
Vol. 5, No. 3, Special issue: .NET Technologies 2005 Conference, April 2006

An Empirical Study of the Code Pitching Mech-
anism in the .NET Framework

David Anthony, Witawas Srisa-an, and Michael Leung
Department of Computer Science and Engineering
University of Nebraska-Lincoln, United States

The .NET Compact Framework is designed to be a high-performance virtual machine for
mobile and embedded devices that operate on Windows CE (version 4.1 and later). It
achieves fast execution time by compiling methods dynamically instead of using inter-
pretation. Once compiled, these methods are stored in a portion of the heap called the
code cache and can be quickly reused to satisfy future method calls. While the code
cache provides a high-level of reusability, it can also use a large amount of memory. As a
result, the Compact Framework provides a “code pitching” mechanism that can be used
to discard the previously compiled methods as needed.
In this paper, we study the effect of code pitching on the overall performance and
memory utilization of .NET applications. We conduct our experiments using Microsoft’s
Shared-Source Common Language Infrastructure (SSCLI). We profile the access
behavior of the compiled methods. We also experiment with various code cache
configurations to perform pitching. We find that programs can operate efficiently with a
small code cache without incurring substantial recompilation and execution overheads.

Keywords: Just-in-time compilation, Java virtual machines, .NET CLR, code cache
management

1 INTRODUCTION

In both .NET and Java execution systems, Just-In-Time (JIT) compilers have been used to speed up
the execution time by compiling methods into native code for the underlying hardware [12, 22, 18].
JIT compilation has proved to be much more efficient than interpretation especially in execution
intensive applications [11, 12, 22, 24]. In the Microsoft .NET Framework, a method is compiled
prior to its first use. Afterward, the compiled methods are stored in the code cache for future reuse
[16]. This code cache is located in the heap region .

The size of the code cache can be increased or decreased depending on the program’s behavior.
For example, in the default configuration of the Shared-Source Common Language Infrastructure
(SSCLI), frequently referred to as Rotor [14, 18], the initial code cache size is set to 64 MB. Once
the accumulation of compiled methods reaches this size, the system can choose either to increase
the code cache size or to keep the same size and free all the compiled methods not currently in
scope (referred to as throw-away compiling [3] or code pitching [18, 16]). There are two possible
overheads of the “code pitching” mechanism [18, 16]— the overhead of traversing through all the
compiled methods and the overhead of recompiling methods after pitching. However, pitching

Cite this article as follows: : An Empirical Study of the Code Pitching Mechanism in the .NET
Framework, in Journal of Object Technology, vol. 5, no. 3, April 2006, Special issue: .NET
Technologies 2005 Conference, pages 107–127,
http://www.jot.fm/issues/issues 2006 04/article5

http://www.jot.fm/issues/issues_2006_04/article5

AN EMPIRICAL STUDY OF THE CODE PITCHING MECHANISM IN THE .NET FRAMEWORK

provides a means to maintain a small code cache as the memory is periodically reclaimed.

Currently, code pitching is employed in the .NET Compact Framework (CF), which is used
to develop applications for smart devices with limited memory resources [16]. Such devices in-
clude smart phones, Pocket PCs, and embedded systems running Windows CE. In these devices,
a pitching policy can play a very important role since it can determine the amount of memory
footprint for the code cache. If pitching occurs infrequently, the code cache would occupy a large
amount of memory. If pitching occurs too frequently, a large number of methods would have to
be recompiled. The goal of this paper is to take a preliminary step to study the effect of pitching
on the overall performance and memory utilization of .NET applications. To date, there have been
a few projects that investigate the recompiling decision and method unloading in Java [24, 23, 4].
However, they are implemented into a virtual machine that does not support pitching. With the
SSCLI, we have an opportunity to study the mechanism that has been built by a major software
maker as a standard feature. Our work attempts to study two important research questions. They
are:

RQ1: What are the basic behaviors of the compiled methods?—We investigate the access be-
haviors, compilation frequency, and commonly used metrics such as size and the number of
methods.

RQ2: Can we improve the overall performance and memory utilization by manipulating the code
cache configuration?—We experiment with multiple code cache sizes and investigate the
impacts of utilizing different cache size enlargement policies.

