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Abstract 
Powertypes constitute an advanced OO modelling mechanism that is usually utilized in 
the form of a specific pattern. Stereotypes comprise the basic customization and 
extension mechanism in UML, and are also used following a certain pattern. Although 
different in purpose, these two patterns present some interesting similarities and are 
shown here to become structurally identical in specific circumstances. This fact can help 
reduce the apparent complexity of UML and may be of special importance for tools that 
store and transform models that use powertypes and stereotypes. 

1 INTRODUCTION 

The concept of powertype has been discussed in the literature and adopted in UML 1.x as 
a peripheral and advanced modelling mechanism. Stereotypes, on the other hand, are 
prominent in UML. In this paper, we investigate what turns out to be a very close 
connection between these two OO modelling constructs, defining the patterns in which 
they are often used. When an additional (often implicit) class is introduced into the 
stereotype pattern, the result is easily seen to be a powertype pattern. This leads 
potentially to a revision of the way in which instantiation and subtyping relationships are 
defined in the context of a strict multilevel metamodelling framework such as the one 
used by UML and the OMG. 

2 POWERTYPES 

Powertypes were introduced into OO modelling by Odell (1994) and are often considered 
as an advanced modelling technique. A powertype is a type the instances of which are 
subtypes of another type (called the partitioned type). Powertype and partitioned type are 
thus related indirectly through the entities that are instances of the former and, at the 
same time, subtypes of the latter. This indirect relationship is often modelled as an 
explicit, direct relationship (see Figure 1 for an oft-used real world example). Also, 
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because instances of the powertype are subtypes of the partitioned type, they are objects 
as well as classes concurrently. UML mentions powertypes but does not offer any 
notational support for the concept of an entity that is both an object and a class. 
Consequently, this paper will represent such entities as an individual object and an 
individual class inside a greyed ellipse (see Figure 1). 

+name
TreeSpecies

+height
Tree

1 0..*

 isClassifiedAs

SugarMaple

name = SugarMaple
SugarMaple : TreeSpecies

«instanceOf»

height = 8.5
sm1 : SugarMaple

«instanceOf»

 

Figure 1. TreeSpecies is a powertype of Tree, and Tree is a type partitioned by TreeSpecies. SugarMaple is 
both a type and an object. A grey ellipse is used to denote this since UML does not offer a notation for a 

model element being both a class and an object. 
 

It can be seen that a powertype pattern is composed of the powertype itself (TreeSpecies 
in Figure 1), a type partitioned by it (Tree), and a relationship between them (see the 
Appendix for a completed definition of the Powertype pattern). This relationship can also 
be understood in terms of sets (Figure 2). The set of trees (the Tree class) comprises all 
trees (instances of the Tree class, represented as dots inside the ellipse on the left) and can 
be partitioned into subsets (subclasses of Tree) such as SugarMaple, Oak and Elm. Now 
each of these is a tree species such that we can construct a new set, the elements of which 
are all individual tree species —the TreeSpecies class on the right hand side of Figure 2, 
which contains the three elements of Elm, SugarMaple and Oak. 
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Oak

Elm

SugarMaple

Tree (partitioned type) TreeSpecies (powertype)
Elm

Oak

SugarMaplesm1  

Figure 2. Two representations of trees: a tree species may be a set of instances within the Tree class i.e. a 
subset of Tree (left hand side) or may be a single instance in the TreeSpecies class (right hand side), which 

is called a powertype. 
 

Thus, for example, Oak is an instance of the TreeSpecies class (right hand side) and also 
represents a subset of instances of the Tree class (left hand side of Figure 2). This duality 
is reflected in the different notation used in these two representational diagrams: Oak is 
represented as a “wedge” in the left hand diagram of Figure 2 and as a dot in the right 
hand diagram. A second example in a more technical IT domain, that of process 
modelling, is given in Figure 3. 

