
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 5, No. 1, January-February 2006

Cite this article as follows: Alexander Kozynchenko: “Constructing persistent object-oriented models with
standard C++”, in Journal of Object Technology, vol. 5, no. 1, January-February 2006, pp. 69-81,
http://www.jot.fm/issues/issue_2006_01/article2

Constructing persistent object-oriented
models with standard C++

Alexander Kozynchenko, Department of Information Technology and

Media, Mid Sweden University, Sundsvall, Sweden

Abstract
In this paper, it is suggested an approach and a design pattern for developing
object-oriented models that need to be persistent, including the databases of
moderate size, with using only the standard C++ and its file storage facilities, and
without using specific C++ dialects or any support of external libraries providing the
persistence. Objects of the model may be of a great variety of types, belonging to a
complex class hierarchy, and are considered to be of rather general structure,
containing both pointers to any other model’s objects and dynamically allocated
arrays of various types. The main idea consists in that all types involved are
considered as classes derived from the unique base class with the minimal common
interface. Classes’ objects are allocated dynamically, and the pointers are kept in
the model’s base-class pointers container, which provides sorting, searching, and
changing the objects kept. The objects’ serialization, reading, and management is
implemented with using the virtual functions, list of type names, and object factory
technique.

1 INTRODUCTION

In the paper, it is treated a problem of developing the object-oriented models with
objects dynamically allocated on the free store and having been linked to each other
with pointers. Object-oriented databases and knowledge-based systems are considered
to be an important kind of such models. Once created, the model may be running
some time, change, and then be waiting for the next run. Naturally, such a model
should be kept permanently in the secondary storage ready to load and use instead of
creating it and its relationships from the very beginning each time. When
programming the persistent object-oriented models in C++, it would be useful to find
out the ways of writing the programs on the standard C++ language [Stroustrup1997]
rather than using extensions to the C++ like the ObjectStore and POET systems
[Piattini2000] or support of class libraries like MFC.

http://www.jot.fm
http://www.jot.fm/issues/issue_2006_01/article2

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 1

2 OUTLINE OF THE STRUCTURE OF THE PROPOSED
OBJECT-ORIENTED MODEL AND C++ DESIGN PATTERN

The possible solution of the problem in point is as follows. The object-oriented model
may be represented as a class, say, Model, which main purpose is to be a repository
for addresses of objects of the user-defined types. All these types involved in
constructing the model are considered to be as classes derived from the common base
class, say, Base, like shown at the Booch diagram in Fig. 1.

Figure 1. Generalized scheme of the C++ persistent object-oriented model
The derived classes may, in turn, be the members of other inheritance hierarchy. The
dynamically allocated objects of these derived classes are identified by the base-class
pointers, which are placed into a container, for instance, the STL deque being a

myModel

Model

Booch diagram of types and
relationships Base

A
B . . .

Z

Objects in
memory

ai

Model’s array of
base-class pointers

bi zi

&ai &bi &zi . . .

Pointers to objects of
class B

Pointers to objects of
class Z

Size of Model’s
container

a1

b1

…

z1

File structure

Pointers to objects of
class A

ai
…

…

bi
… …

…

zi
…

”is a”

”knows a”

read/write

string (” A”)

string (” A”)

string (” B”)

string (” B”)

string (” Z”)

string (” Z”)

VOL. 5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 71

member of Model. An example of the declaration of class Model that would provide
minimal functionality is as follows:

typedef deque<Base*> Repository;
typedef Repository::iterator It;
typedef pair<It, It> Pair;
typedef Base* (*FuncPCr)();
typedef bool (*FuncPLess)(Base*, Base*);
struct FuncPointers
{
 FuncPCr pCreate;
 FuncPLess pLess;
 FuncPointers(FuncPCr pC, FuncPLess pL)
 :pCreate(pC),pLess(pL){}
};
typedef map<string, FuncPointers> TypeList;

class Model
{
private:
 Repository v;
 static TypeList typeList;
 filebuf fb;
 filebuf* pWrite;
 void OpenToWrite();
 Base* CreateObject(const string& typeName);
public:
 Model();
 ~Model();
 Repository& GetV();
 void SetTypeList(const string& typeName,
 const FuncPointers&
fps);
 static TypeList& GetTypeList();
 void SetV(Base* p);
 void PrintModel() const;
 void WriteToFile();
 void ReadFromFile();
 struct LessTypeNames
 {
 bool operator()(Base* lhs, Base* rhs) const;
 };
 void SortByTypes();
 Pair EqualRange(It first, It last,
 const string& typeName) const;
 struct LessInType
 {
 bool operator()(Base* lhs, Base* rhs) const;
 };
 void SortInType(const string& typeName);
};

