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Abstract 
This paper extends the concept of qualifying types by describing how their 
implementations can include not only bracket methods which are applied when a 
method of a target object is invoked, but also further "call-out" bracket methods which 
can be applied to invocations by the target object of the methods of other objects. 
This additional technique can be used for example to provide enhanced 
synchronisation in qualifying types, as an aid to confining the activities of an object, 
and as a means of providing parallel activities associated with the sending and 
receiving of information, e.g. encryption and decryption, data compression. 

1 INTRODUCTION 

In an earlier paper we have described the concept of qualifying types, i.e. types whose 
objects (known as "qualifiers") can dynamically qualify the behaviour of objects of 
other types (known as "targets") by means of bracket methods [5]. As presented in that 
and earlier papers [2-4], qualifying types permit modules to be written in the 
programming language Timor1 which can, for example, provide such general services 
as synchronisation, protection and logging. The bracket methods which carry out such 
activities are applied to the incoming invocations of a target object's methods. A 
technique for statically incorporating qualifying types into other types was presented in 
[6]. 

The present paper extends the concept of qualifying types by describing call-out 
bracket methods as a new category of bracket methods. These function in a similar way 
to those of normal bracket methods with the difference that they are applied to the 
outgoing calls which an object might make to the methods of other objects. Call-out 
brackets can for example be used to release the semaphores acquired on entry to an 
object when this calls the methods of further objects. They can also be used to 
implement information confinement policies for objects or to journalise 
communications with other objects. 

The bracketing of outgoing calls from a source object might also be coupled with a 
complementary bracketing of incoming calls to a target object to provide services 
which require parallel activities when passing and receiving information, such as 
encryption and decryption, data compression and expansion, etc. 

                                                            
1  www.timor-programming.org 
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It is assumed that readers are familiar with the basic idea of qualifiers [5, 6], so that 
we do not here repeat information about the structure of Timor nor how qualifiers work 
in general. In the current paper we refer to the bracket methods described in the earlier 
papers as call-in bracket methods. 

2 CALL-OUT METHODS: AN OVERVIEW 

As a first illustration of the idea behind call-out methods we define a type whose 
instances are able to qualify target objects such that whenever an instance method of 
the target is invoked mutual exclusion is guaranteed and whenever the target invokes 
any other object the mutual exclusion is released, but this is then claimed again as the 
outgoing call returns to the method of the target. Here is a type definition: 

 
type ReleasableMutex { 
qualifies any: // the call-in bracket methods 
  op bracket all(...); // provides the synchronisation 
  // needed to enter a target method 
callout any: // the call-out bracket methods 
  op bracket all(...); // provides the synchronisation needed 
  // when the target invokes methods of any other object 
} 

and now an implementation: 
 
impl ReleasableMutexImpl of ReleasableMutex { 
state: 
 Semaphore mutex = Semaphore.init(1); 
qualifies any: 
 op bracket all(...) { 
  mutex.p();             // claims mutual exclusion on entry 
  try {return body(...)} 
  finally {mutex.v();}   // releases mutual excl. on return 
 } 
callout any: 
 op bracket all(...) { 
mutex.v(); // releases mutual excl. 
            // on callout 
try {return call(...)} // the call statement is 
  // the callout equivalent to the body statement 
  // in call-in brackets 
  finally {mutex.p();}   // reclaims mutual excl. after call  
 } 
} 

As this is not a paper on synchronisation we refrain from a discussion of the usefulness 
of such a module, except to point out the obvious: that a thread which uses such a 
qualifier has no guarantee that the state of the target will be the same before and after it 
calls out to another object. 

From the viewpoint of the design of the Timor language we see that call-out 
methods are listed in a callout clause, which is similar to the qualifies clause for 
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call-in bracket methods (as described in [5]). In the above example all calls out of the 
target to any other object are handled by the same call-out code. 

