
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 9, November-December 2005

Cite this column as follows: M. Genero, M Piattini, C. Calero: “A Survey of Metrics for UML
Class Diagrams”, in Journal of Object Technology, vol. 4, no. 9, November-December 2005,
pp. 59-92, http://www.jot.fm/issues/issue_2005_11/article1

A Survey of Metrics for UML Class
Diagrams

Marcela Genero, ALARCOS Research Group, University of Castilla-La
Mancha, Spain
Mario Piattini, ALARCOS Research Group, University of Castilla-La Mancha,
Spain
Coral Calero, ALARCOS Research Group, University of Castilla-La Mancha,
Spain

Abstract
The demand for increased software quality has resulted in quality being more of
differentiator between products than it ever has been before. For this reason, software
developers need objective and valid measures for use in the evaluation and
improvement of product quality from the initial stages of development. Class diagrams
are a key artifact in the development of object-oriented (OO) software because they lay
the foundation for all later design and implementation work. It follows that emphasizing
class diagram quality may significantly contribute to higher quality OO software
systems. The primary aim of this work, therefore, is to present a survey, as complete as
possible, of the existing relevant works regarding class diagram metrics. Thus, from
works previously published, researchers and practitioners alike may gain broad and
ready access to insights for measuring these quality characteristics. Another aim of this
work is to help reveal areas of research either lacking completion or yet to undertaken.

1 INTRODUCTION

In a marketplace of highly competitive products, the importance of delivering quality
software is no longer an advantage but a necessary factor for software companies to be
succesful. It is widely accepted in software engineering that the quality of a software
system should be assured from the initial phases of its life cycle. Quality assurance
methods are most effective when they are applied at initial phases and least effective
when the system is already implemented. As Boehm [Boehm81] remarks, problems in the
artifacts produced in the initial stages of software system development generally
propagate to artifacts produced in later stages, where they become more costly to identify
and correct.

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_11/article1

A SURVEY OF METRICS FOR UML CLASS DIAGRAMS

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

Recently, paradigms such as Model-Driven Development [Atkin03] and the Model-
Driven Architecture [OMG02] have emphasized the importance of “good” models from
the beginning of the life cycle. For that reason, the main focus must be on the quality of
models obtained in these “early” stages.

In the OO paradigm one of the key artifacts is the class diagram. The class diagram
constitutes the backbone of the OO development and provides a solid foundation for the
design and the implementation of software. Therefore, class diagram quality has great
influence over the system that is ultimately implemented.

Quality in software products is characterised by the presence of different external
attributes1 such as functionality, reliability, usability, efficiency, maintainability and
portability [ISO01]. But these attributes can only be measured late in the OO software
development life cycle. Therefore, it is necessary to find early indicators of such qualities
based, for example, on the structural properties of class diagrams [Briand00a]. This is the
context where software measurement is fundamental, because measures can allow us to
evaluate class diagram quality characteristics in an objective way, thus avoiding a bias in
the evaluation process.

Measuring class diagram quality allows OO software designers:
• to identify weak design spots when it costs less to improve them, rather than repair

consequent errors at later implementation phases.
• to choose between design alternatives in an objective way.
• to predict external quality characteristics such as, maintainability, reusability, etc.,

and improve resource allocation based on these predictions.
Although in the OO software measurement arena the need for measures that can be
applied in the early phases of the development process is emerging, up until a few years
ago the work done in this sense was scarce because most software measurement
researchers focused on the measurement of code and advanced design [Zuse98; Hende96;
Fento97; Etzko99; etc.).

The aim of this work is to present a broad survey of the existing literature of OO
measures that can be applied to measure internal quality attributes of class diagrams,
considering the following proposals: Chidamber and Kemerer [Chida91; Chida94], Li
and Henry [Li93b], Brito e Abreu and Carapuça [Brito94], Lorenz and Kidd [Loren94],
Briand et al. [Brian97], Marchesi [March98], Harrison et al. [Harri98], Bansiya et al.
[Bansi99; Bansi02]; Genero et al. [Gener00; Gener02]. In a previous work El-Emam [El-
Em01] presented an interesting state-of-the-art of OO metrics and aspects related to their
theoretical and empirical validity, but he only focused on one quality characteristic, fault-
proneness. Card et al. [Card01] also published a broad survey of the literature that
assesses the state-of-the-art and practice in OO measurement and modelling, and maps
the information collected onto the Practical Software Measurement framework (PSM),
specially focusing on the view of quality as functional correctness. The objective of the
current work is to some extent wider, covering other quality aspects [ISO01]. More

1 Internal quality attributes are those that can be measured purely in terms of the product (e.g., complexity, coupling,
cohesion, etc.). In other words, an internal attribute can be measured by examining the product on its own, separate
from its behaviour [Fento97]. External quality attributes are those that can be measured only with respect to how the
product relates to its environment. Here, the behaviour of the product is more important than the product itself.

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 61

recently, Purao and Vaishnavi [Purao03] have surveyed metrics proposed for OO
systems, focusing on product metrics that can be applied to an advanced design or to
code.

As the Unified Modeling Language (UML) [OMG01]2 has emerged as a modelling
standard, and in general has been widely accepted by most software development
organisations, we will focus this work on UML class diagrams.

A precise demarcation of analysis, design, and implementation activities is not easy,
due to widespread adoption of iterative and fountain life cycles, which tend, sometimes
deliberately, to blur their distinctions [DeCha97]. For our current purposes, we shall
consider the UML class diagram, at its intial stages of development, to be composed of
the following UML constructs:
• Packages.
• Classes.
• Each class has attributes and operations.
• Attributes have their name.
• Operations only have their signature, i.e. their name and definition of parameters.
• Relationships: Association, Aggregation3, Generalization and Dependencies4.
Several authors [Brian95; Brian02; Fento97; Moras01; Fento00; Caler01; etc.], have put
especial emphasis on some issues that must be taken into account when defining metrics
for software.

In summary, their suggestions are:
• Metrics must be defined pursuing clear goals (using for example the GQM method

[Basil84; Basil88; VanSo99].
• Metrics must be theoretically validated, by addressing the question “is the measure

measuring the attribute it is purporting to measure?”.
• Metrics must be empirically validated, by addressing the question “is the measure

useful in the sense that it is related to other external quality attributes in the ways
expected?”.

• Metrics calculation must be easy and it is better if their extraction is automated by a
tool.
In order to compare each proposal of measures suggested, we shall consider five

dimensions:
1. Metrics. It refers to the definition of metrics.
2. Goals. This dimension includes the goals pursued by the metric definition.

2 As UML’s version 1.5 has proven to be the most widely-used standard available, we have chosen it for the purposes
of our current considerations. We have also tested UML’s forthcoming version 2.0, which currently remains in beta
form, to verify all metrics documented in this survey. It may prove necessary, however, to confirm its consistency with
our readings again later, once UML 2.0 officially launches.
3 UML supports two different ways of representing the aggregation concept: aggregation as a special kind of binary
association and aggregation as tree notation. Henderson-Sellers [Hende97] has criticised how UML deals with
aggregation. He made a counter-proposal, richer than that of UML´s, concerning aggregation relationships in
conceptual design. In spite of this, with UML class diagrams as our focus, we undertake UML´s aggregation.
4 In the case of the UML relationships we have considered only high-level design characteristics and not advanced or
detailed ones, such as navigability.

A SURVEY OF METRICS FOR UML CLASS DIAGRAMS

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

3. Theoretical validation. This comprises studies previously undertaken,
theoretically validating the metrics.

4. Empirical validation5. In this dimension, we consider previous empirical studies
that demonstrate or evidence the utility of the metrics presented.

5. Tool6. This demonstrates whether or not automatic support exists for the metric
calculation.

The objective of this work is two-fold:

1. Provide practitioners with information on the available metrics for UML class
diagrams, if they are empirically validated (from the point of view of the
practitioners, one of the most important aspects of interest, i.e., if the metrics are
really fruitful in practice).

2. Provide researchers with an overview of the current state of metrics for UML
class diagrams, focusing on the strengths and weaknesses of each existing
proposal. Thus, researchers can have a broad insight into the work already done
and that still to be carried out in the field of metrics for UML class diagrams.

This work is organised as follows: The existing proposals of OO metrics that can be
applied to UML class diagrams are presented in Section 2. Section 3 presents an overall
analysis of all the proposals. Finally, Section 4 presents some concluding remarks and
highlights the future trends in the field of metrics for UML class diagrams.

2 PROPOSALS OF METRICS FOR UML CLASS DIAGRAMS

We will now present those metrics proposals selected for consideration and that may best
demonstrate the present-day context of metrics for UML class diagrams.

At this point, we would like to highlight that of the metrics existing in the literature
were not originally defined to measure UML class diagrams; nevertheless they can be
tailored for this purpose. Only two of the proposals [Marche98, Gener00, Gener02] focus
specifically on UML class diagrams. For that reason, most of the works we refer about
empirical validation have been carried out on code.

CK metrics [Chidamber91; Chidamber94]

• Metrics. Chidamber and Kemerer [Chida91] proposed a first version of these metrics
and later the definition of some of them were improved and presented in [Chida94].
Only three of the six CK metrics are available for a UML class diagram (see Table 1).

5 Note that when we present the works related to the theoretical and empirical validation of the metrics, we intend to
consider the most representatives ones, i.e. we do not cover “all” the works, which it impossible.
6 When we refer to the metric tools for each metrics proposal, we present the most representative ones available today.

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 63

Metric name Definition

WMC The Weighted Methods per Class is defined as
follows:

∑
=

=
n

i
icWMC

1

Where c1, ..., cn be the complexity of the methods of a
class with methods M1, ...,Mn.
If all method complexities are considered to be unity,
the WMC = n, the number of methods7.

DIT The Depth of Inheritance of a class is the DIT metric
for a class. In cases involving multiple inheritance, the
DIT will be the maximum length from the node to the
root of the tree.