The remainder of this paper is organized as follows. Section 2 introduces related background
information. Section 3 describes our challenges and research questions in detail. It also describes
the methodology and constraints used to perform the experiments. Section 4 discusses the exper-
iments and results conducted with regard to the research questions. It also contains the detailed
analysis of our findings. Section 5 discusses our finding in details. Section 6 presents the future
work. Section 8 discusses prior research work in this area. The last section concludes this paper.

2 BACKGROUND

This section discusses background information related to this work.

Shared-Source Common Language Infrastructure (SSCLI)

The main objective of the CLI is to allow programmers to develop component-based applica-
tions where the components can be constructed using multiple languages (e.g. C#, C++, Python,
etc.). ECMA-3351 (CLI) standard describes “a language-agnostic runtime engine that is capable
of converting lifeless blobs of metadata into self-assembling, robust, and type-safe software sys-
tems” [18]. There are several implementations of this standard that include Microsoft’s Common

1European Computer Manufacturers Association.

108 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

2 BACKGROUND

Language Runtime (CLR), Microsoft’s Shared Source Common Language Infrastructure (SSCLI)
[14], Microsoft’s .NET Compact Framework, Ximian’s Mono project [15], and DotGNU [8]. For
this research, we use the SSCLI due to the availability of the source code. Moreover, it seems to
be the most mature implementation when compared to the Mono or DotGNU projects.

SSCLI is a public implementation of ECMA-335 standard. It is released under Microsoft’s
shared source license. The code base is very similar to the commercial CLR with a few excep-
tions. First, the SSCLI does not support ADO.NET and ASP.NET which are available in the
commercial CLR. ADO.NET is a database connectivity API and ASP.NET is a web API that is
used to create Web services. Second, the SSCLI uses a different Just-In-Time (JIT) compiler than
the commercial CLR uses. The latter provides a more sophisticated JIT compiler with the ability
to pre-compile code. However, the commercial CLR does not support code pitching. Notice that
both implementations of the CLI adopt JIT compilation and not interpretation mode as in some
earlier Java Virtual Machine implementations [19]. Third, it is designed to provide maximum
portability. Thus, a software layer called Platform Adaptation Layer (PAL) is used to provide
Win32 API for the SSCLI. Currently, the SSCLI has been successfully ported to the Windows,
FreeBSD, and MacOS-X operating systems.

One of the major runtime components related to this work is the Just-In-Time (JIT) compiler.
It is used to compile methods within components into the native code for the underlying hard-
ware [22]. The JIT compiler also ensures that every instruction conforms to the specification by
the ECMA standard. Once compiled, these methods reside in the code cache which is located
in the heap memory. Instead of recompiling a method each time it is called, the native code is
retrieved from the code cache [16]. When more memory is needed by the system or when a long
running application is moved to the background, the methods in the code cache are “pitched” to
free up memory [16, 18].

Code Pitching Mechanism

There are three important variables in the code pitching mechanism: reserved cache size, target
cache size, and maximum cache size. The target cache size is initially set to be the same as the
reserved cache size, e.g. 64KB. The maximum cache size is set to be very large to allow the
most flexible growth. By default, the SSCLI sets the maximum cache size to 2GB. The execution
engine initializes the code cache by allocating 8KB. As program execution continues, additional
heap space is allocated to the code cache in 8KB increments as needed to store the compiled
methods. The total size of the allocated heap space is called the committed code cache size. As
the committed code cache size approaches the reserved code cache size (e.g. 256KB), the allocator
will decide whether to allocate more heap space beyond the current reserved cache size or pitch
all unused methods. Notice that once the target cache size is reached, the reserved size is adjusted
and used to determine the actual cache size. For example, if the initial cache size is 256KB (i.e.
the initial value of target and reserved cache sizes) but the system presently needs 512KB to store
compiled methods, the reserved size would be adjusted to 512KB while the target cache size
remain the same at 256KB.

If the reserved size is less than the maximum code cache size and the existing pitch overhead

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 109

AN EMPIRICAL STUDY OF THE CODE PITCHING MECHANISM IN THE .NET FRAMEWORK

(amount of time spent on pitching) is over the acceptable maximum (default 5ms), the allocator
will attempt to increase the code cache size. Notice that 5 ms is chosen as the default value in the
SSCLI to avoid excessive pitching. During this attempt, if the needed memory is greater than the
reserved size, less than the maximum cache size, not at the pitch trigger point, and pitch overhead
is too high, it will expand the committed code cache size and the reserved size. Otherwise, it will
pitch all the unused compile methods 2. If there is still insufficient memory after pitching, the code
cache size and the reserved size will be increased until enough memory is available. If at any point
during the execution, the number of compiled methods reaches the pitch trigger, pitching occurs
regardless of other cache conditions.