The definitions of the bracket methods for incoming and outgoing calls have the 
same syntax. The difference in their meaning is illustrated in Figure 1: 
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Figure 1: A Qualifier with Call-in and Call-out Bracket Methods
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Call-in bracket methods "catch" a client's method invocation to the target (qualified) 
object, and begin executing their own code as defined in the qualifies section. If the 
call-in method executes a body statement the target method is then invoked. If the 
target itself then calls some other object (the "call-out" object), the qualifier's call-out 
bracket method(s) (defined in a callout section) "catch" this invocation on the way 
out. If the call-out bracket method then executes a call statement the call-out object is 
then called (or the next call-out bracket is activated). After the called object returns the 
call-out method continues execution at the statement following the call statement, and 
when this exits a return is made to the target object, or to the call-out bracket from 
which it was invoked. 

A client object and a target object can of course both be qualified (usually by 
different qualifying objects, although we will see later that it sometimes makes sense 
for the same qualifier to qualify both). If a client object has a qualifier with call-out 
methods these methods are executed before the call-in methods of a qualifier associated 
with the target (cf. Figure 2): 
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Figure 2: A Client with Call-out and a Target with Call-in Brackets 
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3 DEFINING CALL-OUTS FROM OBJECTS 

Like call-in qualification, call-out qualification can be defined to apply either to any 
interface or to a specific view or type interface. However, whereas the counterpart of 
the bracket methods for call-in qualification are the methods of the object with which 
the qualifier is associated, the counterpart of the bracket methods for call-out 
qualification are the methods of other objects which it invokes. Since the type of an 
object is not normally the same as that of the objects which it invokes, there is no 
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implied type relationship between call-in and call-out types. Thus for example call-ins 
might be applied to a specific view or type while the call-outs might refer to any type, 
or a qualifying type might define only call-ins or call-outs. 

An Example of Standard Call-ins and Call-outs: Monitoring 

Following a callout any clause only standard call-out methods, i.e. methods defined 
to qualify all methods of the called object, or more specifically its op (writer) or enq 
(reader) methods, can be defined. Such qualification can be useful not only to support 
synchronisation (as illustrated in section 2) but also for example to monitor the activity 
of a target object, e.g. by maintaining counts of calls: 

 
type CallCounting { 
qualifies any: 
 op bracket all(...);  // counts all calls to object 
callout any: 
 op bracket op(...);  // counts writer calls from object 
 op bracket enq(...); // counts reader calls from object 
instance: 
 op int getAndResetCallsIn(); 
 op int getAndResetWriterOutCalls(); 
 op int getAndResetReaderOutCalls(); 
} 

with an implementation: 
 
impl CallCountingImpl of CallCounting { 
state: 
 int inCalls  = 0; 
 int writerOutCalls  = 0; 
 int readerOutCalls  = 0; 
qualifies any: 
 op bracket all(...) {inCalls++; return body(...);} 
callout any: 
 op bracket op(...) {writerOutCalls++; return call(...);} 
 op bracket enq(...) {readerOutCalls++; return call(...);} 
instance: 
 op int getAndResetCallsIn() { 
  try {return inCalls;} finally {inCalls = 0;} 
 } 
 op int getAndResetWriterOutCalls() { 
  try {return writerOutCalls;} finally {writerOutCalls = 0;} 
 } 
 op int getAndResetReaderOutCalls() { 
  try {return readerOutCalls;} finally {readerOutCalls = 0;} 
 } 
} 

An Example of Standard Call-outs: Information Confinement 

A qualifying type need not define call-in bracket methods. To illustrate how call-out 
methods alone can be usefully defined we consider how simple information 
confinement policies might be enforced, beginning with a type Confined which 
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ensures that its target object does not make any calls whatsoever to other objects (and 
therefore cannot release information, as Timor strictly enforces the information-hiding 
principle [8]): 

 
type Confined { 
callout any: 
 enq bracket all(...) throws AccessViolation; 
  // prevents all calls to objects of any type, 
  // throwing an exception if a violation is detected 
} 
impl ConfinedImpl of Confined { 
callout any: 
 enq bracket all(...) {throw new AccessViolation.init();} 
} 