NOC The Number of Children is the number of immediate
subclasses subordinated to a class in the class
hierarchy.

Table1. CK metrics [Chida94]

• Goal. CK metrics were defined to measure design complexity in relation to their

impact on external quality attributes such as maintainability, reusability, etc.
• Theoretical validation. Chidamber and Kemerer [Chida94] corroborated that DIT

and NOC both accomplish Weyuker’s axioms for complexity measures [Weyuk88].
Briand et al. [Brian96] classified the DIT metric as a length measure, and the NOC
metric as a size measure. Poels and Dedene [Poels99] have demonstrated by means of
the DISTANCE framework that they can be characterized at ratio the scale level.

• Empirical validation. Several empirical studies have been carried out to validate
these metrics, among others we refer to the following:

• Li and Henry [Li93b] showed that CK metrics appeared to be adequate in predicting
the frequency of changes across classes during the maintenance phase.

• Chidamber and Kemerer [Chida94] have applied these metrics to two real projects
obtaining the following observations:

• Designers may tend to keep the inheritance hierarchies shallow, forsaking reusability
through inheritance for simplicity of understanding.

• These metrics were useful for detecting possible design flaws or violations of design
philosophy, and for allocating testing resources.

• Basili et al. [Brian96] have put the DIT metric under empirical validation, concluding
that the larger the DIT value, the greater the probability of fault detection. Also, they
observed that the larger the NOC, the lower the probability of fault detection.

• Daly et al. [Daly96] found that the time it took to perform maintenance tasks was
significantly lower in systems with three levels of inheritance depth as compared to
systems with no use of inheritance.

7 We consider WMC = number of methods. This is because at initial stages of development the code of the
methods is not available.

A SURVEY OF METRICS FOR UML CLASS DIAGRAMS

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

• Cartwright [Cartw98] performed a small replication of that of Daly et al. [Daly96].
The results of that replication indicate that three levels of inheritance depth have a
significant positive effect upon the time to make a change and a significant negative
effect upon the size of a change in lines of code.

• The experiment carried out by Unger and Prechelt [Unger98] was based on that of
Daly et al.’s experiment [Daly96], but changed certain parameters in order to increase
external validity. The obtained results indicate that the deeper inheritance hierarchies
did not generally speed up maintenance, nor did they result in superior quality,
concluding that inheritance depth in itself was not an important factor for
maintenance effort.

• Chidamber et al. [Chida98] have carried out studies on three commercial systems, in
order to examine the relationships between CK metrics and productivity, rework
effort and design effort. None of the three systems studied showed significant use of
inheritance, so DIT and NOC tended to have minimal values. Chidamber et al.
[Chida98] suggested that low values of DIT and NOC indicate that the reuse
opportunities (via inheritance) were perhaps compromised in favor of
comprehensibility of the overall architecture of the applications.

• Tang et al. [Tang98] have investigated the correlation between CK metrics and the
likelihood of the occurrence of OO faults, using three industrial real-time systems
(implemented in VISUAL C++). The results suggest that WMC can be a good
indicator for faulty classes.

• After carrying about two case studies Briand et al. [Briand98; Briand00b] have
concluded that inheritance measures (DIT, NOC, etc…) appear not to be consistent
indicators of class-fault proneness, but they suggested that the use of inheritance is an
important topic for further research.

• Harrison et al. [Harri00] which was a replication of Daly et al.’s experiment [Daly96],
used the DIT metric in an empirical study, demonstrating that systems without
inheritance are easier to understand and to modify than systems with three or five
levels of inheritance.

• Poels and Dedene [Poels01] used the DIT metric in an empirical study, demonstrating
that the extensive use of inheritance leads to models that are more difficult to modify.

• Briand et al. [Brian01] used the metrics NOC, DIT (and also CBO metric, but we do
not consider it in this work) in an empirical study, demonstrating that the use of
design principles leads to OO designs that are easier to maintain.

• Prechelt et al. [Prech03] in two controlled experiments compared the performance on
code maintenance tasks for three equivalent programs with 0, 3 and 5 levels of
inheritances. They concluded that for the given tasks, which focus on understanding
effort more than change effort, programs with less inheritance were faster to maintain.
They also found that code maintenance effort is hardly correlated with inheritance
depth, but rather depends on others factors, such as the number of relevant methods.

• Tool. The authors of these metrics have developed a tool for the metric calculation for
C++ code. Also, there are several commercial and public domain analyzers for these
metrics, for instance, among others, for Java: CodeWork [Code00], Metameta
[Metam00], Power-Software [Power00b], ControlCenter [Toget01] and for C++:
Chidamber and Kemerer [Chida94], Devanbu [Devan00], ObjectSoft [Objec00] and

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 65

Power-Software [Power00a]. In addition there is at least one tool that can be used to
collect the CK metrics directly from design documents, Number-Six-Software
[Numbe00].

Li and Henry’s metrics [Li93b]

• Metrics. Table 2 shows the metrics proposed by Li and Henry, which are defined at
class level.

Metric
name

Definition

DAC The number of attributes in a class that have another class as their
type.

DAC’ The number of different classes that are used as types of attributes in a
class.

NOM The number of local methods.

SIZE2 Number of Attributes + Number of local methods

Table 2. Li and Henry’s metrics [Li93b]

• Goal. These metrics measure different internal attributes such as coupling,

complexity and size.
• Theoretical validation. Briand et al. [Brian99] have found that DAC and DAC’ do

not fulfill all the properties for coupling measures proposed by Briand et al.
[Brian96]. This means that neither DAC nor DAC’ metrics can be classified
according to Briand et al.’s framework, which defines the set of properties that length,
size, coupling, complexity and cohesion metrics must fulfill.

• Empirical Validation. Li and Henry [Li93b] have applied these metrics (and others)
to two real systems developed using Classic-ADA. They found that the maintenance
effort (measured by the number of lines changed per class in its maintenance history)
could be predicted from the values of these metrics (and others like DIT, NOC, etc.).

• Tool. A metric analyzer was constructed to collect metrics from Classic-Ada designs
and source code.

MOOD metrics [Brito94; Brito96a]

The original proposal of MOOD metrics [Brito94] was improved in [Brito96a], and
recently extended to MOOD2 metrics [Brito98], which consider metrics defined at
different levels of granularity, not only at class diagram level. To our knowledge there are
still no published works giving either theoretical or empirical validation to the mentioned
extension. Brito e Abreu [Brito01] also presented a formal definition of MOOD2 metrics
using the Object Constraint Language (OCL) [Warme99].

Given that MOOD metrics were more explored as empirically as theoretically, we
will only refer to them in the rest of this section (we consider the improved version
defined by Brito e Abreu and Melo [Brito96a].

A SURVEY OF METRICS FOR UML CLASS DIAGRAMS

66 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

• Metrics. Table 3 shows six of the MOOD metrics applied at class diagram level.

Metric name Definition

MHF The Method Hiding Factor is defined as a quotient between the sum of
the invisibilities (see definition below) of all methods defined in all of
the classes and the total number of methods defined in the system
under consideration. The invisibility of a method is the percentage of
the total classes from which the method is not visible.

)C(M

))M(V1(
MHF TC

1i
id

TC

1i

)C(M

1m
mi

id

∑

∑ ∑

=

= =
−

=

1TC

)C,M(visible_is
)M(V

TC

1j
jmi

mi −
=
∑
=

⎪⎩

⎪
⎨
⎧ ∧≠⇔

=
otherwise0

McallmayCiJ1
)C,M(visible_is

mij
jmi

Where: TC=total number of classes in the system under consideration,
Md(Ci)=Mv(Ci)+Mh(Ci)=methods defined in class Ci. Mv(Ci)=visible
methods in class Ci (public methods), Mh(Ci)=hidden methods in class
Ci (private and protected methods).

AHF The Attribute Hiding Factor is defined as a quotient between the sum
of the invisibilities of all attributes defined in all of the classes and the
total number of attributes defined in the system under consideration.
The invisibility of an attribute is the percentage of total classes from
which the attribute is not visible.

)C(A

))A(V1(
AHF

TC

1i
id

TC

1i

)Ci(A

1m
mi

d

∑

∑ ∑

=

= =
−

=

1

),(_

)(1

−
=
∑
=

TC

CAvisibleis

AV

TC

j
jmi

mi

⎪⎩

⎪
⎨
⎧ ∧≠⇔

=
otherwise

miAreferencemayjCiJ

jCmiAvisibleis
0

1
),(_

Where: Ad(Ci)=Av(Ci)+Ah(Ci)=attributes defined in class Ci,
Av(Ci)=visible attributes in class Ci, Ah(Ci)=hidden attributes in class
Ci (public attributes), Mh(Ci)=hidden attributes in class Ci (private and
protected attributes).

MIF The Method Inheritance Factor is defined as a quotient between the
sum of inherited methods in all classes of the system under
consideration and the total number of available methods (locally
defined and include those inherited) for all classes.

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 67

)(

)(

1

1

∑

∑

=

== TC

i
ia

TC

i
ii

CM

CM
MIF

Where: Ma(Ci)=Md(Ci)+Mi(Ci)=available methods in class Ci (those
that can be invoked in association with class Ci), Md(Ci)=
Mn(Ci)+Mo(Ci)=methods defined in class Ci (those declared in Ci),
Mn(Ci)=new methods in class Ci (those declared within Ci that do not
override inherited ones), Mo(Ci)=overriding methods in class Ci (those
declared within class Ci that override (redefine) inherited ones,
Mi(Ci)=inherited methods in class Ci (those inherited (and not
overridden) in class Ci).

AIF The Attribute Inheritance Factor is defined as a quotient between the
sum of inherited attributes in all classes of the system under
consideration and the total number of available attributes (locally
defined plus inherited) for all classes.

