
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 7, September - October 2005

Cite this article as follows: Henderson-Sellers and Gonzalez-Perez: “Connecting Powertypes and
Stereotypes”, in Journal of Object Technology, vol. 4, no. 7, September - October 2005, pp. 83-96
http://www.jot.fm/issues/issue_2005_09/article3

Connecting Powertypes and
Stereotypes

Brian Henderson-Sellers, University of Technology, Sydney
Cesar Gonzalez-Perez, University of Technology, Sydney

Abstract
Powertypes constitute an advanced OO modelling mechanism that is usually utilized in
the form of a specific pattern. Stereotypes comprise the basic customization and
extension mechanism in UML, and are also used following a certain pattern. Although
different in purpose, these two patterns present some interesting similarities and are
shown here to become structurally identical in specific circumstances. This fact can help
reduce the apparent complexity of UML and may be of special importance for tools that
store and transform models that use powertypes and stereotypes.

1 INTRODUCTION

The concept of powertype has been discussed in the literature and adopted in UML 1.x as
a peripheral and advanced modelling mechanism. Stereotypes, on the other hand, are
prominent in UML. In this paper, we investigate what turns out to be a very close
connection between these two OO modelling constructs, defining the patterns in which
they are often used. When an additional (often implicit) class is introduced into the
stereotype pattern, the result is easily seen to be a powertype pattern. This leads
potentially to a revision of the way in which instantiation and subtyping relationships are
defined in the context of a strict multilevel metamodelling framework such as the one
used by UML and the OMG.

2 POWERTYPES

Powertypes were introduced into OO modelling by Odell (1994) and are often considered
as an advanced modelling technique. A powertype is a type the instances of which are
subtypes of another type (called the partitioned type). Powertype and partitioned type are
thus related indirectly through the entities that are instances of the former and, at the
same time, subtypes of the latter. This indirect relationship is often modelled as an
explicit, direct relationship (see Figure 1 for an oft-used real world example). Also,

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_09/article3

CONNECTING POWERTYPES AND STEREOTYPES

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7

because instances of the powertype are subtypes of the partitioned type, they are objects
as well as classes concurrently. UML mentions powertypes but does not offer any
notational support for the concept of an entity that is both an object and a class.
Consequently, this paper will represent such entities as an individual object and an
individual class inside a greyed ellipse (see Figure 1).

+name
TreeSpecies

+height
Tree

1 0..*

 isClassifiedAs

SugarMaple

name = SugarMaple
SugarMaple : TreeSpecies

«instanceOf»

height = 8.5
sm1 : SugarMaple

«instanceOf»

Figure 1. TreeSpecies is a powertype of Tree, and Tree is a type partitioned by TreeSpecies. SugarMaple is
both a type and an object. A grey ellipse is used to denote this since UML does not offer a notation for a

model element being both a class and an object.

It can be seen that a powertype pattern is composed of the powertype itself (TreeSpecies
in Figure 1), a type partitioned by it (Tree), and a relationship between them (see the
Appendix for a completed definition of the Powertype pattern). This relationship can also
be understood in terms of sets (Figure 2). The set of trees (the Tree class) comprises all
trees (instances of the Tree class, represented as dots inside the ellipse on the left) and can
be partitioned into subsets (subclasses of Tree) such as SugarMaple, Oak and Elm. Now
each of these is a tree species such that we can construct a new set, the elements of which
are all individual tree species —the TreeSpecies class on the right hand side of Figure 2,
which contains the three elements of Elm, SugarMaple and Oak.

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 85

Oak

Elm

SugarMaple

Tree (partitioned type) TreeSpecies (powertype)
Elm

Oak

SugarMaplesm1

Figure 2. Two representations of trees: a tree species may be a set of instances within the Tree class i.e. a
subset of Tree (left hand side) or may be a single instance in the TreeSpecies class (right hand side), which

is called a powertype.