Although this type would be useful in many circumstances, it would often be desirable 
to enforce confinement policies which allow specific calls to be made. In this case the 
type Confined can be expanded, using a variant of normal inheritance which allows 
bracket methods to be inherited. In Timor the programmer has a choice between 
subtype polymorphic type inheritance (using the keyword extends) and interface 
inheritance without polymorphic implications (keyword includes). Here we choose 
the latter to define a qualifying type which only allows its target to make calls to the 
print method of a specific printer object. First we define a view which includes the 
permitted print method, then the qualifying type: 

 
view Printer { 
 op void print(Textfile* t); 
} 
type PrinterConfined { 
includes: Confined; 
maker: 
 init(ObjId printerId); // the maker parameter specifies 
 // the identifier of the printer to which calls are  
 // permitted 
callout Printer: 
 enq void print(Textfile* t) throws AccessViolation; 
  // this is a specific call-out bracket method, which 
  // allows this call if the specified printer is invoked; 
  // attempts to invoke a different printer object result in 
  // an exception being thrown 
 enq bracket all(...) throws AccessViolation; 
  // prevents other Printer calls, throwing an exception 
} 

This type contains two callout sections, one of which is inherited from Confined. 
The new callout section, which is more specific and therefore has priority, defines 
what happens if an object containing the view Printer is called by the target. In this 
case the standard call-out bracket method (for all) is effective if the more specific 
method print has not been invoked. The overall effect is that only print calls to the 
correct printer are permitted. The inherited callout section (for any) defines what 
happens if objects of any (other) type are called, i.e. the object cannot make calls to 
objects other than the printer. Here is an implementation: 
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impl PrinterConfinedImpl of PrinterConfined { 
state: 
 ^Confined confined = Confined.init(); 
 // reuses the code of (any implementation of) Confined 
 ObjId permittedPrinter; 
maker: 
 init(ObjId printerId) {permittedPrinter = printerId;} 
callout Printer: 
 enq void print(Textfile* t) { 
  if (calledObject == permittedPrinter) call(...); 
  else throw new AccessViolation.init(); 
 } 
 enq bracket all(...) {throw new AccessViolation.init();} 
} 

The built in expression calledObject returns a value of type ObjId, which is a 
special type whose values are unique object identifiers. It can be used in both call-in 
and call-out bracket methods to determine which object is being called. Timor supports 
several such pseudo-identifiers which allow a bracket method to determine the 
environment in which it is working. However, the protection mechanisms provided by 
Timor are not the subject of this paper, and are therefore not described here in detail. 

The effect of this qualifier is that the only call-out which a target object can make 
is a print call to a defined printer. Hence it is confined to using this printer. With call-
out qualifiers in Timor any confinement policy known to us, including for example the 
Bell-LaPadula model [1], can be straightforwardly implemented. 

Combining Call-in and Call-out Brackets: Communication Services 

As we have seen in the examples of synchronisation (section 2) and monitoring (section 
3) it is sometimes useful for a qualifying type to include call-in and call-out brackets 
which are designed to be applied to the same target object (cf. Figure 1). However, it 
can be equally useful in some cases to define a qualifying type which has call-out 
designed to operate in one target and call-in brackets designed to operate in another. 
Examples of this kind of communication service include compression or encryption of 
data in a call-out bracket of a sender object complemented by decompression or 
decryption in the call-in of the same call in a receiver object, cf. Figure 3. 

 

Figure 3: Providing a Communication Service 
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To illustrate this we define that text can be transmitted as a parameter to a method 
transmit, which is defined in a view that can be incorporated into many types. 

 
view Transmission { 
 op Text transmit(Text message); 
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 // the receiver responds using the returned Text value 
} 
type Encrypting { 
maker: 
 key(String messageKey, replyKey); 
callout Transmission: 
 enq Text transmit(Text message); 
qualifies Transmission: 
 enq Text transmit(Text message); 
} 