)(

)(

1

1

∑

∑

=

== TC

i
ia

TC

i
ii

CA

CA
AIF

Where: Aa(Ci)=Ad(Ci)+Ai(Ci)= attributes available in class Ci (those
that can be manipulated in association with class Ci), Ad(Ci)=
An(Ci)+Ao(Ci)=attributes defined in class Ci (those declared in class Ci),
An(Ci)=new attributes in class Ci (those declared within class Ci that
do not override inherited ones), Ao(Ci)=overriding attributes in class Ci
(those declared within class Ci that override (redefine) inherited ones),
Ai(Ci)= attributes inherited in class Ci (those inherited (and not
overridden) in class Ci).

PF The Polymorphism Factor is defined as the quotient between the actual
number of different possible polymorphic situations, and the maximum
number of possible distinct polymorphic situations for class Ci.

[]∑

∑

=

=

×

= TC

i
iin

TC

i
io

CDCCM

CM
PF

1

1

)((

)(

Where: Mo(Ci)=overriding methods in class Ci, Mn(Ci)=new methods
in class Ci, DC(Ci)=number of descendants of class Ci).

Table 3. MOOD metrics [Brito96a]

• Goal. They were defined to measure the use of OO design mechanisms such as

inheritance (MIF and AIF) metrics, information hiding (MHF and AHF metrics), and
polymorphism (PF metric) and the consequent relation with software quality and
development productivity.

A SURVEY OF METRICS FOR UML CLASS DIAGRAMS

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

• Theoretical validation. Harrison et al. [Harri98] demonstrated that all but the PF
metric hold all the properties for valid metrics proposed in Kitchenham’s framework
[Kitch95]. The PF metric is not valid, as in a system without inheritance the value of
PF is not defined, being discontinuous.

• Empirical validation. Next we comment on the empirical studies carried out to
validate these metrics.

o Brito e Abreu et al. [Brito95] applied MOOD metrics to 5 class libraries
written in the C++ language. They gave some design heuristics based on the
metric values which can help novice designers. They suggested that AHF is
lower bounded, this means that there is a lower limit for this metric. Going
below that limit is a hindrance to resulting software quality. On the other
hand, MHF, MIF, AIF, PF are upper bounded, meaning that if the metric
value exceeds the upper limit it is no good.

o Brito e Abreu and Melo [Brito96a] applied the MOOD metrics to three class
libraries written in C++. They provided the following comments:

 When the value of MHF or MIF increases, the density of defects and
the effort required to correct them should have to decrease.

 Ideally, the value of the AHF metric would be 100%, i.e., all attributes
would be hidden and only accessed by the corresponding class
methods.

 At first, one might be tempted to think that inheritance should be used
extensively. However, the excessive reuse through inheritance makes
the system more difficult to understand and maintain.

 In relation to the PF metric, in some cases, overriding methods could
contribute to reducing complexity and therefore make the system more
understandable and easier to maintain.

o A work similar to that described above, but applying the metrics to 7 classes
written in the Eiffel language, was carried out in Brito e Abreu et al.
[Brito96b].

o Harrison et al. [Harri98] applied MOOD metrics to nine commercial systems.
They concluded that MOOD metrics provide an overall quality assessment of
systems.

• Tool. MOODKIT is a tool for metrics extraction from source code, which supports
the collection from C++, Smalltalk and Eiffel code of all MOOD metrics.

Lorenz and Kidd’s metrics [Loren94]

• Metrics. These metrics are classified into: Class size metrics, Class inheritance
metrics and Class’internals metrics (see table 4).

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 69

 Metric name Definition

PIM

This metric counts the total number of public instance methods
in a class. Public methods are those that are available as services
to other classes.

NIM This metric counts all the public, protected, and private methods
defined for class’ instances.

NIV This metric counts the total number of instance variables in a
class. Instance variables include private and protected variables
available to the instances.

NCM This metric counts the total number of class methods in a class.
A class method is a method that is global to its instances.

Class size metrics

NCV The metric counts the total number of class variables in a class.

NMO The metric counts the total number of methods overridden by a
subclass. A subclass is allowed to define a method of the same
name as a method in one of its super-classes. This is called
overriding the method.

NMI The Number of Methods Inherited metric is the total number of
method inherited by a subclass.

NMA This metric counts the total number of methods defined in a
subclass.

Class inheritance
metrics

SIX The Specialization Index metric for each class is defined thus:

rOfMethodsTotalNumbe

lestingLeveHierarchyNhodserridenMetNumberOfOv *

Class internals APPM The Average Parameters Per Method metric is defined thus:

rOfMethodsTotalNumbe

tershodsParameTotalOfMet

Table 4. Lorenz and Kidd’s metrics [Loren94]

• Goal. Lorenz and Kidd’s metrics were defined to measure the static characteristics of
software design, such as the usage of inheritance, the amount of responsibilities in a
class, etc.

• Theoretical validation. To our knowledge no work related to the theoretical
validation of these metrics has been published.

• Empirical validation. After applying these metrics to 5 real projects (written in
Smalltalk and C++), Lorenz and Kidd [Loren94] have provided some
recommendations, such as:

o An inheritance hierarchy that is too shallow or too deep has quality
repercussions.

A SURVEY OF METRICS FOR UML CLASS DIAGRAMS

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

o No instance methods or too many instance methods can indicate non-optimal
allocation of responsibility (related to the NIM metric).

o Large numbers of instance variables can indicate too much coupling with
other classes and reduce reuse (related to the NIV metric).

o The average number of class variables should be low. In general there should
be fewer class variables than instance variables.

o Too many class methods indicate inappropriate use of classes to do work
instead of instances (related to the NCM metric).

o Overriding methods, especially deeper in the hierarchy, can indicate poor
subclassing (related to the NMO metric).

o Specialization index has done a good job on identifying classes worth looking
at, for their placement in the inheritance hierarchy and for design problems.

o They also suggest an upper threshold of 0.7 parameters per method (related to
the APPM metric).

• Tool. A tool called OOMetric was developed to collect these metrics, applied to code
written in Smalltalk and C++.

Briand et al.’s metrics [Brian97]

• Metrics. These metrics are defined at the class level, and are counts of interactions
between classes (see Table 5).

Metric
name

Definition

ACAIC
OCAIC
DCAEC
OCAEC
ACMIC
OCMIC
DCMEC
OCMEC

These measures distinguish the relationship between classes
different type of interactions, and the locus of impact of the
interaction.
The acronyms for the measures indicate what interactions are
counted:
 The first letter indicates the relationship (A: coupling to

ancestor classes, D: Descendants, O: Others, i.e. none of the
other relationships).

 The next two letters indicate the type of interaction:
 CA: there is a Class-attribute interaction between classes c

and d, if c has an attribute of type d.
 CM: There is a Class-Method interaction between classes

c and d, if class c has a method with a parameter type class
d.

 The last two letters indicate the locus of impact:
 IC: Import coupling, the measure counts for a class c all

interactions where c is using another class.
 EC: Export coupling: count interactions where class d is

the used class.

Table 5. Briand et al.’s coupling metrics [Brian97]

• Goal. The aim of these metrics is the measurement of the coupling between classes.
• Theoretical Validation. Briand et al. [Brian99] have demonstrated that all of these

measures fulfill the properties for coupling measures [Brian96].

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 71

• Empirical Validation. Briand et al. have carried out two case studies [Briand98;
Briand00b] applying the metrics to real systems. After both studies they conclude that
if one intends to build quality models of OO designs, coupling will very likely be an
important structural dimension to consider. More specifically, the impact of export
coupling on fault-proneness is weaker than that for import coupling. El-Emam et al.
[El-Em99) have applied these metrics to a system implemented in C++, in which they
found that the metrics OCAEC, ACMIC and OCMEC tend to be associated with
fault-proneness. A similar study, but applying the metrics to a Java system, concluded
that the metrics OCAEC, OCMEC and OCMIC seem to be associated with fault-
proneness. Galsberg et al. [Galsb00] have found a relationship between ACMIC and
OCMIC and fault-proneness, applying these metrics to a Java system.

• Tool. The authors have built a tool for extracting the metrics values from C++ code.

Marchesi’s metrics [March98]

• Metrics. In this proposal a UML class diagram at the OO analysis phase include only
the following UML entities:

o Classes and packages
o Simple inheritance hierarchies
o Dependencies among classes: every relationship between classes except

inheritance.
o Single classes defined in terms of their responsibilities; responsibility may be

related to information holding, or to computation that must be performed.
These metrics are divided into three categories: those related to single classes (see Table
6), those related to packages (see Table 7) and those related to the system as a whole (see
Table 8).

Metric
name

Definition

CL1 Is the weighted number of responsibilities of a class, inherited or not. It is defined thus:

∑

∈

++=
)(

1
ibh

hNC
r

K
i

NA
a

K
i

NCCL

Where NCi is the number of concrete responsibilities of class Ci, NAi is the number of
abstract responsibilities of class Ci, b(i) is an array whose elements are the indexes of all
superclasses of class Ci. Responsibilities can be abstract, if they are specified in subclasses,
or concrete, if they are detailed in the class where they are defined.

A SURVEY OF METRICS FOR UML CLASS DIAGRAMS

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

CL2 Is the weighted number of dependencies of a class. Specific and inherited dependencies are
weighted differently. It is defined thus:

∑

∈

+∑
=

=
CN

ibj

kd
jkd

e
K

CN

k
kd

ikdCL
)(

)(
1

)(2

Where the exponent Kd<1, NC is the total number of classes, [D]NC×NC is the dependency
matrix and an element dik is the number of dependencies between class Ci (client) and class
Ck (server), b(i) is an array whose elements are the indexes of all superclasses of class Ci. A
dependency between a class Ci (client class) and a class Ck (server class), indicates that the
class Ci will use one or more of the services offered by the Ck.

Table 6. Marchesi’s metrics for single classes [March98]

Metric Definition

PK1 Is related to the number of dependencies among classes belonging to a given package, Pk, and
classes belonging to other packages. PK1 refers to dependencies whose clients are classes of
Pk and whose servers are outside Pk. It is defined thus:

∑
=

∑
≠

= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

1/ 1/
1

ikpi hkph ihdPK

Where [P]NC×NP is the class-package matrix and an element pik is one if class Ci belongs to
package Pk. Each row of [P] has one and only one element equal to one; all others are zero.
PK1 measures the extent of usage of classes of other packages by classes of package Pk.