The second Model’s data member, typeList, representing a list of types involved
in the model is used in the object factory (see, e.g., [Alexandrescu2001]) when
reading data from a secondary storage and creating objects, as well as in the factory-
like algorithm when sorting objects of a given type. It is implemented as an
associative container, the STL map, with keys of the string type given as type
names (or type IDs) defined in the base class. Associated values are objects of type

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 1

FuncPointers that keep pointers, FuncPCr and FuncPLess, to global functions
providing the object creation and a less-than sorting criterion for a given class (e.g.,
functions CreateA and LessA described in the next section). The member
typeList is filled up in the Model’s default constructor.

There are two more Model’s auxiliary data members, fb and pWrite, declared
as an object of class basic_filebuf and a pointer to this type, which are defined in
the Model’s default constructor as well. This is made for the sake of data safety: the
failed attempt to open a file at the stage of creating a Model’s object will not cause
the risk of losing any Model’s data. So, the Model’s default constructor is defined as
follows:

Model::Model()
{
 SetTypeList(A::GetTypeName(), FuncPointers(CreateA,
LessA);
 SetTypeList(B::GetTypeName(), FuncPointers(CreateB,
LessB);
 //...
 SetTypeList(Z::GetTypeName(), FuncPointers(CreateZ,
LessZ);
 OpenToWrite();
}

where A, B, …, Z – types involved in the model. Private helper function
OpenToWrite is intended for keeping the file open for writing while the Model’s
object exists. It should contain some exception handling:

void Model::OpenToWrite()
{
 pWrite = fb.open("myfile.dat",ios::out|ios::binary);
 if(!pWrite)
 {
 perror("perror says open for writing failed");
 getchar();
 this->~Model();
 abort();
 }
}

Member function SetV adds a new base-class pointer to the array.Definitions of other
important member functions and nested function-like structures will be given in the
sections 4 and 5.

Thus, each object involved in the model is identified by both the pointer and the
corresponding index of the array’s element where this pointer is kept. After finishing
a work with the Model, all objects must be stored in the hard disk in such a way that
all relationships accomplished by the pointers would be restored correctly when
retrieving the data later on. In order to meet this requirement, we have to keep the
“one-to-one” relationship between the object’s data member – a pointer to some
dynamically allocated object, and the index of the database’s array cell where this
pointer is kept.

For solving problems related to model persistence and data processing, the proper
scheme of a type name management is developed. It includes type names (actually

VOL. 5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 73

type identifiers) of type string provided by the Model’s objects and kept in
typeList. Duplicate type names clash is excluded in associative arrays such as the
STL map. As stated above, typeList is involved in the factory algorithms.

3 DEFINITIONS OF CLASSES INVOLVED IN THE
MODEL. OBJECTS’ SERIALIZATION AND READING

Here it’s time to break describing the class Model and to talk about the structures of
objects held in the model. The class Base has minimal functionality necessary for
making objects persistent and for preserving objects’ relationships. It may be declared
as follows:

class Base;
typedef deque<Base*> Links;
typedef deque<int> Indexes;

class Base
{
private:
 string typeName;
 Links links;
 Indexes indexes;
public:
 Base(const string& typeName): typeName(typeName){}
 virtual ~Base(){}
 string& GetTypeName();
 void PutLink(Base* p);
 Links& GetLinks();
 void PutIndex(int i);
 Indexes& GetIndexes();
 void WriteTypeName(ostream& out);
 void ReadTypeName(istream& in);
 virtual void Write(ostream& out);
 virtual void Read(istream& in);
};

The class Base contains the data member typeName that is initialized in Base’s
parameterized constructor, as well as two dynamic arrays - links and indexes.
The array links keeps base-class pointers to other objects to be linked with,
providing the association relationships. Just before writing data to the hard disk and
terminating the program the links may be emptied because the pointers become
invalid. Indexes of the Model’s array v corresponding to the Base’s pointers are kept
in the array indexes. That is, if links[j] is equal to v[i] then indexes[j] is
equal to i. In contrast with the links, the array indexes is used only when writing
and reading data, so it can be empty at almost all run time. For the sake of brevity, we
don’t give definitions of the access functions - PutLink, GetLinks etc., they are
implemented in a usual way.