Here is a skeletal implementation: 
 
impl EncryptingImpl of Encrypting { 
state: 
 String messageKey, replyKey; 
maker: 
 key(String key1, key2) {messageKey = key1; 
                          replyKey = key2;} 
callout Transmission: // associated with the sender 
 enq void transmit(Text message) { 
  // the callout bracket encrypts the parameter with the 
  // message key before passing it on to the receiver 
  Text reply = call(encrypt(message, messageKey)); 
  // when the call-out returns, the encrypted reply is de- 
  // crypted using the reply key and returned to the sender 
  return decrypt(reply, replyKey); 
 } 
qualifies Transmission: // associated with the receiver 
 enq void transmit(Text message) { 
  // before the receiver receives the message it is 
  // decrypted using the message key 
  Text reply = body(decrypt(message, messageKey)); 
  // the reply is encrypted using the reply key 
  // and passed back 
  return encrypt(reply, replyKey); 
 } 
instance: 
 enq Text encrypt(Text aText, String aKey) { 
  ... // encryption algorithm 
 enq Text decrypt(Text aText, String aKey) { 
  ... // decryption algorithm 
 } 
} 

In the example it is assumed that the same encrypting object is used to bracket both the 
sender and the receiver. If the call is a local method call this could be useful, for 
example to hide the content of the message from later call-out and call-in brackets 
which might potentially contain trojan horses. In the case of a remote procedure call in 
a conventional environment, the desired effect could be achieved by having separate 
instances of the qualifier at the different locations, each initialised with the same keys 
and using the same algorithm. A symmetrical encryption algorithm is assumed, but 
alternative encryption qualifying types could be developed which use asymmetrical 
encryption algorithms. 
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4 USING CALL-IN AND CALL-OUT BRACKETS DYNAMICALLY 

Qualifying types can either be associated with individual target objects dynamically, by 
placing them in a List<:Qualifier*:> [5] or bracketing can be defined  statically in 
type definitions [6]. In this section we consider how the dynamic case is affected by 
call-out brackets. 

Using Both Call-in and Call-out Brackets on a Target 

In the normal case all the bracket methods (for call-in and for call-out) of a qualifier 
which appears in a List<:Qualifier*:> are applied to the target as appropriate. 
Thus an object can be instantiated as follows if it is to be exclusively synchronised 
when its methods are called and the synchronisation released when it makes nested 
calls (cf. section 2): 

 
ReleasableMutex* releasingMutex =  
        new ReleasableMutex.init(); 
Thing* syncThing = new {releasingMutex} Thing.init(); 

Using Call-out Brackets to Implement Pipes 

In some cases qualifiers may only have call-out brackets, for example to transform the 
output of an object for use as the input of another object in a manner resembling Unix 
pipes. Suppose for example that the method printOutput of objects of type Atype 
sends a text file to a specific printer by invoking the latter's print method (described 
earlier in the view Printer). If the user wants to reorganise the output, e.g. by first 
sorting it, then truncating the first 50 lines, he might use two call-out qualifiers (of 
types Sorter and Truncater), which in their call-out brackets for print manipulate 
its Textfile parameter as appropriate. To set up the "pipe" he could use the following 
code: 

 
Truncater* truncate = new Truncater.init(50); 
Sorter* sort = new Sorter.init(); 

He could then create an object of type Atype, which is qualified by these qualifiers: 
 
Atype* myObject = new {truncate,sort} Atype.init(); 

As will be explained in section 6, the order in which call-out brackets are executed is 
the reverse of their order in the qualifier list. To print the sorted and truncated text file 
he then simply invokes the printOutput method of myObject: 

 
myObject.printOutput(thePrinter, theTextfile); 

This example uses a list literal to associate the qualifiers with the object to be qualified. 
This is appropriate if myObject is used once only. However, if myObject is intended 
for frequent use with different qualifiers in a "pipe" then it could be set up as follows: 

 
List<:Qualifier*:>* myList = {truncate,sort}; 
Atype* myObject = new myList Atype.init(); 
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Subsequently myList could then be changed by inserting new qualifiers and removing 
existing ones, as described in [5]. 

The advantage of using call-out methods in conjunction with myObject, rather 
than similar call-in brackets of the Printer object invoked, is that each user can trim 
his own output as he wishes, without affecting other users of the Printer object. 