Thus, for example, Oak is an instance of the TreeSpecies class (right hand side) and also
represents a subset of instances of the Tree class (left hand side of Figure 2). This duality
is reflected in the different notation used in these two representational diagrams: Oak is
represented as a “wedge” in the left hand diagram of Figure 2 and as a dot in the right
hand diagram. A second example in a more technical IT domain, that of process
modelling, is given in Figure 3.

+name
TaskKind

+startDate
Task

1 0..*

 isClassifiedAs

DefineOperations

name = DefineOperations
DefineOperations : TaskKind

«instanceOf»

startDate = 5-Oct-2003
do1 : DefineOperations

«instanceOf»

(a)

CONNECTING POWERTYPES AND STEREOTYPES

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7

Code

Refactor

Define
Operations

Task (partitioned type) TaskKind (powertype)
Refactor

Code

DefineOperations
do1

(b)
Figure 3. A second example, this time in the process modelling domain, illustrating (a) the powertype

pattern between the various classes in the pattern and (b) the set-based equivalent.

These examples show the power of powertypes since not all subtypes need to be
predefined as a class in a class model; in other words, powertyping enables dynamic
specialization. A model is usually created by some authors and then used by a different
set of persons. Traditionally, model authors depict specialization semantics using a
conventional generalization relationship (such as the one between Boat and Vehicle in
Figure 4). This can be called static specialization since, once modelled by the model
authors, model users are given a set of classes that can be instantiated but not changed.
Some examples are a class library in a programming environment (in which class and
subclasses have been written and compiled by the class library author and are instantiable
but not modifiable by the programmer) or a metamodel in a process engineering situation
(in which a process engineer has created a predefined set of process elements that can be
later instantiated by a project team). Using dynamic specialization, in contrast, the model
author would represent specialization semantics using a powertype pattern, thus
providing model users with a powertype of the generic concept (the partitioned type)
from which subtypes of it can be instantiated at runtime. We must notice here that the
terms “design time” and “runtime”, usually applied only in the context of programming,
are also useful to describe the design and building of a model (the model’s “design time”)
and the subsequent usage of the model (the model’s “runtime”).

The powertype pattern can, in fact, be applied to just about every regular subtyping
hierarchy. For example, a common example is that in the motor vehicle domain. Figure 4
shows the normal model, using inheritance (UML’s generalization relationship), for a
Vehicle with a subtype of Boat, an instance of which is also shown in this figure using
regular UML notation. However, it is perhaps more accurate to introduce the class
VehicleKind (of which Boat is just one instance), where VehicleKind
classifies/categorizes Vehicle (Figure 5). Boat can then be instantiated to create objects
such as b2:Boat (Figure 5 shows b2 as both using the UML object notation (a) and as an
element of a set (b)). Since instantiation occurs at runtime, we can dynamically create
other instances of VehicleKind, such as Bicycle or Car, in parallel to Boat in Figure 5(a).
By induction, we therefore propose that any (or, rather, most) normal inheritance
hierarchies in OO models can be easily modified to become powertype patterns, which

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 87

thus represent features that belong to the powertype (such as the canTravelOnWater
attribute) as well as those of the partitioned type.

+weight
Vehicle

+beam
Boat

weight = 185
beam = 9

b1 : Boat

Figure 4. Regular UML model, using generalization, for Boats and Vehicles.

+weight
Vehicle

+name
+canTravelOnWater

VehicleKind

1 0..*

 isClassifiedAs

+beam
Boat

name = Boat
canTravelOnWater = true

Boat : VehicleKind

«instanceOf»

weight = 185
beam = 9

b2 : Boat

«instanceOf»

(a)

CONNECTING POWERTYPES AND STEREOTYPES

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7

Car

Boat

Plane

Vehicle (partitioned type) VehicleKind (powertype) Boat

Car

Plane

b2

(b)
Figure 5. Re-modelling the example in Figure 4 using (a) a powertype pattern and (b) a set-based

representation.

