to typed
instances” [UML2, p. 81]. The instances of the association, that is, the tuples, are called
links in UML7. Therefore, a use case-actor association is supposed to specify a set of
links between use case instances and actor instances.

There has been a subtle modification in the interpretation of use case-actor
associations in passing from UML 1 to UML 2: “There may be associations between use
cases and actors, meaning that the instances of the use case and the actor communicate
with each other” [UML1, p. 2-137]. “Use cases may have associated actors, which
describes how an instance of the classifier realizing the use case and a user playing one of
the roles of the actor interact” [UML2, p. 520]. Note that in UML 1 the actor instance
communicates with the use case instance, whereas in UML 2 the actor instance interacts
(and is linked) with the instance of the classifier realizing the use case, that is, an
instance of the subject. This difference is of great importance for our argument. In both
cases, an actor instance represents a concrete external agent playing a certain role as it
interacts with the system; that is, an actor represents some kind of entity. However, the
meaning of a use case instance is less clear.

Use case-actor associations in UML 1

Let’s concentrate first in the UML 1 interpretation [Génova 04a], where a use case
instance is the performance of a sequence of actions specified in a use case [UML1, p. 2-
133]. That is, a use case instance is not an entity, but a system’s execution. Consequently,
a link between a use case instance and an actor instance is not a link between two entities,
but a link between an entity and the execution of another entity (the system).

In addition to specifying a set of links, an association specifies also a possibility of
communication [Génova 03, Génova 04b]: that is, the linked instances know each other
and can communicate, according to the properties specified by the association, by

7 For the purpose of this article, we can consider both definitions equivalent, although the substitution of “classifier” by
“typed instance” is surely important for a more specific work on the semantics of associations. Regarding the problems
of identifying “link” and “tuple”, the interested reader is referred to other works [Genilloud 99, Génova 03, Stevens
01b].

THE EMPEROR’S NEW USE CASE

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

sending messages through the links. A message is the way objects have to require and
provide services from one another, that is, to communicate. Therefore, a link between a
use case instance and an actor instance allows them to communicate and interact [UML1,
p. 2-137, 3-96].

Interactions are represented in UML by means of interaction diagrams, which
represent instances and messages interchanged through links along time. Interaction
diagrams are widely used to describe the scenarios (use case instances) belonging to a
given use case. Consider the simple interaction diagram in Figure 5, where an instance of
the Client actor communicates with an instance of the ATM System class (which, at a
certain level of abstraction, is a perfectly legitimate abstraction of the whole system): the
communication consists of withdrawing some amount of money from a certain account.

: Client

: ATM System

withdrawMoney(account, amount)

Figure 5. Simple collaboration diagram showing a money withdrawal.

At first sight, it might seem that the link in Figure 5 between the Client instance and the
ATM System instance, which supports the message withdrawMoney(account,
amount), is an instance of the association in Figure 4 between the Client actor and the
Withdraw money use case, but not at all! Instead, it is an instance of an association
between the Client actor and the ATM System class. We haven’t any proper way in
UML 1 to represent a link between a use case instance and an actor instance, probably
because these links do not exist at all8. Moreover, if the use case instance represents the
system-actor interaction, then we need a link between the system and the use case
instance, in addition to the link between the actor and the use case instance.

What messages can be sent through a use case-actor association? None. In UML 1 a
use case instance is not an entity that provides services, it is not an entity that answers
messages: it is merely an execution of a behavior (of another entity). It has no sense
saying that “one entity communicates with one execution”. Instead, we should say: “one
executing entity communicates with another executing entity, and this is a behavior”.

Furthermore, the receiver of the message cannot be the use case instance. If the use
case instance is defined as the “performance of a use case, initiated by a message instance
from an instance of an actor” [UML1, p. 2-137], it is clear that it does not exist prior to
the message reception, therefore it cannot be the message receiver. Things are much
simpler: the message is not sent to the use case instance, but to the system itself, and the
behavior initiated is what we call a use case instance.

All this manifests a severe confusion in the definition of use cases as classifiers and
use case-actor relationships as associations in UML 1: the actor does not really interact

8 A use case diagram is a specialized form of class diagram, that allows only two types of classifiers: actors and use
cases. Therefore, it seems we need a specialized form of object diagram that allows only these two types of instances.
What is the instance diagram corresponding to a use case diagram? This special diagram is not acknowledged in UML.