Rules for Selecting Call-in and/or Call-out Brackets on an Individual Basis 

As we saw in section 3, the call-in and call-out brackets of the same qualifier may need 
to be associated with different targets (e.g. a sender and a receiver) and it must 
therefore be clear what bracket methods should be applied to a target, the call-in 
methods, the call-out methods, or both. The technique adopted to achieve this in Timor 
is based on the idea that a reference for a qualifying type (i.e. a subtype of the type 
Qualifier) has two boolean values associated with it indicating whether the call-in 
and call-out brackets of the referenced qualifier are "active". This is the "normal" state 
of these indicators when a reference is declared and initialised to null, but bracket 
methods can be deactivated by using the arrow operator -> in a reference expression. If 
the arrow appears before the reference expression then the call-out brackets are 
deactivated (and the call-in brackets remain active), while its use following the 
expression deactivates the call-in brackets (and indicates that the call-out brackets are 
active). The arrow operator can only be used once in a reference expression. 

It is an error, detected at compile-time, if the arrow operator is used with any 
reference which is not for a qualifier, or for a qualifier reference which does not have 
the kind of brackets which are to remain activated. Once deactivated for a reference, 
bracket methods cannot be reactivated in association with the currently bound qualifier. 

Assignment statements and parameter initialisations which have a reference with 
deactivated bracket category in the source reference result in the same restriction being 
set on the target reference, i.e. a restriction is not a permanent property of a reference as 
such, but only in so far as it is bound to a particular qualifier. Thus if an assignment 
statement has on the left side a reference with deactivated call-out brackets and the 
reference being assigned has deactivated call-in brackets, the result is that the reference 
on the left side becomes identical with that on the right side, without a run-time error 
occurring. 

It is not considered to be an error to deactivate a bracket method category which 
has already been deactivated. 

With this background, the Timor rules for dynamically selecting call brackets can 
now be formulated as follows:. 
a) If a qualifier has both call-in and call-out brackets, but only its call-in bracket 

methods are to be applied to a particular target, the programmer deactivates the call-
out brackets by prefixing the qualifier's reference with the operator ->. 

b) If a qualifier has both call-in and call-out brackets, but only its call-out bracket 
methods are to be applied to a particular target, the programmer deactivates the call-
in brackets by placing the operator -> after the qualifier's reference. 

c) If the operator -> is not used, all the bracket methods (call-in and/or call-out) 
associated with a qualifier in a List<:Qualifier*:> are applicable to a target. 
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To heighten the clarity of programs it is recommended that bracket methods are 
deactivated as they are inserted into qualifier lists. 

Using the Rules for Communication Services 

A user wishing to send an encrypted message (cf. section 3) could set up the sender and 
receiver objects as follows: 

 
Encrypting* myEncryptor =  
                 new Encrypting.key("Key1", "Key2"); 
Receiver* receiver = 
                 new {->myEncryptor} Receiver.init(); 
Sender* sender = 
                 new {myEncryptor->} Sender.init(receiver); 

where the type Sender is defined as follows: 
 
type Sender { 
maker: 
 init(Receiver* receiver); 
instance: op void send(Text* aMessage); 
} 

with an implementation such as: 
 
impl SenderImpl of Sender { 
state: 
 Receiver* receiver; 
maker: 
 init(Receiver* receiver) {this.receiver = receiver);} 
instance: 
 op void send(Text* aMessage) {receiver.transmit(aMessage);} 
} 

and the type Receiver includes the view Transmission. 

Using the Rules to Mask Out Call-in or Call-out Brackets 

The above rules can be used not only to control communication services. They can also 
be used simply to mask out either the call-in or call-out brackets of a qualifier. For 
example a user wishing to monitor only the calls from an object using CallCounting 
(cf. section 3) might proceed as follows: 

 
CallCounting* monitored = new CallCounting.init(); 
Thing* myObject = new {monitored->} Thing.init(); 

The arrow operator can also be used in a parameter to the insert method of List, but 
only in the context of insertion into a qualifier list, e.g. 

 
List<:Qualifier:> myList = new List<:Qualifier:>.init(); 
myList.insert(monitored->); 
Thing* myObject = new myList Thing.init(); 
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5 STATIC TYPE DEFINITIONS WITH CALL-OUT BRACKETS 

The syntax for declaring qualifiers statically for a new type was described in [6], a 
knowledge of which is assumed in this section. In the normal case, if a qualifier which 
has call-out brackets in its type definition appears in a static type declaration the call-
out brackets are applied in an analogous way to their dynamic use. In this section the 
various possibilities, including restricting the use of call-in or call-out brackets are 
illustrated. 