We have been using an ellipse to denote a concept that is represented in a model by a
class and an object at the same time. Such hybrid class/object modelling entities have
been named “clabject” by Atkinson and Kühne (2000) and we will use this concept and
terminology in the remainder of this paper. Consequently, our notational ellipse, as used
in diagrams to show a concept that is simultaneously modeled as class and object,
actually depicts a clabject.

3 STEREOTYPES

Stereotypes comprise an extension and customization mechanism introduced, defined and
used by the UML. Figure 6 shows the standard UML definition of a stereotype in which
the value of the so-called “baseclass” (here the metaclass “Class”) constrains the type of
M1 elements to which this particular stereotype can be applied (in this example only to
classes).

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 89

«metaclass»
Class

«stereotype»
PersistentClass

«stereotype»

Tags
TableName: string
SQLFile: Component

Constraints
{TableName should not
be longer than 8 chars}

Figure 6. Definition of a stereotype in UML.

In contrast to powertypes, they are not a generic modelling mechanism but a UML-
specific way of extending the UML metamodel. A stereotype, as defined in the UML 1.41
(OMG, 2001), is a virtual, user-defined metasubtype2. This is a subtype of some
metamodel class that the user would ideally like to add to the UML metamodel.
However, changing the UML metamodel by the UML user is not encouraged so, instead,
he/she “pretends” to add it. In Figure 7, Class is a standard UML metamodel (M2 in
OMG parlance) class. An instance of this might be the M1 level class called Bird.
However, the user wishes to constrain the Bird class (and its instances) to be of a special
kind of Class, in this example, an Entity Class. Thus, we invent the stereotype entity and
define it to be effectively a subtype of Class called EntityClass. Since an M1 element is
defined in UML to be an instance of an M2 element, the Bird class is both a class (from
the modeller’s perspective) and an instance of the appropriate M2 element (from the
metamodeller’s perspective), in our case, EntityClass (Figure 7). These two entities,
however, are one and the same thing, so they are shown inside a greyed ellipse as before.

1 Since UML 2.0 is still a draft document at the time of this writing and probably will not be finalized until
the 3rd quarter of 2004, we consider it premature to incorporate it into our analysis in this current paper.
2 It should be noted, however, that some modellers interpret the UML stereotype mechanism in a somewhat
different fashion (Atkinson et al., 2002).

CONNECTING POWERTYPES AND STEREOTYPES

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7

+name
Class

EntityClass

«entity»
Bird

name = Bird
Bird : EntityClass

«instanceOf»

Figure 7. Adding a stereotype (virtual submetatype) to the UML metamodel.

A stereotype pattern is thus composed of an M2 class and a virtual metasubtype or
stereotype (see the Appendix for a complete definition of the Stereotype pattern). If we
now express this stereotype pattern in terms of sets (Figure 8), we see that the class Class
and its three typical stereotypes of ControlClass, BoundaryClass and EntityClass look
identical to the three divisions of Vehicle (Car, Boat and Plane) in Figure 5b. This leads
us to construct the power set as seen in Figure 8. This set is clearly representative of a
new class called ClassKind with its three members of ControlClass, BoundaryClass and
EntityClass. Clearly, by analogy with Figure 5b, ClassKind must be a powertype i.e. a set
of all subsets of another set as defined by a given discriminator.

BoundaryClass

ControlClass

EntityClass

Class (partitioned type) ClassKind (powertype) ControlClass

BoundaryClass
EntityClass

Figure 8. The partition into EntityClass, ControlClass and BoundaryClass expressed using a set-based
notation.

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 91

4 LINKING POWERTYPES AND STEREOTYPES

Comparison of the set diagrams, particularly Figure 8 and Figure 5b, suggests that we
should be able to find a mapping between these two patterns. This is accomplished by
taking the stereotype pattern of Figure 7 and adding a single class, thus converting it into
a powertype pattern. This is demonstrated in Figure 9, in which the class ClassKind (as
represented by the set in Figure 8) augments the original stereotype pattern, thus creating
the powertype pattern as seen earlier in Figure 5a.