+name
TaskKind

+startDate
Task

1 0..*

 isClassifiedAs

DefineOperations

name = DefineOperations
DefineOperations : TaskKind

«instanceOf»

startDate = 5-Oct-2003
do1 : DefineOperations

«instanceOf»

 

(a) 
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Code

Refactor

Define
Operations

Task (partitioned type) TaskKind (powertype)
Refactor

Code

DefineOperations
do1

 

(b) 
Figure 3. A second example, this time in the process modelling domain, illustrating (a) the powertype 

pattern between the various classes in the pattern and (b) the set-based equivalent. 
 

These examples show the power of powertypes since not all subtypes need to be 
predefined as a class in a class model; in other words, powertyping enables dynamic 
specialization. A model is usually created by some authors and then used by a different 
set of persons. Traditionally, model authors depict specialization semantics using a 
conventional generalization relationship (such as the one between Boat and Vehicle in 
Figure 4). This can be called static specialization since, once modelled by the model 
authors, model users are given a set of classes that can be instantiated but not changed. 
Some examples are a class library in a programming environment (in which class and 
subclasses have been written and compiled by the class library author and are instantiable 
but not modifiable by the programmer) or a metamodel in a process engineering situation 
(in which a process engineer has created a predefined set of process elements that can be 
later instantiated by a project team). Using dynamic specialization, in contrast, the model 
author would represent specialization semantics using a powertype pattern, thus 
providing model users with a powertype of the generic concept (the partitioned type) 
from which subtypes of it can be instantiated at runtime. We must notice here that the 
terms “design time” and “runtime”, usually applied only in the context of programming, 
are also useful to describe the design and building of a model (the model’s “design time”) 
and the subsequent usage of the model (the model’s “runtime”). 

The powertype pattern can, in fact, be applied to just about every regular subtyping 
hierarchy. For example, a common example is that in the motor vehicle domain. Figure 4 
shows the normal model, using inheritance (UML’s generalization relationship), for a 
Vehicle with a subtype of Boat, an instance of which is also shown in this figure using 
regular UML notation. However, it is perhaps more accurate to introduce the class 
VehicleKind (of which Boat is just one instance), where VehicleKind 
classifies/categorizes Vehicle (Figure 5). Boat can then be instantiated to create objects 
such as b2:Boat (Figure 5 shows b2 as both using the UML object notation (a) and as an 
element of a set (b)). Since instantiation occurs at runtime, we can dynamically create 
other instances of VehicleKind, such as Bicycle or Car, in parallel to Boat in Figure 5(a). 
By induction, we therefore propose that any (or, rather, most) normal inheritance 
hierarchies in OO models can be easily modified to become powertype patterns, which 
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thus represent features that belong to the powertype (such as the canTravelOnWater 
attribute) as well as those of the partitioned type. 

+weight
Vehicle

+beam
Boat

weight = 185
beam = 9

b1 : Boat

 

Figure 4. Regular UML model, using generalization, for Boats and Vehicles. 

+weight
Vehicle

+name
+canTravelOnWater

VehicleKind

1 0..*

 isClassifiedAs

+beam
Boat

name = Boat
canTravelOnWater = true

Boat : VehicleKind

«instanceOf»

weight = 185
beam = 9

b2 : Boat

«instanceOf»

 

(a) 
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Car

Boat

Plane

Vehicle (partitioned type) VehicleKind (powertype) Boat

Car

Plane

b2

 

(b) 
Figure 5. Re-modelling the example in Figure 4 using (a) a powertype pattern and (b) a set-based 

representation. 
 

We have been using an ellipse to denote a concept that is represented in a model by a 
class and an object at the same time. Such hybrid class/object modelling entities have 
been named “clabject” by Atkinson and Kühne (2000) and we will use this concept and 
terminology in the remainder of this paper. Consequently, our notational ellipse, as used 
in diagrams to show a concept that is simultaneously modeled as class and object, 
actually depicts a clabject. 