Currently, code pitching is used in the .NET Compact Framework, which is built for em-
bedded devices. Obviously, it is very important to strike a good balance of memory usage and
performance overhead since such devices have a very limited amount of memory. In addition, the
Compact Framework is often used in Windows CE that has the maximum virtual process space of
only 32 MB. Thus, the amount of code cache has to be small enough to work in this computing
environment but yet big enough to provide efficient compilation of methods.

3 EMPIRICAL STUDY

As stated earlier, the behavior of compiled methods in the .NET framework has yet to be studied.
In order to design an efficient pitching policy, a thorough understanding of the behavior is needed.
The current lack of this knowledge has led us to the first research question.

RQ1: What are the basic behaviors of compiled methods?

If a large number of methods is frequently used, then it may not be suitable to pitch the code
cache frequently. Our contribution is to profile the access behavior of compiled method so that
an efficient pitching decision can be made. We conjecture that a significant performance gain or
reduction in memory usage can be obtained by utilizing different pitching policies. Thus, our
second research question is:

RQ2: Can we improve the overall performance and memory utilization by manipulating the
code cache configuration?

In the default configuration of the SSCLI, the policy is to explore other possibilities before
pitching is considered. This may not be the most optimal approach especially for the Compact
Framework in which the amount of memory available in a system may be limited. Our contribution
is to identify a cache size and suggest pitching policies that would result in small cache footprint
and minimal compilation overhead.

In terms of experimental platform, we conducted our study on an AMD 64 workstation with 1
GB of memory and running Windows XP Professional.

2This is in contrary to [18] in which the authors mentioned that the whole code cache is unloaded. We investigated
the source code and found that only methods that are not currently accessed are unloaded.

110 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

3 EMPIRICAL STUDY

Variables and Measures

The JIT compiler relies on several variables to control cache size and pitching. These variables
are used to control the compiler when to pitch, maximum and minimum cache size, and cache
growth characteristics. As will be described in the next subsection, we use existing benchmark
programs written in C# to perform our experiments. It is worth noting that we fix the heap size to
800KB (the default value set by the SSCLI). In doing so, we can be certain that any changes in
performance are not due to different heap sizes but mainly the changes in code cache sizes.

Throughout the experiment, we monitored the following variables. They provided useful in-
sight into the operation of the JIT compiler, specifically, its caching mechanism.

• Number of pitch events
When the compiler removes compiled code from the cache it is called a pitch event. Pitching
will preserve methods that are currently in use (in scope), but will remove the rest.

• Number of recompilations
After a method has been pitched, each time it has to be compiled again is called a recompi-
lation. A method could be pitched and recompiled multiple times.

• Number of distinct methods
This is the number of distinct methods that have been compiled. The number of distinct
methods does not include recompilations and does not consider whether the method has
been pitched or not.

• Committed code cache size
The amount of heap space requested from the system to store code is called the committed
code cache size. The compiler asks for heap in increments of 8KB.

• Code cache usage
Code cache usage is the actual amount of memory used to store compiled methods at a given
time.

To address RQ1, we monitor the basic behavior of compiled methods. Our goal is to derive at
two important performance metrics based on the results of variables above:

1. compilation frequency—we monitor how often methods are compiled and recompiled.

2. concentration of compiled methods—we monitor which part in the execution methods are
compiled the most.

We also observed the average size of compiled methods and compared them to the sizes of
typical objects. In order to perform our experiments, we created an environment in which the
amount of memory is similar to a typical Java embedded device. To do so, we set the initial code
cache size to 256KB. However, we would allow the SSCLI to enlarge the code cache as necessary.

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 111

AN EMPIRICAL STUDY OF THE CODE PITCHING MECHANISM IN THE .NET FRAMEWORK

Application Minimum (bytes) Maximum (bytes) Average (bytes) Standard Deviation Number of Methods
LCSC 52 27024 1044.93 2587.04 632
AHC 52 6320 317.04 474.21 514

PNG Decoder (PNGD) 52 6320 324.71 486.52 556
CLisp 52 44008 425.66 1424.96 324

SharpSATbench (SAT) 52 6772 355.35 597.71 412

Table 1: Basic characteristic of the compiled methods in our benchmarks.