PK2 Refers to the dependencies on server classes belonging to Pk. It is defined thus:

∑
≠

∑
=

= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

1/ 1/
2

ikpi hkph ihdPK

Where [P]NC×NP is the class-package matrix and an element pik is one if class Ci belongs to
package Pk. Each row of [P] has one and only one element equal to one; all others are zero.
PK2 metric is related to the degree of reuse of the classes within a package. This metric is
aimed at measuring inter-package coupling.

PK3 Section 1.01 Is the average value of PK1 metric. It is defined thus:

∑
=

∑
=

∑
≠

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛pN

k ikpi hkph ihd
pN

PK
1 1/ 1/

1
3

Where Np is the total number of packages, [P]NC×NP is the class-package matrix and the
element pik is one if class Ci belongs to package Pk. Each row of [P] has one and only one
element equal to one; all others are zero.
This metric is an estimate of overall coupling among packages.

Table 7. Marchesi’s metrics for packages [March98]

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 73

Metric
name

Definition

OA1 Is the overall number of classes, NC.

OA2 Is the overall number of inheritance hierarchies, NG.

OA3 Article II. Is the average weighted number of classes. Let us define as PR(i) the
value of metric CL1 for class Ci. Its average in all classes of the system is:

∑
=

>==<
CN

i
iPR

CN
iPROA

1
)(1)(3

OA4 Article III. Is the standard deviation of the weighted number of classes. Let us
define as PR(i) the value of metric CL1 for class Ci. The standard deviation of PR(i) is:

∑
=

><−=
CN

i
iPRiPR

CN
OA

1
2))()((

1
4

OA5 (a) Is the average of the number of direct dependencies of classes. The
average of NDi on all the classes of the system is:

∑
=

>==<
CN

i iND
CNiNDOA

1
1

5

OA6 Is the standard deviation of the number of direct dependencies of classes. The standard
deviation of NDi is:

∑
=

><−=
CN

i iNDiND
CN

OA
1

2)(
1

6

OA7 Is the percentage of inherited responsibilities with respect to their total number. Let us define
ARk as the total number of inherited responsibilities of class Ck, excluding those concretely
specified or redefined in class Ck, and with XRk the total number of responsibilities of class
Ck, both inherited or not:

Article IV.
∑

∈
=

knCredefinedi

litiesresponsibi

excludingkbh
kAR

,)(∑
∈

+=
)(kbh

hNRkNRkXR

Then:

∑
=

∑
==
CN

k kXR

CN

k kAR
OA

1

17

Table 8. Marchesi’s metrics for systems [March98]

A SURVEY OF METRICS FOR UML CLASS DIAGRAMS

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

These metrics only have an acronym name, which does not have any significant meaning.
• Goal. The aim of these metrics is the measurement of system complexity, of

balancing responsibilities among packages and classes, and of cohesion and coupling
between system entities.

• Theoretical validation. To our knowledge no work related to the theoretical
validation of these metrics has been published.

• Empirical validation. Marchesi [March98] only applied the metrics for systems to
three real projects, all developed in Smalltalk. They analyzed the value of the metrics
related to the man-months needed to develop the systems. They concluded that
compared with man-months needed to develop the systems, a man-month seems to be
able to develop between 14 to 20.5 responsibilities. Marchesi also remarks that for
small to medium-sized projects Smalltalk productivity is very high compared to that
of other programming languages.

• Tool. A tool able to measure the proposed metrics has been prototyped in Smalltalk
language. It is able to parse files used by Rational Rose CASE tool to store UML
diagrams.

Harrison et al. ’s metrics [Harri98]

• Metrics. The authors have proposed the metric Number of Associations (NAS),
which is defined as the number of associations of each class, counted by the number
of association lines emanating from a class in a class diagram.

• Goal. The NAS metric measures the inter-class coupling.
• Theoretical Validation. There is no evidence of the theoretical validation of this

metric.
• Empirical Validation. Harrison et al. [Harri98] have applied this metric to five

systems developed in C++. No relationships were found for any of the systems
between class understandability and the metric NAS. The authors attributed this fact
partly to the way in which the subjective understandability metric was evaluated by
the developer. Only limited evidence was found to support the hypothesis linking
increased coupling (measured by the metric NAS) to increased error density. In this
study Harrison et al. [Harri98] also found a strong relationship between CBO
[Chida94] and NAS metrics, implying that one of these is needed to assess the level
of coupling at design time. Moreover, in contrast to CBO metric, NAS is available at
a high-level design, and could be used by managers to obtain early coupling
estimates.

• Tool. Harrison et al. [Harri98] did not explain how they collected the NAS metric
values.

Bansiya et al.’s metrics [Bansi99; Bansi02]

• Metrics. In table 9 we present the metrics defined by Bansiya and Davis [Bansi02]
which can be applied at class level.

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 75

Metric Description

DAM The Data Access metric is the ratio of the number of private (protected) attributes
to the total number of attributes declared in the class.

DCC The Direct Class Coupling metric is a count of the different number of classes
that a class is directly related to. The metric includes classes that are directly
related by attribute declarations and message passing (parameters) in methods.

CAMC The Cohesion Among Methods of Class metric computes the relatedness among
methods of a class based upon the parameter list of methods [Bansiya99]. The
metric is computed using the summation of the intersection of parameters of a
method with the maximum independent set of all parameter types in the class.

MOA The Measure of Aggregation metric is a count of the number of data declarations
whose types are user defined classes.

MFA The Measure of Functional Abstraction metric is the ratio of the number of
methods inherited by a class to the total number of methods accessible by
member methods of the class.

Table 9. Bansiya and Davis’s metrics [Bansi02]

• Goal. These metrics were defined for assessing design properties such as

encapsulation (DAM), coupling (DCC), cohesion (CACM), composition (MOA) and
inheritance (MFA).

• Theoretical validation. To our knowledge these metrics has not been put under
theoretical validation.

• Empirical validation. As part of the empirical validation study, CAMC was
statistically correlated with the metric Lack of Cohesion in Methods8 (LCOM)
[Chida94], which has been shown to effectively predict cohesiveness of classes in
several studies [Li93a; Chida94; Basil96; Etzko98]. In this study a high correlation
between CAMC and LCOM was found, which has the advantage that CAMC can be
used earlier in the development process to evaluate the cohesion characteristic of
classes.

• The authors have observed that CAMC values greater than 0.35 indicate classes that
are reasonably cohesive. Classes with a CAMC measure of 0.35 and below are the
most likely to be uncohesive.

• The CAMC metric has also been shown to be highly correlated with the subjective
expert evaluation of cohesion (measured in a scale from 0 to 1).

• Bansiya and Davis [Bansi02] has used the metrics shown in table 9 and others taken
from the literature (see table 10) to build a model for evaluating the overall quality of
an OO design based on its internal design properties.

8 The metric LCOM was originally defined by Chidamber and Kemerer [Chida91; Chida94], but Henderson-Sellers
[Hende96] redefined it to solve some problems with its definition. Nonetheless, this metrics it is out of the scope of our
study due to it can not be applied at to UML class diagrams with the constructs we considered (see section 2).

A SURVEY OF METRICS FOR UML CLASS DIAGRAMS

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

Metric name Description

DSC This metric counts the total number of classes in the design.
NOH The metric counts the total number of class hierarchies in the design.
ANA The Average Number of Ancestors metric is computed by determining the

number of classes along all paths from the “root” class(es) to all classes in
an inheritance structure.

NOP This metric counts the total number of polymorphic methods.

Table 10. Others OO design metrics used in [Bansi02]

This hierarchical model called QMOOD has the lower-level design metrics well
defined in terms of design characteristics, and quality is assessed as an aggregation of
the model’s individual high-level quality attributes. The high-level attributes are
assessed using a set of empirically identified and weighted OO design properties,
which are derived from the metrics shown in table 9 and 10, which measure the
lowest-level structural, functional and relational details of a design (see table 11).

Design property Derived Design
Metric

Design size DSC
Hierarchies NOH
Abstraction ANA
Encapsulation DAM
Coupling DCC
Cohesion CAMC
Composition MOA
Inheritance MFA
Polymorphism NOP
Messaging CIS
Complexity NOM

Table 11. Metrics for design properties

Lastly, the effectiveness of the initial model in predicting design quality attributes has
been validated against numerous real-world projects. The quality predicted by the
model shows good correlation with evaluator assessment of projects designs and
predicts implementation qualities well.

• Tool. The software tool QMOOD++, allows the design assessment to be carried out
automatically, given the parameters of interest for particular evaluation. This tool use
C++ as the target language.

Genero et al. ’s metrics [Gener00; Gener02]

• Metrics. These metrics were grouped into: Class-scope metrics (applied to single
classes) and Class-diagram scope metrics (applied at diagram level) (see Table 12 and
13, respectively).

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 77

Metric
name

Definition

NAssoc The Number of Association metric is defined as the total number of
associations within a class diagram. This is a generalization of the
NAS (Number of Associations) metric [Harri00] to the class
diagram level.

NAgg The Number of Aggregation metric is defined as the total number
of aggregation relationships within a class diagram (each whole-
part pair in an aggregation relationship).

NDep The Number of Dependencies metric is defined as the total number
of dependency relationships within a class diagram.

NGen The Number of Generalization metric is defined as the total
number of generalization relationships within a class diagram (each
parent-child pair in a generalization relationship).

NGenH The Number of Generalization Hierarchies metric is defined as the
total number of generalization hierarchies within a class diagram

NAggH The Number of Aggregation Hierarchies metric is defined as the
total number of aggregation hierarchies within a class diagram.

MaxDIT The Maximum DIT metric is defined as the maximum between the
DIT value obtained for each class of the class diagram. The DIT
value for a class within a generalization hierarchy is the length of
the longest path from the class to the root of the hierarchy
[Chida94].