3 STEREOTYPES 

Stereotypes comprise an extension and customization mechanism introduced, defined and 
used by the UML. Figure 6 shows the standard UML definition of a stereotype in which 
the value of the so-called “baseclass” (here the metaclass “Class”) constrains the type of 
M1 elements to which this particular stereotype can be applied (in this example only to 
classes). 
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«metaclass»
Class

«stereotype»
PersistentClass

«stereotype»

Tags
TableName: string
SQLFile: Component

Constraints
{TableName should not
be longer than 8 chars}  

Figure 6. Definition of a stereotype in UML. 
 

In contrast to powertypes, they are not a generic modelling mechanism but a UML-
specific way of extending the UML metamodel. A stereotype, as defined in the UML 1.41 
(OMG, 2001), is a virtual, user-defined metasubtype2. This is a subtype of some 
metamodel class that the user would ideally like to add to the UML metamodel. 
However, changing the UML metamodel by the UML user is not encouraged so, instead, 
he/she “pretends” to add it. In Figure 7, Class is a standard UML metamodel (M2 in 
OMG parlance) class. An instance of this might be the M1 level class called Bird. 
However, the user wishes to constrain the Bird class (and its instances) to be of a special 
kind of Class, in this example, an Entity Class. Thus, we invent the stereotype entity and 
define it to be effectively a subtype of Class called EntityClass. Since an M1 element is 
defined in UML to be an instance of an M2 element, the Bird class is both a class (from 
the modeller’s perspective) and an instance of the appropriate M2 element (from the 
metamodeller’s perspective), in our case, EntityClass (Figure 7). These two entities, 
however, are one and the same thing, so they are shown inside a greyed ellipse as before. 

                                                           
1 Since UML 2.0 is still a draft document at the time of this writing and probably will not be finalized until 
the 3rd quarter of 2004, we consider it premature to incorporate it into our analysis in this current paper. 
2 It should be noted, however, that some modellers interpret the UML stereotype mechanism in a somewhat 
different fashion (Atkinson et al., 2002). 
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+name
Class

EntityClass

«entity»
Bird

name = Bird
Bird : EntityClass

«instanceOf»

 

Figure 7. Adding a stereotype (virtual submetatype) to the UML metamodel. 
 

A stereotype pattern is thus composed of an M2 class and a virtual metasubtype or 
stereotype (see the Appendix for a complete definition of the Stereotype pattern). If we 
now express this stereotype pattern in terms of sets (Figure 8), we see that the class Class 
and its three typical stereotypes of ControlClass, BoundaryClass and EntityClass look 
identical to the three divisions of Vehicle (Car, Boat and Plane) in Figure 5b. This leads 
us to construct the power set as seen in Figure 8. This set is clearly representative of a 
new class called ClassKind with its three members of ControlClass, BoundaryClass and 
EntityClass. Clearly, by analogy with Figure 5b, ClassKind must be a powertype i.e. a set 
of all subsets of another set as defined by a given discriminator. 

BoundaryClass

ControlClass

EntityClass

Class (partitioned type) ClassKind (powertype) ControlClass

BoundaryClass
EntityClass  

Figure 8. The partition into EntityClass, ControlClass and BoundaryClass expressed using a set-based 
notation. 
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4 LINKING POWERTYPES AND STEREOTYPES 

Comparison of the set diagrams, particularly Figure 8 and Figure 5b, suggests that we 
should be able to find a mapping between these two patterns. This is accomplished by 
taking the stereotype pattern of Figure 7 and adding a single class, thus converting it into 
a powertype pattern. This is demonstrated in Figure 9, in which the class ClassKind (as 
represented by the set in Figure 8) augments the original stereotype pattern, thus creating 
the powertype pattern as seen earlier in Figure 5a. 

+name
ClassKind

+name
Class isClassifiedAs

EntityClass

name = entity
entity : ClassKind

«instanceOf»

name = Bird
Bird : EntityClass

«instanceOf»

«entity»
Bird

 

Figure 9. Taking the stereotype of Figure 7 and turning it into a powertype. 
 