% of space needed in the code cache
Application 15% 30% 45% 60% 75%

LCSC 0.29% 0.31% 0.33% 0.36% 0.41%
AHC 0.005% 0.006% 0.009% 99.95% 99.96%

PNG Decoder 0.24% 0.34% 0.39% 0.52% 99.87%
CLisp 7.98% 12.17% 16.10% 36.33% 82.89%

SharpSATbench 0.04% 0.06% 98.28% 98.30% 99.95%

Table 2: Code-cache usage at different points in execution time.

To address RQ2, we went a step further and prevented the SSCLI from enlarging the code
cache. The goal of our experiment is to observe the behavior of compiled methods under a hard-
limit and explore different code cache configurations to improve the overall performance. We
also compared the execution time among different configurations that result in different number
of pitch events.

Benchmark Programs

To address our research questions, we need a set of programs that compile a large number of
methods. In addition, we must be able to manipulate the way these programs are operated. As of
now, there are very few benchmark programs available for the .NET platform. We have gathered
3 different programs that compiled a reasonable amount of methods (over 1000). We also want to
observe how the code cache would perform during the execution of smaller applications. There-
fore, we also experiment with using the classic HelloWorld and Adaptive Huffman Compression
to get some insights on how many methods are needed to execute such programs. To our surprise,
HelloWorld still requires over 300 compiled methods. This section describes the experimental
objects:

• LCSC
This benchmark is based on the front end of a C# compiler. The program parses a given C#
input file with a generalized LR algorithm. The benchmark is available from Microsoft’s
research web site [13], along with the inputs that were used in performing the analysis.

• AHC
This program uses an adaptive Huffman compression algorithm to process files. For this

112 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

4 RESULTS

program there were three separate inputs for use as test cases. This benchmark is also
available from Microsoft’s research web site [13].

• PNG Decoder
This program shows “how fast a Java implementation can decode a PNG photo image of a
typical size used on a mobile phone.” [9]

• CLisp Compiler
This is a small compiler that converts a Lisp source file to an executable. The compiler
was used to compile two sample source files, a Fibonacci series generator and a numerical
sorting algorithm. This compiler is found in the sscli/compilers/clisp directory.

• SharpSATbench
SharpSATbench is a ”clause-based satisfiability solver where the logic formula is written in
Conjunctive Normal Form (CNF).” [13]

4 RESULTS

In the following subsections, we present the results of our experiments that answer two research
questions proposed in Section 3.

RQ1: Access Behavior

In this section, we discuss the basic behavior of these compiled methods. The issues that will be
discussed in this section include the number of compiled methods in each application, the number
of methods recompiled, and the size of the compiled methods. Table 1 depicts the size information
of compiled methods in our benchmark programs.

It is worth noticing that typical objects in object-oriented languages such as Java and C# only
have an average object size of less than 100 bytes [7, 21]. However, the average size of the com-
piled methods in each application range from 300 bytes to over 1100 bytes. It is also worth noting
that the smallest size for a compiled method is 52 bytes (see Section 5 for more information). This
is true across all applications. For the largest size, a method can be as large as 44KB bytes. We
also conducted experiments with no pitching and found that 1.4MB of memory is needed to store
the compiled methods in LCSC.

In our experiment, we first study the code cache usage of every application. We set the cache
size to be large enough so that pitching does not occur. With the proposed set of benchmarks,
the size is set to 2 MB. We then monitor the fraction of the code cache usage at different points
in the program’s execution. For example, LCSC requires 1.4 MB of space to store all compiled
methods. When the program consumes 15% of all the needed cache space or 212KB, we observe
the percentage of execution. In this case, the program has only completed 0.29% of the total
execution time (see Table 2). It is worth noting that in three out of five applications, over 45% of
all the space needed for the code cache are consumed with in the first few percent of the execution
time.

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 113

AN EMPIRICAL STUDY OF THE CODE PITCHING MECHANISM IN THE .NET FRAMEWORK

1 2 3 4 5 6 7 8 9 10+

0
002

004
006

008
0001 LCSC

AHC
CLISP
PNGD
SAT

Number of compilations

N
u

m
b

er
 o

f m
et

h
o

d
s

Figure 1: Distribution of compiled methods based on the number of compilations (128KB cache
size).