Static Call-in and Call-out Brackets for the Same Target 

To define a Thing which is statically bracketed by the call-in and call-out brackets of 
ReleasableMutex is trivial: 

 
type ReleasableMutexThing { 
extends: 
 {ReleasableMutex} Thing; 
} 

Static Call-out Brackets 

Users can feel more confident that their information is secure if a print spooler is 
available which has been statically confined to accessing only a specified printer. For 
this purpose we assume the existence of a type Spooler, which extends the Printer 
view (i.e. has the method print as defined in section 3). In a new type 
ConfinedSpooler this could be statically confined by an instance of the type 
PrinterConfined (also defined in section 3) as follows: 

 
type ConfinedSpooler { 
extends: 
 {PrinterConfined;} Spooler; 
maker: 
 init(ObjId thePrinter); 
 // the parameter defines the permitted printer 
 // for a particular spooler object 
} 

This might be implemented along the following lines: 
 
impl ConfinedSpoolerImpl of ConfinedSpooler { 
state: 
 {^PrinterConfined confined; 
  // reuses any implementation of PrinterConfined 
 } 
 ^Spooler spooler; 
  // reuses any implementation of Spooler 
maker: 
 init(ObjId thePrinter) { 
  confined.init(thePrinter); 
  spooler.init(); 
 } 
} 
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Masking out Brackets 

Masking out either the call-in or call-out brackets statically (in the following example 
to apply only call-out brackets) can be achieved as follows (using a static version of the 
example in section 4): 

 
type CallCountingThing { 
extends: 
 {CallCounting->;} Thing; 
} 

Here is an implementation: 
impl CallCountingThingImpl of CallCountingThing { 
state: 
 {CallCounting-> callCounting = CallCounting.init(); 
 } 
 Thing t = Thing.init(); 
} 

In the case of static declarations the arrow operator is associated (as a prefix for call-in 
brackets, as a suffix for call-out brackets) with the type name of the qualifier in both 
type definitions and their implementations. This can only occur in a qualifyingList 
(see the EBNF syntax definition in section 3 of [6]). A compile time check is carried 
out to ensure that the type in question has bracket methods of the type indicated. 

Notice that the use of an arrow in association with a type name is not to be 
understood as a property of the type being declared, but indicates merely that any 
qualifier being assigned (in an implementation) to the static qualifier will automatically 
have the corresponding bracket category deactivated (if it is not already deactivated, in 
the case of a reference). 

As references for external qualifiers can be passed into the maker of a statically 
qualified type [6], the arrow operator can also be associated with a type name (with the 
same meaning) in the parameter list of such a maker, but only where the type definition 
contains a qualifyingList with an entry for the same type and with the same use of 
the operator. This rather unusual rule has two advantages. First, it allows the invoker of 
a maker to see the restriction without having to examine the code of an implementation. 
Second, it allows the condition to be checked at compile time (at the point in the client 
code where the maker is invoked). 
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Communication Services 

We now define an encrypting communication service in which sender and receiver are 
statically bracketed. In this example we confine the sender to using the Transmission 
view (assuming that a type TransmissionConfined has been defined by analogy 
with PrinterConfined in section 3) and the receiver to printing out the message to a 
defined printer). Whereas the confinement bracketing can be defined "by value", the 
encryption is defined by reference cf. [6], allowing the sender and receiver to share the 
same qualifier. We begin with the sender: 

 
type SecureSender { 
extends: 
 {TransmissionConfined; Encrypting*->; 
 } 
 Sender; 
maker: 
 init(Receiver* receiver; Encrypting*-> encrypting); 
} 
impl SecureSenderImpl of SecureSender { 
state: 
 {TransmissionConfined confined; 
  ^Encrypting*-> encrypting; 
 } 
 ^Sender sender; 
maker: 
 init(Receiver* receiver; Encrypting* encrypting) { 
  this.sender = Sender.init(receiver); 
  this.encrypting = encrypting; 
  this.confined = TransmissionConfined.init(receiver);  
 } 
} 