The class Base has two non-virtual member functions for writing/reading the
type name:

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 1

void Base::WriteTypeName(ostream& out)
{
 out << typeName.size();
 if(typeName.size() > 0)
 for(int i = 0; i < typeName.size(); ++i)
 out << typeName[i];
}

void Base::ReadTypeName(istream& in)
{
 int sizeName;
 in >> sizeName;
 string tempName(sizeName,' ');
 if(sizeName > 0)
 for(int i = 0; i < sizeName; ++i)
 in >> tempName[i];
 typeName.swap(tempName);
}

Two virtual member functions Write and Read are intended respectively for the
correct serialization and for subsequent creation of transient objects, and are to be
overridden in derived classes. Their Base’s definitions are as follows:

void Base::Write(ostream& out)
{
 //serialization of the links:
 if(links.size() != indexes.size())
 throw SomeExceptionHandler(“Sizes are not equal”);
 char delimiter = '\0';
 out << indexes.size() << delimiter;
 if(links.size() > 0)
 for(int i = 0; i < links.size(); ++i)
 out << indexes[i] << delimiter;

 }

void Base::Read(istream& in)
{
 //reading links:
 int sizeIndexes;
 char delimiter;
 in >> sizeIndexes >> delimiter ;
 Indexes tempIndexes(sizeIndexes);
 if(sizeIndexes > 0)
 for(int i = 0; i < sizeIndexes; ++i)
 in >> tempIndexes[i] >> delimiter;
 indexes.swap(tempIndexes);
}

Reliable equivalents of the streaming operators << and >> are write and read
member functions of the classes ostream and istream applying without delimiters.

As an example of the application class involved in the model, we take the class A
of rather general view, namely, having a dynamic array of char (C-style string) and
the STL dynamic array - vector of double.

class A: public Base
{
private:
 char* s;
 int sizeS;

VOL. 5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 75

 vector<double> a;
 static string typeName;
protected:
 A(const A& rhs);
public:
 A(const char* j = "");
 ~A();
 static string& GetTypeName();
 void PutA(double x);
 void PutS(char x);
 char* GetS() const;
 vector<double>& GetA();
 void Print() const;
 void Write(ostream& out);
 void Read(istream& in);
 friend ostream& operator<<(ostream& lhs, const A& rhs);
};

//global functions being related to the class A:
Base* CreateA();
bool LessA(Base* lhs, Base* rhs);
//function comparing C-style strings lexicographically:
bool Less(const char* lhs, const char* rhs);

Omitting ordinary routines of accessing, deep copy, etc. and focusing an attention to
the correct serialization, we give the definitions of the overridden virtual functions
A::Write and A::Read:

void A::Write(ostream& out)
{

 Base::Write(out);
 //serialization of the vector of double a:
 char delimiter = '\0';
 out << a.size() << delimiter;
 if(a.size() > 0)
 for(int i = 0; i < a.size(); ++i)
 out << a[i] << delimiter;
 //serialization of the dynamic array (C-style string) s:
 out << sizeS;
 if(sizeS > 0)
 for(int i = 0; i < sizeS; ++i)
 out << s[i];
}

void A::Read(istream& in)
{
 Base::Read(in);
 //reading the vector a:
 int sizeA;
 char delimiter;
 in >> sizeA >> delimiter;
 a.resize(sizeA);
 vector<double> temp(sizeA);
 if(sizeA > 0)
 for(int i = 0; i < sizeA; ++i)
 in >> temp[i] >> delimiter;
 a.swap(temp);
 //reading the C-style string s:
 in >> sizeS;

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 1

 if(sizeS > 0)
 {
 delete [] s;
 s = new char[sizeS];
 for(int i = 0; i < sizeS; ++i)
 in >> s[i];
 }

 }

We should also note a global helper function CreateA responsible for creating an
object of class A in the object factory and called when reading data in the model:

 Base* CreateA() { return new A; }

Another helper function that gives a sorting criterion specific for the class A is a
global predicate LessA:

 bool LessA(Base* lhs, Base* rhs)
 {
 return = Less(reinterpret_cast<A*>(lhs)->GetS(),
 reinterpret_cast<A*>(rhs)->GetS());
 }

It fulfils a static downcast of the arguments and calls a global predicate Less
providing the lexicographical comparison of C-style strings.