In general, a stereotype pattern can be expressed as a powertype pattern by explicitly 
representing the powertype class of which the stereotype is an instance (ClassKind in our 
example in Figure 9). This does not mean adding an extra element but explicitly showing 
an already existing element that is often taken for granted and not shown. Indeed, we 
conjecture, by inductive reasoning, that all stereotype patterns can be seen as powertype 
patterns. Of course, this “equivalence” is based on structural and not semantic arguments. 
Indeed, this is indicative of the need to complement this structural study with extensive 
semantic evaluations. At the same time, this structural equivalence should be taken into 
account when implementing metamodelling infrastructures in tools that store and 
manipulate models that use the constructs of powertypes and stereotypes. This will likely 
be of special importance for MDA-compliant tools3. 

                                                           
3 Model-Driven Architecture (MDA) is an initiative of the Object Management Group. Detailed 
information is available on http://www.omg.org 

http://www.omg.org


 
CONNECTING POWERTYPES AND STEREOTYPES 

 
 
 
 

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7 

5 CONCLUSIONS 

Powertype and stereotype patterns are very closely linked. Powertype patterns explicitly 
show one class more than the stereotype patterns. Once this class is explicitly shown in 
stereotype patterns, it is readily seen that the two patterns do become identical 
structurally. This similarity may be particularly useful in the context of tools that store 
and transform models containing both powertypes and stereotypes. 
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APPENDIX: PATTERN DEFINITIONS 

This appendix offers definitions for the powertype and stereotype patterns based on the 
style proposed by Gamma et al. (1995). 

Powertype Pattern 

Intent. Support dynamic specialization by allowing subtypes of a class (the partitioned 
type) to be defined as instances of another class (the powertype) with regard to a given 
discriminant. 
Motivation. Partitioning a class into subclasses is conventionally achieved through 
subtyping. With this approach, each subtype is implemented as a class, which (a) must be 
defined at design time and (b) cannot carry value slots. Defining subtypes as clabjects, 
the advantages of subtypes as classes remain and are combined with the advantages of 
subtypes as objects, namely the ability to be created at run-time and to carry slot values. 
Applicability. Situations in which the subtypes of a certain type cannot be known or 
specified in advance. 
Structure. 

+discriminant
Powertype PartitionedType

1 0..*

 isClassifiedAs

 

Participants and Collaborations. The PartitionedType class represents the class being 
dynamically subtyped. The Powertype class represents the subtypes that are dynamically 
created. Each instance of PartitionedType is classified as being of a specific subtype, i.e. 
a specific instance of Powertype, with regard to a given discriminant. 
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Example. 

+name
TreeSpecies

+height
Tree

1 0..*

 isClassifiedAs

 

In this example, TreeSpecies is the powertype, whose instances represent specific species 
of tree (such as Sugar Maple, Elm or Oak). Tree is the partitioned type, since its instances 
are partitioned as dictated by the instances of TreeSpecies with regard to the discriminant 
name. 
Consequences. By using this pattern, subtyping is no longer limited to design time. 
Subtypes of classes can be introduced dynamically as necessary. Each subtype thus 
introduced is implemented as a clabject, incorporating an object facet (instance of the 
powertype) and a class facet (subtype of the partitioned type). 
Known Uses. This pattern has shown to be useful in metamodelling software 
development methodologies (Gonzalez-Perez and Henderson-Sellers 2005; SA 2004), 
since it can model both the methodology and project layers at the same time. 
This pattern may be also used in advanced modelling situations in which subtypes of a 
given type cannot be hard coded at design time and therefore must be dynamically 
created at run-time. 