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 91

with the use case [Isoda 03]; the actor interacts with the system, and the representation of
this interaction is what we call a use case. That is, the concept of a use case includes both
the system and the actor. Therefore, a use case diagram should not show use cases related
with actors, but rather a system related with actors through use cases. In this sense, it can
be thought that a use case is some kind of property of an association between the actor
and the system, such as a system interface, if not the system-actor association itself (see
Figure 6).

ATM System

Client
Withdraw money

Figure 6. Imaginary use case diagram notation showing an actor associated with a system through a use

case: the use case becomes equivalent to an association.

Use case-actor associations in UML 2

Let’s come now to UML 2, where this problem might be solved more easily. In the new
version, as we have already argued, there exist two contradictory notions of use case: a
behavior, or something that owns a behavior; a set of interactions, or a set of entities that
may play a role in an interaction specification.

If we adopt the first notion, which is equivalent to that of UML 1, then the problem
is not solved. But the modified definition of use case-actor association in UML 2 supports
the second notion: “Use cases may have associated actors, which describes how an
instance of the classifier realizing the use case and a user playing one of the roles of the
actor interact” [UML2, p. 520]. That is, the actor instance does not interact with the use
case instance any more (in the UML 1 sense), but with with the instance of the classifier
realizing the use case, that is, with an instance of the subject (which may be considered
an indirect instance of the use case, as we have already argumented, see Section 1).

The conceptual change needed here is the explicit recognition that a use case does
not specify a set of interactions, but a role that may be played by the subject. This would
clarify the meaning of the use case-actor association, since roles are a very natural
concept in the context of associations. And this is precisely what makes a use case nearly
the same concept as a role with an associated protocol interface, releasing UML of
unnecessary complexities by collapsing two concepts into one.

THE EMPEROR’S NEW USE CASE

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

CONCLUSION: USE CASES ARE PROTOCOLS

Jacobson’s original notion of use case as a description of typical system usages, or
system-actor interactions, has demostrated to be very fruitful in requirements elicitation.
This process cannot stop in the illustration of behavior, but has to go deeper into its full
specification, including pre- and postconditions, and use case goals. Accordingly, the
UML 2 notion of use case goes far beyond behavior illustration, into behavior
specification, which requires the specification of system states and recognized events,
that is, a state machine.

In spite of the usefulness of interaction descriptions, the formalization of use cases as
classifiers in UML has some obscure points, especially regarding the concept of use case
instance. Two contradictory notions of use case still coexist in UML 2: “set of
interactions” vs. “set of entities”; “behavior” vs. “role with behavior”. If the first notion is
kept, then the metamodel should be changed to make UseCase subtype of Behavior,
not of BehavioredClassifier, and the meaning of use case features (attributes,
operations, and associations) should be clarified. If the second notion is adopted, as we
suggest, then the metamodel may be kept as it is, but it should be recognized explicitly
that a use case is the specification of a role played by the subject it applies to; a use case
would not have direct instances, but the instances of the subject could be considered its
indirect instances. The usual notation for use case diagrams does not really need to
change.

Summing up, in our view a use case resembles more and more a role, the behavior of
which is specified through a protocol interface with an associated state machine, a
concept that has been explicitly introduced in UML 2 with the same purpose as use cases,
namely, to specify system or subsystem usages [UML2, p. 455]. In other words, a use
case is a coordinated use of system operations invoked through messages from the actors.
A properly defined use case is not a different thing from our old friend, the protocol. All
other is invisible clothing, like in the old fable.

“But he has nothing on at all,” said a little child at last. “Good heavens! listen to
the voice of an innocent child,” said the father, and one whispered to the other what the
child had said. “But he has nothing on at all,” cried at last the whole people [Andersen
1837].

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 93

REFERENCES

[Andersen 1837] Hans Christian Andersen. The Emperor’s New Suit (Keiserens nye
Klæder), 1837 (available at http://www.andersen.sdu.dk/,
http://hca.gilead.org.il/, etc.)

[Cockburn 00] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley, 2000.

[Genilloud 99] Guy Genilloud. “Informal UML 1.3 - Remarks, Questions, and some
Answers”. UML Semantics FAQ Workshop (held at ECOOP'99), Lisbon,
Portugal, June 12, 1999.

[Génova 02] Gonzalo Génova, Juan Llorens, Víctor Quintana. “Digging into use case
relationships”. The Fifth International Conference on the Unified Modeling
Language-UML'2002, September 30-October 4 2002, Dresden, Germany.
Lecture Notes in Computer Science 2460, Springer 2002, pp. 115-127.