4 MODEL’S DATA SERIALIZATION AND RETRIEVING

Here we can return to discussing the Model’s member functions, centering on data
writing/ reading routines and other related functions. First of all, it is a function for
adding new pairs of typeName and functin pointers to the associative array
typeList:

void Model::SetTypeList(const string& typeName,
 const FuncPointers&
fps)
{
 typeList.insert(pair<string, FuncPointers>(typeName,
fps));
}

Further, let us consider a member function responsible for serialization – the function
Model::WriteToFile. At the moment just before writing the model to the
secondary storage, the array links of each object being kept in the Model’s array
holds base-class pointers to others objects according to some relationship scheme.
Elements of the array indexes intended for keeping indexes of the Model’s array v
have not been defined so far because at run time the objects can be identified by
pointers. Obviously, these pointers will become invalid after computer shutting down,
so other objects’ identifiers should be introduced: it could be the indexes of the
Model’s array.The initial fragment of the function Model::WriteToFile sets the
indexes k of the Model’s array elements v[k] as the elements of the indexes
arrays:

VOL. 5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 77

for(int i = 0; i < v.size(); ++i)
{
 v[i].GetIndexes().resize(v[i].GetLinks().size());
 for(int j = 0; j < v[i]->GetLinks().size(); ++j)
 for(int k = 0; k < v.size(); ++k)
 if(v[i]->GetLinks()[j] == v[k])
 v[i]->GetIndexes()[j] = k;
}

The next fragment for writing the objects to a binary file follows:

ostream out(pWrite);
char delimiter = '\0';
out << v.size() << delimiter;
for(i = 0; i < v.size(); ++i)
{
 v[i]->WriteTypeName(out);
 v[i]->Write(out);
}

It writes down the size of the Model’s array first. Then a name of the type is being
written just before the corresponding object as shown in the Fig.1, the segment “File
structure”. In principle, such a serialization procedure may be just an intermediate
saving, and we can continue to work with the model. The filebuf object fb is not
closed and a pointer pWrite is not equal to zero.

When we start retrieving the data from a file by calling a function
Model::ReadFromFile, first we close the file object fb if it is opened for writing
and then fulfill the following operations:

• Open the file for reading with some kind of exception handling.
• Model’s array size is being read and the array v is resized.
• Further, the object factory is organized: within the loop, the object’s type

name is being read and an object of the same type is created by default and
dynamically allocated due to calling a private helper member function
CreateObject.

• The polymorphic call of the object’s virtual function Read fills the object with
the actual content.

• Model’s array is being filled with base-class pointers to the objects in the
order of reading.

• Relationships between objects are restored with using the Model’s array
indexes kept in the indexes arrays.

• File object fb is closed and re-opened for possible subsequent writing.
The code example for ReadFromFile is as follows:

void Model::ReadFromFile()
{
 if(pWrite != NULL)
 {
 fb.close();
 pWrite = NULL;
 }
 filebuf* pRead = fb.open("Model.dat",
ios::in|ios::binary);

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 1

 if(!pRead)
 {
 perror("perror says open for reading failed");
 this->~Model();
 abort();
 }
 istream in(pRead);
 int size;
 char delimiter;
 in >> size >> delimiter;
 v.resize(size);
 Base* pB;
 for(int i = 0; i < size; ++i)
 {
 int sizeName;
 in >> sizeName;
 string typeName(sizeName, ' ');
 if(sizeName > 0)
 for(int i = 0; i < sizeName; ++i)
 in >> typeName[i];
 pB = CreateObject(typeName);
 pB->Read(in);
 v[i] = pB;
 }
//restore objects' relationships:
 for(i = 0; i < v.size(); ++i)
 {
 v[i]->GetLinks().resize(v[i]->GetIndexes().size());
 for(int j = 0; j < v[i]->GetIndexes().size(); ++j)
 v[i]->GetLinks()[j] = v[v[i]->GetIndexes()[j]];
 }
 fb.close();
 OpenToWrite(); //keep the file open for furhter writing
}

A helper function CreateObject operating with the list of types finds a proper
function pointer to a global function, like CreateA, that, in turn, directly creates an
object of a type specified in the argument:

Base* Model::CreateObject(const string& typeName)
{
 TypeList::const_iterator it = typeList.find(typeName);
 if(it == typeList.end())
 {
 perror("perror says unknown type found");
 this->~Model();
 abort();
 }
 return (it->second.pCreate)();
}

VOL. 5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 79

5 MODEL’S DATA MANAGEMENT: SORTING
OBJECTS

Objects being kept in the Model’s container should be sorted somehow in order to
ensure effective data management. Sorting may be implemented in two stages:

first, sorting objects according to their type names held in the Base’s data
member typeName;

second, sorting objects within each type using some keys specified for a given
type.