+name
ClassKind

+name
Class isClassifiedAs

EntityClass

name = entity
entity : ClassKind

«instanceOf»

name = Bird
Bird : EntityClass

«instanceOf»

«entity»
Bird

Figure 9. Taking the stereotype of Figure 7 and turning it into a powertype.

In general, a stereotype pattern can be expressed as a powertype pattern by explicitly
representing the powertype class of which the stereotype is an instance (ClassKind in our
example in Figure 9). This does not mean adding an extra element but explicitly showing
an already existing element that is often taken for granted and not shown. Indeed, we
conjecture, by inductive reasoning, that all stereotype patterns can be seen as powertype
patterns. Of course, this “equivalence” is based on structural and not semantic arguments.
Indeed, this is indicative of the need to complement this structural study with extensive
semantic evaluations. At the same time, this structural equivalence should be taken into
account when implementing metamodelling infrastructures in tools that store and
manipulate models that use the constructs of powertypes and stereotypes. This will likely
be of special importance for MDA-compliant tools3.

3 Model-Driven Architecture (MDA) is an initiative of the Object Management Group. Detailed
information is available on http://www.omg.org

http://www.omg.org

CONNECTING POWERTYPES AND STEREOTYPES

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7

5 CONCLUSIONS

Powertype and stereotype patterns are very closely linked. Powertype patterns explicitly
show one class more than the stereotype patterns. Once this class is explicitly shown in
stereotype patterns, it is readily seen that the two patterns do become identical
structurally. This similarity may be particularly useful in the context of tools that store
and transform models containing both powertypes and stereotypes.

ACKNOWLEDGEMENTS

We wish to thank the Australian Research Council for providing funding. This is
Contribution number 04/07 of the Centre for Object Technology Applications and
Research (COTAR).

APPENDIX: PATTERN DEFINITIONS

This appendix offers definitions for the powertype and stereotype patterns based on the
style proposed by Gamma et al. (1995).

Powertype Pattern

Intent. Support dynamic specialization by allowing subtypes of a class (the partitioned
type) to be defined as instances of another class (the powertype) with regard to a given
discriminant.
Motivation. Partitioning a class into subclasses is conventionally achieved through
subtyping. With this approach, each subtype is implemented as a class, which (a) must be
defined at design time and (b) cannot carry value slots. Defining subtypes as clabjects,
the advantages of subtypes as classes remain and are combined with the advantages of
subtypes as objects, namely the ability to be created at run-time and to carry slot values.
Applicability. Situations in which the subtypes of a certain type cannot be known or
specified in advance.
Structure.

+discriminant
Powertype PartitionedType

1 0..*

 isClassifiedAs

Participants and Collaborations. The PartitionedType class represents the class being
dynamically subtyped. The Powertype class represents the subtypes that are dynamically
created. Each instance of PartitionedType is classified as being of a specific subtype, i.e.
a specific instance of Powertype, with regard to a given discriminant.

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 93

Example.

+name
TreeSpecies

+height
Tree

1 0..*

 isClassifiedAs

In this example, TreeSpecies is the powertype, whose instances represent specific species
of tree (such as Sugar Maple, Elm or Oak). Tree is the partitioned type, since its instances
are partitioned as dictated by the instances of TreeSpecies with regard to the discriminant
name.
Consequences. By using this pattern, subtyping is no longer limited to design time.
Subtypes of classes can be introduced dynamically as necessary. Each subtype thus
introduced is implemented as a clabject, incorporating an object facet (instance of the
powertype) and a class facet (subtype of the partitioned type).
Known Uses. This pattern has shown to be useful in metamodelling software
development methodologies (Gonzalez-Perez and Henderson-Sellers 2005; SA 2004),
since it can model both the methodology and project layers at the same time.
This pattern may be also used in advanced modelling situations in which subtypes of a
given type cannot be hard coded at design time and therefore must be dynamically
created at run-time.