We also monitor the distribution of methods based on the number of compilations. We set the
code cache size to 128KB to emulate embedded devices environment and to induce some pitch
events. We find that in two applications AHC and PNGD, no methods are compiled more than
twice. However, in larger applications, such as the compilers and the constraints satisfaction pro-
gram, methods are compiled multiple times. Notice that CLisp requires at most 7 compilations
while SAT and LCSC require 9 and more than 10 compilations, respectively. Since most of these
applications execute repetitive tasks, many compiled methods are reused. If pitch events are forced
to occur more often, these programs may need to have methods recompiled more frequently. Fig-
ure 1 illustrates our findings.

To investigate the number of recompiled methods, we set the code cache size to 256KB to
force pitching. We find that about 70% of recompilations occur during the first 10% of execution
time (depicted in Figure 2) in all benchmark programs. The remaining 30% of compilation occur
during the remaining 94% of execution time. Thus, many of these methods are short-lived but
during their lifetimes seem to have many accesses. This is similar to typical objects where the
majority are short-lived [10, 20]. This behavior may provide an opportunity for optimization by
dynamically adjusting the cache size as needed. For example, the cache size can initially be set to
be larger and then reduced after the first 10% of execution. We are currently experimenting with
this approach.

114 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

4 RESULTS

N
u

m
b

er
 o

f r
ec

o
m

p
ile

d
 m

et
h

o
d

s

0

200

400

600

800

1000

1200

1400

1600

10 20 30 40 50 60 70 80 90 100

Percent execution

Number of recompiled methods

Figure 2: Distribution of recompiled methods over the execution time (all applications combined
using 256KB cache size).

In summary, we find that compiled methods have the following behavior:

• The average size of a method is much larger than the average size of a typical object.

• Even the simplest applications require at least 300 methods to execute.

• In larger programs, a large number of methods are reused. This conclusion is based on the
fact that large programs recompile a large amount of methods when the cache size is small
and pitching occurs frequently.

• Methods are compiled more frequently toward the beginning of a program execution.

RQ2: Optimizing Code-Cache Configuration and Pitching Policy

In this section, we will apply different pitching policies to LCSC and monitor the differences
in the runtime behavior. We choose LCSC because it accesses a large number of methods and
requires the largest number of pitch events. In the SSCLI, there are two ways to set the size of the
code cache. The first method (which shall be referred to as the soft limit approach) is to set the
target code cache to a certain size (e.g. 256KB). This however, is not the highest possible value.
When the volume of compiled methods reach 256KB for the first time, the system will pitch all
methods that are not reachable, but it will also consider whether to increase the target cache size.

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 115

AN EMPIRICAL STUDY OF THE CODE PITCHING MECHANISM IN THE .NET FRAMEWORK

Typically, the cache size is doubled. Thus, the next pitch event will occur when the accumulation
of methods in the code cache approaches 512KB. The second method (shall be referred to as the
hard limit approach) is to set the initial code cache size to be the limit. Notice that the limit
must be big enough to contain the initial method working set that can initialize the application.
If the cache size is too small to contain all methods during initialization, the program may crash.
Figure 3 depicts the pitch events using the soft limit approach. The initial target code cache is set
to 256KB.

0 1 2 3 4 5 6 7

004
006

008
0001

Pitch Event

)BK(eziS ehca
C tegraT

002

Figure 3: Monitoring pitch events in LCSC using the soft limit approach.

Figure 3 illustrates the basic behavior of code cache expansion in the soft limit approach. The
x-axis in the figure represents all the pitch events that occur in the system. In this example, we
have 7 pitch events throughout the execution of LCSC. Table 3 depicts the number of pitch events
in all applications with different target cache sizes (256KB, 512KB, 1MB, and 2MB). It is worth
noting that the benefit gained through this approach is the reduction of the number of pitch events
during the initial execution period. For example, by increasing the initial cache size from 256KB
to 512KB, the number of pitch events decreases by two in LCSC. These two events occur during
the first 5% of the execution.

Figure 4 depicts the number of methods that are recompiled by applying the soft limit approach
in which the cache size can be increased as needed. Notice that there are more methods recompiled
after the later pitch events (4 to 6). This is corresponding to Table 2 as methods are compiled
during the early part of the execution. As we continue to pitch late into the execution, the methods
that were compiled and have recently been pitched are still being invoked and must be recompiled.