The receiver definitions are as follows: 
 
type SecureReceiver { 
extends: 
 {PrinterConfined; ->Encrypting*;} Receiver; 
maker: 
 init(->Encrypting* decrypting; ObjId aPrinter); 
}  
impl SecureReceiverImpl of SecureReceiver { 
state: 
 {PrinterConfined confined; 
 ^->Encrypting* decrypting; 
 } 
 ^Receiver receiver; 
maker: 
 init(->Encrypting* decrypting) { 
  this.decrypting = decrypting; 
  this.confined = PrinterConfined.init(aPrinter); 
 } 
} 
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Other cases, such as the simulation of Unix pipes, present no problems in static 
definitions, although to define pipes statically would defeat their purpose from the 
viewpoint of flexibility. 

6 SCHEDULING MULTIPLE QUALIFIERS 

As was discussed in detail in [5], call-in bracket methods in a qualifier list are applied 
to the target object from left to right, i.e. the first qualifier in a qualifier list (or in the 
static case in a qualifyingList [6]) is applied, if it has a matching bracket method, 
then the second qualifier in the list, etc. In contrast, call-out qualifiers are applied in the 
reverse order of the list, i.e. from right to left. This has the effect that when a qualifier 
contains both kinds of bracket methods, these are nested as illustrated in Figure 4: 

Figure 4: Applying Multiple Qualifiers 

Client 
object 

Called 
object 

Target
object

call-in 
bracket

for 
qual.2 

call-out 
bracket

for 
qual.2 

Qualifying object 2 

call-in 
bracket 

for 
qual.1 

call-out 
bracket

for 
qual.1 

Qualifying object 1 

 
 

In this example the first entry in the qualifier list is the qualifying object 1, followed by 
the qualifying object 2. 

7 RELATED WORK 

The relation between qualifying types with call-in bracket methods and other work was 
discussed in detail in [5, 6]. Here it remains for us to discuss work related to call-out 
brackets. And here we have the problem that no such work is known to us. 

What can be said however, is that there is clearly a close relationship between a 
call-out bracket associated with a client and a call-in bracket associated with its target. 
Thus it might appear that some of the examples in this paper can be handled by 
techniques which we have previously compared with call-in brackets. For example, 
combining call-in and call-out brackets for a single target (cf. ReleasableMutex in 
section 2) can be simulated using aspect oriented programming (AOP) techniques (cf. 
[7]). This is possible because AOP in effect allows program text to be cut and pasted 
into a class. Hence it can be effected at arbitrary points in a text, either where an object 
starts executing (cf. call-in) or where it calls another object (cf. call-out). But call-out 
brackets associated with one object (e.g. a sender) and call-in brackets associated with 
another object (e.g. a receiver) cannot be provided as a single AOP "module" in the 
way that this is possible in Timor. In addition, the other comments made in our 
comparison with AOP in [5] still apply, e.g. regarding the restrictions arising from (a) 
not distinguishing between op and enq methods, (b) operating at the source or 
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bytecode level and thus affecting all objects in a class, (c) not being able to associate a 
qualifier with a group of objects, (d) not treating qualifier methods as independent 
methods but as new methods of the class, etc. 

A significant advantage of call-out methods is that they can be different for 
different callers of the same destination object. This is important for example in 
simulating Unix pipes. On the other hand it is sometimes desirable, as when confining a 
printer spooler, to ensure that the same call-out bracket methods (which guarantee the 
confinement) are statically defined and cannot be changed by different users. 

8 CONCLUSION 

The call-out bracket technique extends the notion of qualifying types as described in 
earlier papers (e.g. [4-6]) to allow the calls out of a target module to be bracketed in a 
similar manner to the calls into the target. This considerably extends the usability of 
qualifying types, for example by allowing more complex synchronisation and 
monitoring policies to be defined and implemented. It also opens new possibilities in 
the area of computer security, particularly in providing a technique which allows such 
protection features as information confinement policies and modular encryption 
techniques to be implemented at the programming language level2. It also introduces 
the possibility of providing a flexible Unix-like pipe mechanism at the programming 
language level. 
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