MaxHAgg The Maximum HAgg metric is defined as the maximum between
the HAgg value obtained for each class of the class diagram. The
HAgg value for a class within an aggregation hierarchy is the
length of the longest path from the class to the leaves.

Table 12. Class diagram-scope metrics for UML class diagram structural complexity [Genero00;

Genero02]

Metric
name

Definition

NAssocC The Number of Association per Class metric is defined as the total
number of associations a class has with other classes or with itself.

HAgg The height of a class within an aggregation hierarchy is defined as the
length of the longest path from the class to the leaves.

NODP The Number of Direct Parts metric is defined as the total number of
“direct part” classes which compose a composite class.

NP The Number of Parts metric is defined as the number of “part” classes
(direct and indirect) of a “whole” class.

NW The Number of Wholes metric is defined as the number of “whole”
classes (direct or indirect) of a “part” class.

MAgg The Multiple Aggregation metric is defined as the number of direct
“whole” classes that a class is part-of, within in an aggregation
hierarchy.

NDepIn The Number of Dependencies In metric is defined as the number of
classes that depend on a given class.

NDepOut The Number of Dependencies Out metric is defined as the number of
classes on which a given class depends.

Table 13. Class-scope metrics for UML class diagram structural complexity [Gener00; Gener02]

A SURVEY OF METRICS FOR UML CLASS DIAGRAMS

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

• Goal. They were defined to measure class diagram complexity, due to the use of

different kinds of relationships, such as associations, generalizations, aggregations
and dependencies, in relation with their impact on external quality attributes such as
class diagram maintainability.

• Theoretical validation. These metrics were validated using a property-based
approach [Brian96], aiming to classify them as complexity, size, length, coupling or
cohesion metrics [Gener02] (see Table 14). A Measurement theory-based approach
[Poels99; Poels00a] was also used, thereby justifying that the metrics are
constructively valid and are characterized by the ratio scale [Gener02].

 SIZE COMPLEXITY LENTGH COUPLING

Class Diagram-
Scope metrics

NAggH, NGenH NAssoc, NDep, NAgg,
NGen

MaxHAgg, MaxDIT

Class Scope
metrics

NDP, NP, NW HAgg NAssocC,
NDepIN,

NDepOUT

Table 14. Theoretical validation of the metrics using Briand et al. ’s framework [Brian96]

• Empirical validation. Two controlled experiments to empirically validate class
diagram-scope metrics were carried out.

o In [Gener01a] a controlled experiment was carried out with the aim of
building a prediction model for the UML class diagram maintainability based
on the values of the class diagram-scope measures (traditional metrics were
also considered, such as the number of classes, the number of attributes and
the number of methods within a class diagram). To build the prediction model,
an extension of the original Knowledge Discovery in Databases (KDD): the
Fuzzy Prototypical Knowledge Discovery (FPKD) [Olivas00] was used. The
authors of these metrics also demonstrated, by statistical analysis, that these
metrics are strongly correlated with the subject’s rating of class diagram
maintainability characteristics (understandability, modifiability and
analyzability) [Gener02].

o In Genero et al. [Gener01b] a controlled experiment was carried out with two
goals: 1) to ascertain if any relationship exists between the class diagram-
scope metrics (also considering traditional metrics, such as the number of
classes, the number of attributes and the number of operations within a class
diagram) and the UML class diagram maintainability, and 2) to build a
prediction model for the UML class diagram maintainability. An approach
based on fuzzy regression and classification trees was used [Delga01] for
these purposes. They concluded that the NAssoc, NDep and MaxDIT metrics
do not seem to be related with maintenance time. However, they argued, this
may be due to the design of the experiments, in which the value of those
metrics did not take a great range of values.

o In [Gener03a] through a controlled experiment was found that all the class
diagram-scope measures (except NDep) seem to be highly correlated to the
maintenance time of class diagrams. Moreover a prediction model for the

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 79

maintenance time was provided. To build the prediction model, an extension
of the original Knowledge Discovery in Databases (KDD): the Fuzzy
Prototypical Knowledge Discovery (FPKD) [Oliva00] was used.

o In [Gener03b] through a controlled experiment and its replica, have build
prediction models for the time a subject spent on understanding and modifying
UML class diagrams. This study reveals that in some sense most of the
proposed metrics have influence in maintenance activities.

• Tool. A tool capable of measuring the proposed metrics has been prototyped in
Visual Basic [Gener02]. This tool can extract and visualize measures applied to UML
class diagrams built using the Rational Rose CASE tool.

Summary

Tables 15 and 16 summarize a thorough study we carried out considering the OO metric
proposals mentioned earlier, taking into account the suggestion provided above.

Table 15 contains the following columns:
• Source: indicates the literature reference where the measure was originally proposed.
• Goals: refers to the measurement objectives of the metrics.
• Scope: means at what granularity level the metrics can be applied, considering class

level and system/packages level. Inside each scope, we also distinguish the OO
constructs the measures are related to (e.g., attributes, methods, etc.).

Table 16 contains the following columns:
• Validation: indicates whether the metric proposals have been validated either

theoretically or empirically. Regarding theoretical validation we consider two
approaches, namely property-based [Weyuk88; Brian96] and measurement theory-
based approaches [Zuse98; Poels99; Poels00a]. The former aim to formalize the
properties that a generic attribute of a software system (e.g., complexity, size, etc.)
must satisfy in order to be used in the analysis of any measurement proposed for that
attribute. They provide properties that are necessary but not sufficient. The latter
check for specific measure if the empirical relations between the elements of the real
world established by the attribute being measured, are respected when measuring the
attributes. Furthermore, measurement-theory based approaches are useful for
knowing the scale of a measure, which is a must when analyzing data obtained in
empirical studies. Related to empirical validation we consider two empirical
strategies, namely experiments and case studies.

• Tool: reflects whether an automated tool exists for the extraction and visualization of
the metric.

A SURVEY OF METRICS FOR UML CLASS DIAGRAMS

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

Table 15. Proposals of metrics for UML class diagrams (source, goals and scope)

ASSOC. GEN. AGG. DEP. ASSOC. GEN. AGG.
[Chida94;
Chida91] Design complexity WMC DIT, NOC

[Li93b] Coupling and size DAC, DAC´, SIZE2 NOM, SIZE2

[Brito94; Brito96a]

Inheritance,
Information

hiding,
Polymorphism AHF, AIF MHF, MIF, PF

[Loren94]
Static

characteristics of a
design NIV, NCV

NIM, NCM,
NMO, NMI,

NMA, APPM,
SIX, PIM

 [Brian97]
Coupling

(interaction
between classes)

ACAIC, OCAIC,
DCAEC, OCAEC

ACMIC, OCMIC,
DCMEC,
OCMEC

System
complexity,
balancing of

responsabilities,
cohesion and

coupling CL1 CL2 OA1, OA3, OA4 OA2
Inter-class
coupling NAS

 [Banis99;
 Bansi02]

Encapsulation,
coupling,
cohesion,

composition and
inheritance CAMC

[Gener00;
Gener02]

Class diagram
structural

complexity due to
UML relationships NAssocC

HAgg, NODP,
NP, NW, MAggNDepIn, NDepOut NAssoc

MaxDIT, NGen,
NGenH

NAgg, NAggH,
MaxHAgg

RELATIONSHIPS CLASS ATTR.

SCOPE
CLASSSOURCE GOAL PACKAGES/SYSTEM

ATTR. MET. RELATIONSHIPSMET.

 [Marche98]

 [Harri98]

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 81

 VALIDATION

EMPIRICAL THEORETICAL

Experiments Case Studies Property-Based
Approaches

Measurement
Theory Based-

Approaches

TOOL

[Chida91; Chida94]

 [Chida91;
Chida94], [Basil96],
[Daly96], [Cartw98],
[Unger98], [Harri00],
[Poels01], [Briand01],

[Prech03]

[Li93b], [Chida98];
[Tang98], [Brian98 ;

Brian00b]
[Brian96], [Chida94] [Poels99]

For C++ code: [Chida94],
[Devan00], [Objec00],

[Power00a]
 For JAVA code: [Code00]
[Metam00], [Power00b],

[Toget01]
 For OO designs documents:

[Numbe00]

 [Li93b] [Li93b] A metric tool for Classic-
ADA designs and code

[Brito94; Brito96a] [Brito95; Brito96a;
Brito96b; Harri98] [Harri98]

MOODKIT tool for code
written in C++, Smalltalk

and Eiffel.

[Loren94]

[Loren94]

OOMetric tool for code
written in Smalltalk and C++

[Brian97]

[Brian98; Brian00b],
[El-Em99], [Galsb00] [Brian99]

A metric tool for C++ code

[March98]

[Marche98]

A metric tool for measuring
UML class diagrams done

using Rational Rose CASE
tool

[Harri98]
 [Harri8]

[Bansi99; Bansi 02] [Bansi99; Bansi02] QMOOD++ a metric tool for
C++ code

[Gener00; Gener02] [Gener01a; Gener01b;
Gener03a; Gener03]

[Gener02] [Gener02]

MANTICA tool for
measuring UML diagrams
using Rational Rose CASE

tool

Table 16. Proposals of metrics for UML class diagrams (source, theoretical and empirical validation, tool)

A SURVEY OF METRICS FOR UML CLASS DIAGRAMS

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

3 GENERAL COMMENTS

After the individual analysis of each proposal, we can conclude that:
• The work on measures for UML class diagrams at a high-level design stage is scarce

and is not yet consolidated.
• Although the metrics seem to be defined pursuing a clear goal, which is the complete

list of desirable properties of “good” class diagrams, this is not totally clear.
• Table 15 shows that the majority of metrics are related to classes, and little emphasis

has been put on measuring quality aspects of class diagrams as a whole. Moreover,
less emphasis has been put on measures related with the use of relationships.