It is worth noting that the initial target size can greatly affect the number of pitch events in a

116 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

4 RESULTS

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6

Pitch event

N
um

be
r o

f m
et

ho
ds

Methods reJITedUnique Methods Compiled

Figure 4: Ratios between new methods and recompiled methods based on pitch events.

Applications 256k 512k 1024k 2048k 4096k 8192k 16384k 65536k
LCSC 7 5 3 0 0 0 0 0
AHC 0 0 0 0 0 0 0 0

PNGD 0 0 0 0 0 0 0 0
CLisp 2 1 0 0 0 0 0 0
SAT 2 1 0 0 0 0 0 0

Table 3: The number of pitch events with different code cache sizes.

system. This is because the first pitch event will take longer to occur with larger cache size. As
shown in Figure 2, a majority of repeated invocations occurs within the first 10% of execution.
Thus, a larger initial cache size is more advantageous because more reuse occurs at the beginning.

Figure 4 initially appears to be contradicting Figure 2 as the volume of recompiled methods do
not become significant until the fourth pitch event. However, we find that 4 out of 6 pitch events
occur in the first 3% of execution. The fifth event occurs around 33% and the last event occurs at
the 80%. Thus, most of the recompilation events occur during the initialization of the system.

Similar to the soft limit approach, we investigate the number of distinct methods and previ-
ously used methods that have to be compiled after each pitch event using the hard limit approach.
Figure 5 illustrates the number of pitch events occurring when this approach is used. When the
code cache size is limited to 128KB, we have nearly 25000 pitch events. As expected, the number
of pitch events decreases as the code cache size is enlarged (256KB and 512KB, respectively).
We also discover that when the code cache is set to 1024KB, there are only 4 pitch events (not
in the figure). Figure 5 also compares the number of distinct methods to the number of recom-

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 117

AN EMPIRICAL STUDY OF THE CODE PITCHING MECHANISM IN THE .NET FRAMEWORK

piled methods in the three configurations of code cache (128KB, 256KB, and 512KB). In most
instances, there are no distinct methods created during the execution—only at the beginning and
at the end.

Figure 5: New methods v. recompiled methods in LCSC based on pitch events using the hard
limit approach. Note that the y-axis represents the number of times that the two types of methods,
distinct and recompiled have been compiled.

On the other hand, a small code cache in applications that invoke a large number of methods
can cause excessive pitching, as in the cases of 64KB to 256KB cache sizes in the hard limit
approach (see Figure 6) and significant runtime overheads. LCSC in our experiment can take
as much as 35 times more execution time than the soft limit approach when the code cache is
set to 64KB. We also find that in all applications except LCSC, the code cache requirements are
moderate. Thus, the number of pitch events does not increase significantly. For example, adjusting
the code cache size in AHC, PNGD, SAT, and CLisp has very little effect on the execution time
(see Figure 7). As a reminder, these applications were executed using the same initial heap size
(800KB). Therefore, the differences in performance are mainly due to the changes in code cache
size. With the observation, we conjecture that pitching may be used to reduce the memory footprint
without incurring a substantial amount of overhead in memory constrained systems. We will
conduct experiments to further validate our conjecture as part of future work.

118 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

4 RESULTS

PNGD SAT AHC CLisp

0
5

01
51

02
52

0 3
53

64KB
128KB
256KB
512KB
1024KB

o

f p
it

ch
 e

ve
n

ts

LCSC

0
00002

00004
000 06

0000 8

64KB
128KB
256KB
512KB
1024KB

o

f p
it

ch
 e

ve
n

ts

Figure 6: Pitching overhead when the hard limit approach is used.

Figure 8 depicts the usage of code cache as LCSC is executed. The x-axis represents the
percentage of execution completed and the y-axis represents the amount of memory in the code
cache used by the program. It is worth noting that with 256KB initial cache size using the soft
limit approach, the size of the code cache increases to 1024KB within the first 3% of execution.
However, it will take another 30% of execution to accumulate the compiled methods that would
result in another pitching. In this situation, it may not be necessary to increase the cache size
from 768K to 1024K. In addition, after the pitch event at 33% of execution time, the next pitch
events do not occur until 81 %. One possible improvement to the pitching policy is to reduce the
cache size after the programs are fully initialized. This may result in a few more pitch events but
a significant reduction in memory usage may also be obtained.