Stereotype Pattern

Intent. Customize an element in the UML metamodel for a particular usage.
Motivation. The elements in the UML 1.4 metamodel are generic enough to be
applicable to a large number of situations. However, sometimes it is necessary to add
details to a metamodel element so that it is optimized for a particular range of situations.
Since the UML metamodel itself must not be changed, using stereotypes allows
metamodel users to attain similar outcomes using only a “virtual” change, achieved
through specialization.
Applicability. Situations in which a UML metamodel element is too generic and needs
detail to be added for a particular usage.

CONNECTING POWERTYPES AND STEREOTYPES

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7

Structure.

«metaclass»
MetamodelElement

Stereotype

Participants and Collaborations. The MetamodelElement class represents the UML
metamodel class that needs to be customized for a particular usage. The Stereotype class
represents the optimized class.
Example.

+name

«metaclass»
Class

EntityClass

In this example, Class is the metamodel element being customized, and EntityClass is the
customized version, representing a particular kind of class.
Consequences. By using this pattern, users of the UML metamodel (software developers
and modellers) can add detail to any metamodel element for their own purposes, without
changing the metamodel whatsoever.
Known Uses. This pattern is extensively used by UML itself in the definition of a
number of metamodel elements such as instance-of dependencies, entity classes or library
components.
This pattern is also used by modellers to optimize UML metaclasses for specific
purposes.

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 95

REFERENCES

Atkinson, C. and T. Kühne, 2000. Meta-Level Independent Modelling. In International
Workshop on Model Engineering at 14th European Conference on Object-
Oriented Programming. Sophia Antipolis and Cannes, France, 12-16 June
2000.

Atkinson, C., T. Kühne, and B. Henderson-Sellers, 2002, Stereotypical encounters of the
third kind, UML 2002 - The Unified Modeling Language (eds. J.-M.
Jezequel, H. Hussman and S. Cook), LNCS Volume 2460, Springer-Verlag,
Berlin, 100-114

Gamma, E., R. Helm, R. Johnson and J. Vlissides, 1995. Design Patterns. Addison-
Wesley.

Gonzalez-Perez, C.A. and B. Henderson-Sellers, 2005. A Powertype-Based
Metamodelling Framework. Software and Systems Modelling. [in press]

Odell, J. J. 1994. Power types. Journal of Object-Oriented Programming, 7(2), 8-12.

OMG, 1999. OMG Unified Modeling Language Specification, Version 1.3, June 1999,
OMG document ad/99-06-09 [released to the general public as OMG
document formal/00-03-01 in March 2000]. [Online]. Available
http://www.omg.org

OMG, 2001. OMG Unified Modeling Language Specification, Version 1.4, September
2001, OMG document formal/01-09-68 through 80 (13 documents) [Online].
Available http://www.omg.org

OMG, 2002. Meta Object Facility (MOF) Specification. OMG document formal/2002-
04-03 [Online]. Available http://www.omg.org

SA, 2004. Standard Metamodel for Software Development Methodologies. SA document
AS 4651-2004.

http://www.omg.org
http://www.omg.org
http://www.omg.org

CONNECTING POWERTYPES AND STEREOTYPES

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7

About the authors
Cesar Gonzalez-Perez is a Post-doctoral Research Fellow at the Centre
for Object Technology Applications and Research at University of
Technology, Sydney (UTS), and has been developing and applying OO
methodologies for over ten years to both research and commercial
projects. He is the lead author of the OPEN/Metis methodology. E-Mail:
cesargon@it.uts.edu.au

Brian Henderson-Sellers is Director of the Centre for Object
Technology Applications and Research and Professor of Information
Systems at University of Technology, Sydney (UTS). He is author of ten
books on object technology and is well known for his work in OO
methodologies (MOSES, COMMA and OPEN) and in OO metrics. He
was recently awarded a DSc degree by the University of London for his

work in object-oriented methodology. E-Mail: brian@it.uts.edu.au

mailto:cesargon@it.uts.edu.au
mailto:brian@it.uts.edu.au