• Most of the empirical studies focus on fault-proneness.
• There is great need for further theoretical validation of the metrics. Even though some

of the metrics have been theoretically validated, each author follows different
frameworks considering different properties or axioms. Some use property-based
approaches like Briand et al.’s properties (Briand et al., 1996) or Weyuker’s axioms
[Weyuk88], while others use measurement theory-based approaches like Zuse’s
framework [Zuse98] or DISTANCE framework [Poels99; Poels00a]. This fact is a
consequence of there being as of yet no standard, accepted way of theoretically
validating a measure. As Van den Berg and Van den Broek [Vande96] said, a
standard on theoretical validation issues in software measurement is urgently
required.

• Even though CK metrics are shown overall to be empirically the most thoroughly
investigated, results in some cases, especially those relating to the DIT metric, prove
to be contradictory. In summary, evidence regarding the impact of inheritance depth
on fault-proneness proves to be rather equivocal. This is usually an indication that
that there is another effect that is confounded with inheritance dept. Further research
is necessary to identify this confounding effect and disentangle it from inheritance
depth in order to assess the effect of inheritance depth by itself.

• More empirical validation is needed, to really demonstrate that the proposed metrics
are fruitful in practice. Experiments are useful to prove the empirical validity of
metrics, but the internal and external replication of them is necessary [Brook96;
Basil99; Brian00a), to obtain stronger results. As Lewis et al. [Lewis91] remark, the
use of precise, repeatable experiments is the hallmark of a mature scientific or
engineering discipline. Only after performing a family of experiments you can build
an adequate body of knowledge to extract useful measurement conclusions regarding
the use of OO design metrics to be applied in real measurement projects [Basil99;
Mille00]. It is also necessary to count on data from “real projects”, in order to get
truly conclusive results. However the scarcity of such data continues to be a great
problem which we must tackle when trying to validate metrics. As was suggested in
[Brito99; Basil99; Perry00; Brian00a; Shull02] it is necessary to have a public
repository of laboratory packages related to measurement experiences, which we
believe could be a good basis to foster the replication of empirical studies. Frankly,
this can be very difficult, but we believe it is worth the effort.

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 83

• Well-designed laboratory packages9 could also help integrate empirical results
through meta-analysis [Kitch02; Mille00; Perry00). Meta-analysis provides a
quantitative procedure for combining results from various studies, resolving
uncertainty when study results conflict and increasing confidence in results obtained
from individual studies. In addition, more efficient schemes of collaboration with
industry, as well as the improvement of our education in empirical studies, will also
be a key success factor [Brian00a).

• The definition of the metrics is, in some cases, ambiguous. The NOP metric
[Bansi02), for example, which counts the number of polymorphic methods, remains
elusive - its authors failing to reveal either calculation methods or distinguishing
factors. From this, how can a meaning of the polymorphic method be discerned? For
reasons such as this, special emphasis must be placed upon formalizing metric
definitions for the future use of metrics. The Object Constraint Language for instance,
have been used for formalizing such definitions [Brito01],. By any means, without
clear and precise definitions, it is impossible to build adequate metrics extraction
tools. Experiment replication becomes hampered, and the interpretation of results
will ultimately be flawed.

• CASE tools should be integrated with metrics tools which support metrics like those
presented above and allow users to define their own metrics. Thus, CASE tools really
can guide and help designers to make decisions along the software development life
cycle.

• As several authors have remarked [El-Em01; DeCha97; Frenc99] the practical utility
of OO metrics would be enhanced if meaningful thresholds could be identified. Some
attempts have been made in this direction, but even these have been limited to metrics
applied to code [Hende04].

4 CONCLUSIONS

The main contribution of this work is a survey of most of the existing relevant works
related to metrics for class diagrams at initial stages of development, providing
practitioners with an overall view on what has been done in the field and which are the
available metrics that can help them in making decisions in the early phases of OO
development. This work will also help researchers to get a more comprehensive view of
the direction that work in OO measurement is taking.

Although the number of existent measures that can be applied to UML class
diagrams is low in comparison with the large number of those defined for code or
advanced design, we believe there needs to be a shift in effort from defining new metrics
to investigate their properties and applications in replicated studies. We need to better
understand what measures are really capturing, whether they are really different, and
whether they are useful indicators of external quality attributes such as maintainability,

9 There is no consensus concerning content that a laboratory package must provide to advance the station of
empirical software engineering toward a mature discipline. Nevertheless, during the most recent ISERN
network [ISERN04] meeting, this topic was considered with special attention, and support was shown
among its members, for providing guidelines on how to build and report laboratory packages.

A SURVEY OF METRICS FOR UML CLASS DIAGRAMS

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

productivity, etc. The need for new measures will then arise from, and be driven by, the
results of such studies [Brian00].

As Kitchenham et al. [Kitch02] suggests, with the guidelines they proposed, it is
necessary to improve the research and reporting processes when carrying out empirical
studies, for obtaining more credible results. Moreover, it could be fundamental, as
Rombach [Romba03] suggests, to establish an international committee which evaluate the
empirical results and could certificate them as reliable.

In this area designers also ask for desirable values for each measure. However, as De
Champeaux [DeCha97] remarks, we must be conscious that “associating with numeric
ranges the qualifications good and bad is the hard part”. This can contribute to metrics
being useful for IS designers to make better decisions in their design tasks, which is the
most important goal for any measurement proposal to pursue if it aims to be useful
[Fento00].

As Cartwright and Shepperd [Cartw00] and Deligiannis et al. [Delig02] suggests the
contribution of aggregation relationships to design, evolution and reuse, have not been
investigated at all. This is a topic that must be deeply investigated using some the metrics
that have already been defined for this purpose or defining new ones if it is necessary.

Further work is also necessary towards measuring OO models which cover dynamic
aspects of OO software, such as, sequence diagrams, statechart diagrams, etc. [Brito99;
Brito00; Brito02; Poels00b; Brian00a].

As a final reflection, we want to remark that software measurement suffers from
typical symptoms of any relatively young disciplines. Despite all the efforts and new
developments in research and international standardization during the last decade, there is
not a consensus yet on the concepts and terminology used in this field. With the goal of
contributing to the harmonization of the different software measurement standards and
research proposals, García et al. [Garci04] have proposed a thorough and comparative
analysis of the concepts and terms used whithin each. This, in turn, may serve as a basis
for discussion from where the software measurement community can start paving the way
to future agreements.

5 ACKNOWLEDGEMENTS

This research is part of the MESSENGER project (PCC-03-003-1) financed by
“Consejería de Ciencia y Tecnología de la Junta de Comunidades de Castilla-La Mancha
(Spain)” and the CALIPO project supported by “Dirección General de Investigación del
Ministerio de Ciencia y Tecnologia (Spain)” (TIC2003-07804-C05-03).

The authors would like to thank Geert Poels and Brian Henderson-Sellers for their
valuable comments, which contribute to improve the paper.

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 85

REFERENCES

[Atkin03] Atkinson C. and Kühne T.: “Model-Driven Development: A Metamodeling
Foundation”, IEEE Software, vol. 20, no. 5, pp. 36- 41, 2003.

[Bansi99] Bansiya J., Etzkorn L., Davis C. and Li W.: “A Class Cohesion Metric For
Object-Oriented Designs”, The Journal of Object-Oriented Programming,
vol. 11, no. 8, pp. 47-52, 1999.

[Bansi02] Bansiya J. and Davis C.: “A Hierarchical Model for Object-Oriented Design
Quality Assessment”, IEEE Transactions on Software Engineering, vol. 28,
no. 1, pp. 4-17, 2002.

[Basil96] Basili V., Briand L. and Melo W.: “A Validation of Object-Oriented Design
Metrics as Quality Indicators”, IEEE Transactions of Software Engineering,
vol. 22, no. 10, pp. 751-761, 1996.

[Basil88] Basili V. and Rombach H.: “The TAME project: towards improvement-
oriented software environments”, IEEE Transactions on Software
Engineering, vol. 14, no. 6, pp. 728-738, 1988.

[Basil99] Basili V., Shull F. and Lanubile F.: “Building Knowledge through Families of
Experiments”, IEEE Transactions on Software Engineering, vol. 25, no. 4,
pp. 435-437, 1999.

[Basil84] Basili V. and Weiss D.: “A Methodology for Collecting Valid Software
Engineering Data”, IEEE Transactions on Software Engineering, vol. 10,
728-738, 1984.

[Boehm81] Boehm B.: Software Engineering Economics, Prentice-Hall, 1981.

[Brian96] Briand L., Morasca S. and Basili V.: “Property-Based Software Engineering
Measurement”, IEEE Transactions on Software Engineering, vol. 22, no. 6,
pp. 68-86, 1996.

[Brian97] Briand L., Devanbu W. and Melo W.: “An investigation into coupling
measures for C++”, 19th International Conference on Software Engineering
(ICSE 97), Boston, USA, pp. 412-421, 1997.

[Brian98] Briand L., Wüst J. and Lounis H.:”Investigating Quality Factors in Object-
oriented Designs: An Industrial Case Study”, Technical report ISERN 98-29,
version 2, 1998.

[Brian99] Briand, L., Daly J. and Wüst J.: “A Unified Framework for Coupling
Measurement in Object-Oriented Systems”, IEEE Transactions on Software
Engineering, vol. 25, no. 1, pp. 91-121, 1999.

[Brian00a] Briand L., Arisholm S., Counsell F., Houdek F. and Thévenod-Fosse P.:
“Empirical Studies of Object-Oriented Artifacts, Methods, and Processes:
State of the Art and Future Directions”, Empirical Software Engineering, vol.
4, no. 4, pp. 387-404, 2000.

A SURVEY OF METRICS FOR UML CLASS DIAGRAMS

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

[Brian00b] Briand L., Wüst J., Daly J. and Porter V.: “Exploring the relationships
between design measures and software quality in object-oriented systems”,
The Journal of Systems and Software, vol. 51, pp. 245-273, 2000.