Figure 9 depicts the usage of code cache for LCSC with 1024KB cache size applying the hard
limit approach. It is worth noting that there are no pitch events at all until after 2.25% of execution.
The figure also shows that after the first pitch event, there are only two more pitch events at 33 and
81% of execution. As a reminder, this is similar to the number of pitch events in Figure 8 after 4%
of the program has been executed. Thus, a policy that favored a larger cache size clearly reduces
the number of pitching activities during the initial state of execution and would be effective in
memory-constrained environments.

In summary, we conclude that the following policies may be used to improve the pitching
performance.

• Moderate pitching activities have very little effect on the overall performance of the system.
However, excessive pitching can incur a large amount of overhead. Thus, a policy that favors
reducing memory usage over a moderate increase in pitching activity would be effective in
memory-constrained environments.

• Larger initial cache sizes can significantly reduce the number of pitch events during the pro-
gram initialization. Thus, the policy should allocate a large enough cache at the beginning.

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 119

AN EMPIRICAL STUDY OF THE CODE PITCHING MECHANISM IN THE .NET FRAMEWORK

LCSC PNGD SAT AHC CLisp

0
5

01
51

02
52

0 3
53

Application

64KB
128KB
256KB
512KB
1024KB

Ex
ec

u
ti

o
n

 o
ve

rh
ea

d
 (%

)

Figure 7: Execution time overhead in the hard limit approach.

• Once stabilized, the system compiled fewer methods which means that we can potentially
reduce the cache size at the expense of more pitching activities. However, the number of
pitch events should be moderate and not result in a substantial run-time overhead. Thus, the
policy should include reducing the cache size after the initialization phase.

5 CLASSIFICATION OF FREQUENTLY RECOMPILED METHODS

As shown in Figure 5, a large portion of methods are compiled and recompiled over and over
again. In this section, we further identify the types of methods that exhibit this behavior. This
insight may open more avenues to further optimize code cache management strategies.

We conducted experiments by setting the maximum code cache to 64KB to force regular pitch-
ing. We then identified a subset of methods that are called at least once by all five benchmarks. We
investigated the distribution of such methods and the frequency that these methods are invoked.
For example, the distribution for call by all is calculated by observing the number of distinct meth-
ods that are invoked by all five applications. In our experiments, there are 85 methods that fall into
this criteria. We then took the summation of all methods in all applications (last column in Table
1) and the sum is 2438 in this case. The distribution of call by all is calculated by 5×85

2438 or 16%.

120 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

6 FUTURE WORK

0

200

400

600

800

1000

1200

0

0.
13

0.
22

0.
31

0.
45

0.
64

0.
91

1.
33

1.
77

2.
28

3.
46 81

81
.1

81
.2

94
.1 96

99
.8

10
0

Percentage of Execution

M
em

or
y

Us
ag

e
(K

B)

Figure 8: Code cache usage for LCSC (256KB). Notice that the scale of the x-axis is not linear.

We then investigate the invocations frequency of these methods. There are over 3.5 million
total invocations in all applications when the maximum code cache is set to 64KB. We find that
the methods invoked by all applications account for 23.70% of invocations. This is 7% higher than
the distribution depicted in Figure 10, which translates to heavier usage of these methods. We also
find that all of these methods belong to the System library. We then combine the methods invoked
by 5 and 4 applications and find that they only account for 24.90%, which means that methods
used in four applications are not as heavily invoked as ones used by all applications.

6 FUTURE WORK

Better benchmarks that utilize more methods and force the execution engine to pitch more fre-
quently especially for larger cache sizes are needed. In addition, the benchmarks used in this
experiment do not demonstrate the diversity of applications the typical end user runs. More prac-
tical benchmarks are definitely needed to better simulate a real world system. On the other hand,
some of the chosen experimental objects compile reasonable amounts of methods.

With that said, many of our results derive from experimenting with these few benchmark
programs. Thus, our conclusions or suggestions should not be viewed as generalized ones. Instead,
they should be viewed as potential solutions to improve the performance of the code-pitching
mechanism in the SSCLI and .NET Compact Framework. Obviously, experiments with more
benchmark programs are needed.

Future work will focus on four primary goals. The first goal is to develop better benchmarks in
order to better simulate real world uses of the SSCLI. These benchmarks should focus on what a
more average user would be expected to run. New benchmarks should have networking and other
communication methods that are inherent to their proper execution.