[Génova 03] Gonzalo Génova. Entrelazamiento de los aspectos estático y dinámico en
las asociaciones UML. PhD Thesis, Universidad Carlos III de Madrid, 2003.

[Génova 04a] Gonzalo Génova, Juan Llorens. “On the Nature of Use Case-Actor
Relationships”, Upgrade-The European Journal for the Informatics
Professional, vol. V, no. 2, April 2004.

[Génova 04b] Gonzalo Génova, Juan Llorens, José Miguel Fuentes. “UML Associations:
A Structural and Contextual View”, Journal of Object Technology, 3(7): 83-
100, Jul-Aug 2004, (http://www.jot.fm/issues/issue_2004_07/article1).

[Isoda 03] Sadahiro Isoda. “A Critique of UML’s Definition of the Use Case Class”. The
Sixth International Conference on the Unified Modeling Language-
UML'2003, October 20-24, 2003, San Francisco, California, U.S.A. Lecture
Notes in Computer Science 2863, Springer 2003, pp. 280-294.

[Jacobson 92] Ivar Jacobson, M. Christerson, P. Jonsson, G. Övergaard, Object-Oriented
Software Engineering: a Use Case Driven Approach, Addison Wesley, 1992.

[Jacobson 97] Ivar Jacobson, Martin Griss, P. Jonsson. Software Reuse: Architecture
Process and Organization for Business Success. Addison-Wesley, 1997.

[Metz 01] Pierre Metz. “Against Use Case Interleaving”, The Fourth International
Conference on the Unified Modeling Language-UML'2001, October 1-5,
2001, Toronto, Ontario, Canada. Lecture Notes in Computer Science 2185,
Springer 2001, pp. 472-486.

[OMG 03a] Object Management Group. Unified Modeling Language Specification,
Version 1.5, March 2003 (Version 1.3, June 1999. Version 1.4, September
2001).

THE EMPEROR’S NEW USE CASE

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

[OMG 03b] Object Management Group. Unified Modeling Language Superstructure
Specification, August 2003, ptc/03-08-02.

[Rumbaugh 98] James Rumbaugh, Ivar Jacobson, Grady Booch. The Unified Modeling
Language Reference Manual. Addison-Wesley, 1998.

[Sendall 00] Shane Sendall, Alfred Strohmeier. “From Use Cases to System Operation
Specifications”. The Third International Conference on the Unified Modeling
Language-UML'2000, October 2-6, 2000, York, United Kingdom. Lecture
Notes in Computer Science 1939, Springer 2000, pp. 1-15.

[Steimann 00] Friedrich Steimann. “A Radical Revision of UML’s Role Concept”. The
Third International Conference on the Unified Modeling Language-
UML'2000, October 2-6, 2000, York, United Kingdom. Lecture Notes in
Computer Science 1939, Springer 2000, pp. 194-209.

[Stevens 01a] Perdita Stevens. “On Use Cases and Their Relationships in the Unified
Modelling Language”. Fourth International Conference on Fundamental
Approaches to Software Engineering-FASE 2001. Genova, Italy, April 2-6,
2001. Lecture Notes in Computer Science 2029, Springer 2001, pp. 140-155.

[Stevens 01b] Perdita Stevens. “On the Interpretation of Binary Associations in the
Unified Modelling Language”, Journal on Software and Systems Modeling,
1(1):68-79, 2002. A preliminar version in: Perdita Stevens. “On Associations
in the Unified Modeling Language”. The Fourth International Conference on
the Unified Modeling Language-UML'2001, October 1-5, 2001, Toronto,
Ontario, Canada. Lecture Notes in Computer Science 2185, Springer 2001,
pp. 361-375.

About the authors
Gonzalo Génova received in 2003 his PhD in Computer Science at the
Carlos III University of Madrid, Spain, where he is currently an
Associate Professor of Software Engineering. His main research subject
is modeling and modeling languages in model-driven software
engineering. He can be reached at ggenova@inf.uc3m.es.

Juan Llorens is a Professor of the Computer Science Department at the
Carlos III University of Madrid, Spain, where he is the leader of the IE
(Information Engineering) research group. He is also a Visiting
Professor at Aland’s Institute of Technology - ATL, Mariehamn,
Finland. His current research involves the integration of Knowledge
technologies and Software Engineering techniques towards Software
and Information Reuse. He can be reached at llorens@inf.uc3m.es.

mailto:ggenova@inf.uc3m.es
mailto:llorens@inf.uc3m.es