The first step can be done by lexicographical sorting of the type names with a
predicate provided by a nested function-like class LessTypeNames. The
corresponding function object is used in the Model’s sorting member function
SortByTypes. The code example is shown below:

bool Model::LessTypeNames::operator()(Base* lhs,
 Base* rhs) const
{
 if(lhs->GetTypeName().compare(rhs.GetTypeName()) <= 0)
 return true;
 else
 return false;
};

void Model::SortByTypes()
{
 stable_sort(v.begin(), v.end(), LessTypeNames());
}

In the second stage, it is required to delimit the objects’subsequences of the same type
by using a member function EqualRange:

Pair Model::EqualRange(It first, It last,
 const string& typeName) const
{
 Pair eRange;
 bool flag = false;
 while(first != last)
 {
 if(typeName.compare((*first)->GetTypeName()) == 0
 && flag == false)
 {
 eRange.first = first;
 flag = true;
 }
 if(typeName.compare((*first)->GetTypeName()) != 0
 && flag == true)
 {
 eRange.second = first;
 flag = false;
 }
 ++first;
 }

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 1

 if(flag == true)
 eRange.second = first;
 return eRange;
}

Having known the delimiters obtained from EqualRange, we can sort objects of the
same type in the member function SortInType:

void Model::SortInType(const string& typeName)
{
 Pair eRange = EqualRange(v.begin(), v.end(), typeName);
 sort(eRange.first, eRange.second, LessInType());
}

The sorting predicate is provided by a nested function-like class LessInType:

bool Model::LessInType::operator()(Base* lhs, Base* rhs)
const
{
 TypeList::const_iterator it =
 GetTypeList().find(lhs->GetTypeName());
 return (it->second.pLess)(lhs, rhs);
}

The function-call operator uses the list of types and function pointers for choosing a
proper global predicate (e.g., LessA) for sorting objects of a specified type, that is,
actually, based on the object factory technique.

6 SUMMARY

The described object-oriented model and the design pattern can represent a basis for
developing persistent research models, object-oriented databases, and knowledge-
based systems with using standard C++. The model can keep objects of various types,
including ones involved in inheritance hierarchies. Objects may form a complex
network of association relationships provided by the base-class pointers. This network
remains persistent as well. Classes involved into the model must satisfy some
requirements such as: be derived from a common base class having facilities for data
serialization and management, contain a string data member as a type name identifier
and pass it to the base class, define overridden virtual functions for data writing to and
reading from a secondary storage, be accompanied with relevant global functions for
object creation and for using as a sorting predicate. The corresponding function
pointers together with the list of type names are used in the model’s object factories
when retrieving data and sorting. Using std::deque instead of std::vector in the
base class arrays is a reliable solution. The design pattern provides only restricted data
management facilities specific for the model in point, namely, two-stage internal
sorting “by types”-“within a type”. Minimal exception handling necessary for the
correct program termination is included. Model allows repeated writing and reading in
run time. The size of the model is naturally restricted by the virtual memory limits.
However, it seems to be likely to use this approach as a basis for developing models
of much greater sizes.

VOL. 5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 81

7 ACKNOWLEDGEMENTS

The author wishes to thank Mr. Mogens Hansen for very valuable comments and
suggestions that helped indeed the author in improving the original idea.

REFERENCES

[Stroustrup1997] Bjarne Stroustrup: The C++ Programming Language, 3rd edition,
Addison-Wesley, 1997

[Piattini2000] Advanced Database Technology and Design/ Mario G. Piattini, Oscar
Díaz, editors, Artech House, 2000

[Alexandrescu2001] Andrei Alexandrescu: Modern C++ Design: Generic
Programming and Design Patterns Applied, Addison-Wesley, 2001

About the author
Alexander Kozynchenko is a lecturer on computer science at the Mid Sweden
University. He had obtained the honours diploma of electrical and mechanical
engineer in 1974, the degree of candidate of science on aircraft control systems in
1982, and the rank of senior researcher in 1987. E-Mail:
alexander.kozynchenko@miun.se

alexander.kozynchenko@miun.se