[Brian01] Briand L., Bunse C. and Daly J.: “A Controlled Experiment for Evaluating
Quality Guidelines on the Maintainability of Object-Oriented Designs”, IEEE
Transactions on Software Engineering, vol. 27, no. 6, pp. 513-530, 2001.

[Brian02] Briand L., Morasca S. and Basili V.: “An operational process for goal-driven
definition of measures”, IEEE Transactions on Software Engineering, vol. 28
no. 12, pp. 1106-1125, 2002.

 [Brito94] Brito e Abreu F. and Carapuça R.: “Object-Oriented Software Engineering:
Measuring and controlling the development process”, 4th Interntional
Conference on Software Quality, Mc Lean, VA, USA, 1994..

[Brito95] Brito e Abreu F., Goulao M. and Esteves R.: “Towards the Design Quality
Evaluation of Object-Oriented Software System”, 5Th International
Conference on Software Quality, Austin, Texas, USA, 1995.

[Brito96a] Brito e Abreu F. and Melo W.: “Evaluating the Impact of Object-Oriented
Design on Software Quality”, 3rd International Metric Symposium”, pp. 90-
99, 1996a.

[Brito96b] Brito e Abreu, F, Esteves R. and Goulao M.: “The Design of Eiffel programs:
Quantitative Evaluation Using the MOOD Metrics”, TOOLS USA´96
(Technology of Object Oriented Languages and Systems), Santa Barbara,
California, USA, 1996.

[Brito98] Brito e Abreu F., Ochoa L. and Goulao M.: “The MOOD metrics set”,
INESC/ISEG Internal Report, 1998.

[Brito99] Brito e Abreu F., Zuse H., Sahraoui H. and Melo W.: “Quantitative Approaches
in Object-Oriented Software Engineering”, ECOOP´99 Workshop Reader,
LNCS vol. 1743, Springer-Verlag, pp. 326-337, 1998.

[Brito00] Brito e Abreu F., Poels G., Sahraoui H., Zuse H.: “Quantitative Approaches in
Object-Oriented Software Engineering”, ECOOP´2000 Workshop Reader,
LNCS vol. 1964, Springer-Verlag, pp. 93-103, 2000.

[Brito02] Brito e Abreu F., Henderson- Sellers B., Piattini M., Poels G., Sahraoui H.:
“Quantitative Approaches in Object-Oriented Software Engineering”,
ECOOP´2001 Workshop Reader, LNCS vol. 2323, Springer-Verlag, pp. 174-
183, 2002

[Brito01] Brito e Abreu F.: “Using OCL to formalize object oriented metrics definitions”,
Technical Report ES007/2001, FCT/UNL and INESC, 2001.

[Brook96] Brooks A., Daly J., Miller J., Roper M. and Wood M.: “Replication of
Experimental Results in Software Engineering”, Technical Report ISERN-96-
10, International Software Engineering Research Network, 1996.

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 87

[Caler01] Calero C., Piattini M., and Genero M.: “Empirical validation of referential
integrity metrics”, Information and Software Technology, vol. 43, pp. 949-
957, 2001.

[Card01] Card D., El-Emam K. and Scalzo, B.: “Measurement of Object-Oriented
Software Development Projects”, Software Productivity Consortium NFP,
2001.

[Cartw98] Cartwright M.: “An Empirical view of inheritance”, Information and Software
Technology, vol. 40, no. 4, pp. 795-799, 1998.

[Cartw00] Cartwright M. and Shepperd, M.: “An Empirical Investigation of an Object-
Oriented Software Systems”, IEEE Transactions in Software Engineering,
vol. 26, no. 8, pp. 786-796, 2000.

[Chida91] Chidamber S. and Kemerer C.: “Towards a Metrics Suite for Object Oriented
Design”, Conference on Object-Oriented Programming: Systems, Languages
and Applications (OOSPLA 91), Published in SIGPLAN Notices, vol. 26, no.
11, pp. 197-211, 1991.

[Chid94] Chidamber S. and Kemerer C.: “A Metrics Suite for Object Oriented Design”,
IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476-493,
1994.

[Chid98] Chidamber S., Darcy D. and Kemerer C.: “Managerial Use of Metrics for
Object-Oriented Software: An Exploratory Analysis”, IEEE Transactions on
Software Engineering, vol. 24, no. 8, pp. 629-639, 1998.

[Code00] CodeWork: JStyle, Available: http://www.codework.com/, 20th April 2000.

[Daly96] Daly J., Brooks A., Miller J., Roper M. and Wood M.: “An Empirical Study
Evaluating Depth of Inheritance on Maintainability of Object-Oriented
Software. Empirical Software Engineering”, vol. 1, no. 2, pp. 109-132, 1996.

[DeCha97] De Champeaux D.: Object Oriented Development Process and Metric,
Prentice Hall, 1997.

[Delga01] Delgado M., Gómez Skarmeta A. and Jiménez L.: “A Regression
Methodology to Induce a Fuzzy Model. International”, Journal of Intelligent
Systems, vol.16, no. 2, pp. 169-190, 2001.

[Delig02] Deligiannis I., Shepperd M., Webster S. and Roumeliotis M.: “A Review of
Experimental into Investigations into Object-Oriented Technology”,
Empirical Software Engineering, vol. 7, pp. 193-231, 2002.

[Devan00] Devanbu, P.: Gen++. Available: http://seclab.cs.ucdavis.edu/devanbu/genp/,
April 20th 2000.

[El-Em01a] El-Emam K.: “Object-Oriented Metrics: A Review on Theory and Practice”,
NRC/ERB 1085, National Research Council Canada, 2001.

[El-Em99] El-Emam K., Benlarbi S. Goel N. and Rai S.: “A Validation of Object-
Oriented Metrics”, NRC/ERB 1074, National Research Council Canada,
1999.

http://www.codework.com/
http://seclab.cs.ucdavis.edu/devanbu/genp/

A SURVEY OF METRICS FOR UML CLASS DIAGRAMS

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

[El-Em01b] El-Emam K., Melo W. And Machado J.: “The Prediction of Faulty Classes
Using Object-Oriented Design Metrics”, Journal of Systems and Software,
vol. 56, pp. 63-75, 2001.

[Etzko98] Etzkorn L., Davis C. and Li W.: “A Practical Look at the Lack of Cohesion in
Methods Metrics”, The Journal of Object-Oriented Programming, vol. 11,
no. 5, pp. 27-34, 1998.

[Etzko99] Etzkorn L., Bansiya J. and Davis C.: “Design and Code Complexity Metrics
for OO Classes·, The Journal of Object-Oriented Programming, vol. 12, no.
1, pp. 335-40, 1999.

[Fento97] Fenton N. and Pfleeger S.: Software Metrics: A Rigorous Approach, 2nd. edition.
London, Chapman & Hall, 1997.

[Fento00] Fenton N. and Neil M.: “Software Metrics: a Roadmap”, Future of Software
Engineering, Ed. Anthony Finkelstein, ACM, pp. 359-370, 2000.

[Frenc99] French V.: “Establishing Software metric Thresholds”, International Workshop
on Software Measurement (IWSM´99), 1999.

[Galsb00] Galsberg D., El-Emam K., Melo W., Machado J. and Madhavji N.: “Empirical
Validation of Object-Oriented Design Measures” (submitted for publication).

[Garci04] García F., Ruiz F., Calero C., Genero M., Piattini M., Bertoa M. and Vallecillo
A.: “Will We Ever Get a Consistent Terminology for Software
Measurement?”, (submitted to The Computer Journal), 2004.

[Gener01a] Genero M., Piattini M. and Calero, C.: “Early Measures for UML Class
Diagrams”, L´Objet, vol. 6, no. 4, Hermes Science Publications, pp. 489-515,
2001.

[Gener01b] Genero M., Olivas J., Piattini M., and Romero F.: “Using metrics to predict
OO information systems maintainability”, CAISE 2001, LNCS vol. 2068,
Interlaken, Switzerland, pp. 388-401, 2001.

[Gener01c] Genero M., Jiménez L. and Piattini M.: “Empirical Validation of Class
Diagram Complexity Metrics”, SCCC 2001, Chile, IEEE Computer Society,
pp. 95-104, 2001.

[Gener02] Genero M.: “Defining and Validating Metrics for Conceptual Models”, Ph.D.
thesis, University of Castilla-La Mancha, 2002.

[Gener03a] Genero M., Olivas J., Romero F. and Piattini M.: “Assessing OO Conceptual
Models Maintainability”, In Olive et al. (Eds.), International Workshop on
Conceptual Modeling Quality (IWCMQ’02), Tampere, Finland, LNCS vol.
2784, Springer-Verlag, 2003, pp. 288-299, 2003.

[Gener03b] Genero M., Manso MªE., Piattini M. and Cantone G.: “Building UML Class
Diagram Maintainability Prediction Models Based on Early Metrics”, 9th
International Symposium on Software Metrics (Metrics 2003), Proceedings
IEEE Computer Society, pp. 263-275, 2003.

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 89

[Harris98] Harrison R., Counsell S. and Nithi R.: “Coupling Metrics for Object-Oriented
Design”, 5th International Software Metrics Symposium Metrics, pp. 150-156,
1998.

[Harris99] Harrison R., Counsell S. and Nithi R.: “An Evaluation of the MOOD set of
Object-Oriented Software Metrics”, IEEE Transactions on Software
Engineering, vol. 24, no. 6, pp. 491-496, 1999.

[Harris00] Harrison R., Counsell S. and Nithi R.: “Experimental Assessment of the Effect of
Inheritance on the Maintainability of Object-Oriented Systems”, The Journal of
Systems and Software, vol. 52, pp. 173-179, 2000.

[Hende96] Henderson-Sellers B.: Object-oriented Metrics - Measures of Complexity,
Prentice-Hall, Upper Saddle River, New Jersey, 1996.

[Hende97] Henderson-Sellers B.: “OPEN Relationships-Compositions and
Containments”, Journal of Object-Oriented Programming, SIGS
Publications, vol. 10, no. 7, pp. 51-55, 2000.