Stereotype Pattern 

Intent. Customize an element in the UML metamodel for a particular usage. 
Motivation. The elements in the UML 1.4 metamodel are generic enough to be 
applicable to a large number of situations. However, sometimes it is necessary to add 
details to a metamodel element so that it is optimized for a particular range of situations. 
Since the UML metamodel itself must not be changed, using stereotypes allows 
metamodel users to attain similar outcomes using only a “virtual” change, achieved 
through specialization. 
Applicability. Situations in which a UML metamodel element is too generic and needs 
detail to be added for a particular usage. 
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Structure. 

«metaclass»
MetamodelElement

Stereotype

 

Participants and Collaborations. The MetamodelElement class represents the UML 
metamodel class that needs to be customized for a particular usage. The Stereotype class 
represents the optimized class. 
Example. 

+name

«metaclass»
Class

EntityClass

 

In this example, Class is the metamodel element being customized, and EntityClass is the 
customized version, representing a particular kind of class. 
Consequences. By using this pattern, users of the UML metamodel (software developers 
and modellers) can add detail to any metamodel element for their own purposes, without 
changing the metamodel whatsoever. 
Known Uses. This pattern is extensively used by UML itself in the definition of a 
number of metamodel elements such as instance-of dependencies, entity classes or library 
components. 
This pattern is also used by modellers to optimize UML metaclasses for specific 
purposes. 



 
 
 
 
 
 

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 95 

REFERENCES 

Atkinson, C. and T. Kühne, 2000. Meta-Level Independent Modelling. In International 
Workshop on Model Engineering at 14th European Conference on Object-
Oriented Programming. Sophia Antipolis and Cannes, France, 12-16 June 
2000. 

Atkinson, C., T. Kühne, and B. Henderson-Sellers, 2002, Stereotypical encounters of the 
third kind, UML 2002 - The Unified Modeling Language (eds. J.-M. 
Jezequel, H. Hussman and S. Cook), LNCS Volume 2460, Springer-Verlag, 
Berlin, 100-114 

Gamma, E., R. Helm, R. Johnson and J. Vlissides, 1995. Design Patterns. Addison-
Wesley. 

Gonzalez-Perez, C.A. and B. Henderson-Sellers, 2005. A Powertype-Based 
Metamodelling Framework. Software and Systems Modelling. [in press] 

Odell, J. J. 1994. Power types. Journal of Object-Oriented Programming, 7(2), 8-12. 

OMG, 1999. OMG Unified Modeling Language Specification, Version 1.3, June 1999, 
OMG document ad/99-06-09 [released to the general public as OMG 
document formal/00-03-01 in March 2000]. [Online]. Available 
http://www.omg.org 

OMG, 2001. OMG Unified Modeling Language Specification, Version 1.4, September 
2001, OMG document formal/01-09-68 through 80 (13 documents) [Online]. 
Available http://www.omg.org  

OMG, 2002. Meta Object Facility (MOF) Specification. OMG document formal/2002-
04-03 [Online]. Available http://www.omg.org  

SA, 2004. Standard Metamodel for Software Development Methodologies. SA document 
AS 4651-2004. 

http://www.omg.org
http://www.omg.org
http://www.omg.org


 
CONNECTING POWERTYPES AND STEREOTYPES 

 
 
 
 

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7 

About the authors 
Cesar Gonzalez-Perez is a Post-doctoral Research Fellow at the Centre 
for Object Technology Applications and Research at University of 
Technology, Sydney (UTS), and has been developing and applying OO 
methodologies for over ten years to both research and commercial 
projects. He is the lead author of the OPEN/Metis methodology. E-Mail: 
cesargon@it.uts.edu.au 
 
Brian Henderson-Sellers is Director of the Centre for Object 
Technology Applications and Research and Professor of Information 
Systems at University of Technology, Sydney (UTS). He is author of ten 
books on object technology and is well known for his work in OO 
methodologies (MOSES, COMMA and OPEN) and in OO metrics. He 
was recently awarded a DSc degree by the University of London for his 

work in object-oriented methodology. E-Mail: brian@it.uts.edu.au 

mailto:cesargon@it.uts.edu.au
mailto:brian@it.uts.edu.au