[Hende04] Henderson-Sellers: Personal communication, November 2004.

[ISERN04] ISERN, http://www.soberit.hut.fi/ISERN04/, 2004.

[ISO01] ISO/IEC 9126-1: “Information Technology- Software Product Quality – Part 1:
Quality Model”, 2001.

[Kitch95] Kitchenham B., Pfleeger S. and Fenton N.: “Towards a Framework for Software
Measurement Validation”, IEEE Transactions on Software Engineering, vol.
21, no. 12, pp. 929-943, 1995.

[Kitch02] Kitchenham B, Pfleeger S., Pickard L., Jones P., Hoaglin D., El- Emam K. and
Rosenberg J.: “Preliminary Guidelines for Empirical Research in Software
Engineering”, IEEE Transactions on Software Engineering, vol. 28, no. 8, pp.
721-734, 2002.

[Lewis91] Lewis J., Henry S., Kafura D. and Schulman R.: “An Empirical Study of the
Object-Oriented Paradigm and Software Reuse”, OOSPLA 91, pp. 184-196,
1991.

[Li93a] Li W. and Henry S.: “Maintenance Metrics for the Object-Oriented Paradigm”,
1st International Software Metrics Symposium, pp. 52-60, 1993.

[Li93b] Li W. and Henry S.: “Object-Oriented Metrics that Predict Maintainability”,
Journal of Systems and Software, vol. 23, no. 2, pp. 111-122, 1993.

[Loren94] Lorenz M. and Kidd J.: Object-Oriented Software Metrics: A Practical Guide,
Prentice Hall, Englewood Cliffs, New Jersey, 1994.

[Marche98] Marchesi M.: “OOA Metrics for the Unified Modeling Language”, 2nd
Euromicro Conference on Software Maintenance and Reengineering, pp. 67-
73, 1998.

[Metam00] Metameta Metrics: Available: http://www.metameta.com, 20th April 2000.

http://www.soberit.hut.fi/ISERN04/
http://www.metameta.com

A SURVEY OF METRICS FOR UML CLASS DIAGRAMS

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

[Mille00] Miller J.: “Applying Meta-Analytical Procedures to Software Engineering
Experiments”, Journal of Systems and Software, vol. 54, pp. 29-39, 2000.

[Moras01] Morasca S.: Software Measurement, Handbook of Software Engineering and
Knowledge Engineering, (S.K. Chang, ed.), Chapter 2: Software
Measurement, World Scientific, pp. 239-276, 2001.

[Numbe00] Number-Six-Software: Metrics One. Available: http://numbersix.com/
metric.one/index.htm, April 20th 2000.

[OMG01] Object Management Group. UML Specification Version 1.5, OMG Document
formal/03-03-01. [On-line] Available: http://www.omg.org/cgi-
bin/doc?formal/03-03-01.

[OMG02] Object Management Group. MDA-The OMG Model Driven Architecture,
Available: http://www.omg.org./mda/, August 1st, 2002.

[Objec00] Object Detail. Available: http://www.obsoft.com, 20th April 2000.

[Oliva00] Olivas J.: “Contribution to the Experimental Study of Prediction Based on
Fuzzy Deformable Categories”, PhD thesis, University of Castilla - La
Mancha, Spain, 2000.

[Perry00] Perry D., Porter A., and Votta L.: “Empirical Studies of Software Engineering:
A Roadmap”, Future of Software Engineering, Ed. Anthony Finkelstein,
ACM, pp. 345-355, 2000.

[Poels99] Poels G. and Dedene G.: “DISTANCE: A Framework for Software Measure
Construction”, Research Report DTEW9937, Dept. Applied Economics,
Katholieke Universiteit Leuven, Belgium, 46 p., 1999.

[Poels00a] Poels G. and Dedene G.: “Distance-based Software Measurement: Necessary
and Sufficient Properties for Software Measures”, Information and Software
Technology, vol. 42, no. 1, pp. 35-46, 2000.

[Poels00b] Poels G. and Dedene G.: “Measures for Assessing Dynamic Complexity
Aspects of Object-Oriented Conceptual Schemes”, 9th International
Conference on Conceptual Modeling (ER 2000), LNCS vol. 1920, Salt Lake
City, pp. 499-512, 2000.

[Poels01] Poels G. and Dedene G.: “Evaluating the Effect of Inheritance on the
Modifiability of Object-Oriented Business Domain Models”, 5th European
Conference on Software Maintenance and Reengineering (CSMR 2001),
Lisbon, Portugal, pp. 20-29, 2001.

[Power00a] Power-Software: Karkatau for C/C++. Available: http://www.power-
soft.co.uk/.

[Power00b] Power-Software: Karkatau Java. Available: http://www.power-soft.co.uk/.

[Prech03] Prechelt L., Unger B., Philippsen M. and Tichy W.: “A controlled experiment
on inheritance depth as a cost factor for code maintenance”, The Journal of
Systems and Software, vol. 65, pp. 115-126, 2003.

http://numbersix.com/metric.one/index.htm
http://numbersix.com/metric.one/index.htm
http://www.omg.org/cgi-bin/doc?formal/03-03-01
http://www.omg.org/cgi-bin/doc?formal/03-03-01
http://www.omg.org./mda/
http://www.obsoft.com
http://www.power-soft.co.uk/
http://www.power-soft.co.uk/
http://www.power-soft.co.uk/

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 91

[Purao03] Purao S. and Vaishnavi: “Product metrics for object-oriented systems”, ACM
Computing Surveys, vol. 35, no. 2, pp. 191-221, 2003.

[Shull02] Shull F., Basili V., Carver J. and Maldonado J. “Replicating Software
Engineering Experiments: Addressing the Tacit Knowledge Problem”, 1st
International Symposium on Empirical Software Engineering (ISESE 2002),
Nara, Japan, IEEE Computer Society, pp. 7-16, 2002

[Romba03] Rombach D.: “Evidence based Software Engineering: Pre-requisites for useful
research & Technology Transfer”, Keynote lecture in Metrics 2003, 2003.

[Tang98] Tang M., Kao M. and Chen M.: “An Empirical Study on Object-Oriented
Metrics”, 6th IEEE International Symposium on Software Metrics, pp. ,1998.

[Toget01] TogetherSoft: ControlCenter. Available: http://www.togethersoft.com.

[Unger01] Unger B. and Prechelt L.: “The impact of inheritance depth on maintenance
tasks – Detailed description and evaluation of two experimental replications”,
Technical Report, Karlsruhe University: Karlsruhe, Germany, 1998.

[Van96] Van Den Berg and Van Den Broek: “Axiomatic Validation in the Software
Metric Development Process”, In Chapter 10: Software Measurement, Edited
by Austin Melton, Thomson Computer Press, 1996.

[VanSo99] Van Solingen R. and Berghout E.: The Goal/Question/Metric Method: A
practical guide for quality improvement of software development, McGraw-
Hill, 1999.

[Warme99] Warmer J. and Kleppe A.: The Object Constraint Language: Precise
Modeling with UML, Addison Wesley Publishing Company, 1999.

[Weyuk98] Weyuker E.: “Evaluating Software Complexity Metrics”, IEEE Transactions
on Software Engineering, vol. 14, no. 9, pp. 1357-1365, 1998.

[Zuse98] Zuse H.: A Framework of Software Measurement, Berlin, Walter de Gruyter,
1998.

About the authors
Marcela Genero is assistant professor at the Department of Computer
Science at the University of Castilla-La Mancha, Ciudad Real, Spain.
She received her MSc degree in Computer Science in the Deparment of
Computer Science of the University of South, Argentine in 1989 and
her PhD at the University of Castilla-La Mancha, Ciudad Real, Spain, in
2002. Her research interests are: advanced database design, software

metrics, conceptual data models quality, database quality. She has published several
papers in prestigious conferences and journals as CAISE, E/R, OOIS, METRICS, ISESE,
SEKE, Journal of Systems and Software, International Journal of Software Engineering
and Knowledge Engineering, Information and Software Technology, Software Quality

http://www.togethersoft.com

A SURVEY OF METRICS FOR UML CLASS DIAGRAMS

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

Journal, etc. Se has co-edited the book “Information and database quality”, 2002, Kluwer
Academic Publishers, USA. E-Mail: Marcela.Genero@uclm.es

Mario Piattini is MSc and PhD in Computer Science by the
Politechnical University of Madrid. Certified Information System
Auditor and Certified Information Security Manager by ISACA
(Information System Audit and Control Association). Full professor at
the Department of Computer Science at the University of Castilla-La
Mancha, in Ciudad Real, Spain. Author of several books and papers on

databases, software engineering and information systems. He leads the ALARCOS
research group of the Department of Computer Science at the University of Castilla-La
Mancha, in Ciudad Real, Spain. His research interests are: advanced database design,
database quality, software metrics, software maintenance and security of information
systems. He has co-edited several books: “Advanced Databases: Technology and
Design”, 2000. Artech House. UK; “Auditing Information Systems” Idea Group
Publishing, 2000, USA; "Information and database quality”, 2002, Kluwer Academic
Publishers, USA, etc. E-Mail: Mario.Piattini@uclm.es

Coral Calero is associate professor at the Department of Computer
Science in the University of Castilla-La Mancha, Ciudad Real, Spain.
She received her MS degree Computer Science in the Deparment of
Computer Science of the University of Seville, Seville, Spain, in 1996,
and her PhD at the University of Castilla-La Mancha, Ciudad Real,
Spain. Her research interests are: database quality, metrics for advanced

databases, formal verification and empirical validation of software metrics. She has
published several papers in Information Systems, Software Quality, Information Software
and Technology, IEE Software, etc. and co-edited the book "Information and database
quality”, 2002, Kluwer Academic Publishers, USA. E-Mail: Coral.Calero@uclm.es

mailto:Marcela.Genero@uclm.es
mailto:Mario.Piattini@uclm.es
mailto:Coral.Calero@uclm.es