The second major goal is to develop a better code pitching mechanism that selectively re-

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 121

AN EMPIRICAL STUDY OF THE CODE PITCHING MECHANISM IN THE .NET FRAMEWORK

0

200

400

600

800

1000

1200

0

0.
16

0.
25

0.
34

0.
56 0.
8

1.
04

1.
34

1.
75 2.
1

3.
26 81

81
.1

81
.2

94
.1

95
.9

99
.9

10
0

Percentage of Execution

M
em

or
y

Us
ag

e
(K

B)

Figure 9: Code cache usage (1024KB). Notice that the scale of the x-axis is not linear.

moves code from the cache, as opposed to the all or nothing approach taken in the current Rotor
implementation. This improved collection mechanism will likely correlate method usage and size
to enable the pitching mechanism to make a better decision as to its usefulness in the future. In
addition, the current Rotor implementation does not decrease the size once the code cache has
been expanded. We plan to investigate the performance gain of decreasing the cache size after the
initial phase of execution.

The third goal is to further investigate the affects of code cache management strategies on
performance metrics not studied in this paper such as start-up time. Typically, applications for
mobile embedded devices are user-interactive. This means that start-up time plays a very important
role in enriching users’ experience. Once the programs have started, the overall performance is
less noticeable by the users as most of the execution time will be spent on input/output. It is
possible to tune the code cache manager to minimize start-up time.

Our last goal is to utilize an on-line profiling to create application-specific code cache manage-
ment policies that perform as well as those created using off-line analysis [23]. It will determine
the proper size, the proper increment, and the proper increment frequency dynamically. Note [23]
introduced these issues but did not study them. The system initializes a small code cache and
lets it quickly grow to a sufficient size to contain all methods needed to start the program. In this
approach, no methods are unloaded during this period. However, when the number of methods
needed has declined (e.g. after 10% of execution), the methods are unloaded and the code cache is
reinitialized to a small size. During this time, the code cache grows very slowly or does not grow
at all as there are only a few methods compiled and used. Toward the end when the number of
methods compiled dramatically increases, the growth rate of the code cache is once again adjusted
to match the applications’ needs. Thus, the system will allow the application to start faster but will
maintain a very small cache size throughout most of the execution.

122 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

7 RELATED WORK

called by 1

called by 2

called by 3

called by 4

called by all

●

●

●

●

●

10 20 30 40 50 60

%

Figure 10: Distribution of methods based on the number of applications that used them.

7 RELATED WORK

In [2], a multi-level recompilation technique was introduced as part of the Jalapeño Virtual Ma-
chine. The basic idea is to use a non-optimized compiler to compile a method the first time it
is called. During the execution, the virtual machine would keep track of all the ”hot” methods
(frequently invoked) and recompile them with higher optimization levels.

Currently, the code pitching mechanism in .NET compact framework as well as the SSCLI
discards all compiled methods that are not in scope. The code cache itself is separate from the
main heap memory region. This type of strategy is often referred to as “flush when full” [17]. One
of the first systems to use the approach to managed code caches or translation-cache is Shade—an
instruction set simulator for execution profiling [5, 6]. In this system, translation cache (TC) is
a separate memory area used to stored translations. When the TC is full, the system flushes all
the entries in the TC. The authors claimed that flushing is advantageous over other approaches
because methods’ chaining makes selective freeing tedious. They initialized the TC to a large size
to minimize the number of flushing [5].

Recent efforts by [24, 23] mainly investigated the performance of a code unloading mechanism
in virtual machines that store both compiled methods and regular objects in the same heap space.
Specifically, they identified what methods to unload and when to unload. They used off-line and
on-line profiling techniques to improve the performance. They reported a code size reduction of
up to 61%. One interesting observation that 70% of compiled methods are dead within the first

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 123

AN EMPIRICAL STUDY OF THE CODE PITCHING MECHANISM IN THE .NET FRAMEWORK

10% of execution time was also reported and confirmed by [1], in which .NET applications were
studied. However, [23] reported difficulties in developing mechanisms to detect a point in time
that represents 10% of execution. Therefore, they used two triggering techniques: unload every
10 GC cycles and unload every 10 seconds.

In addition, they also conducted a preliminary study of a similar scheme used in the .NET
compact framework that stores compiled method bodies in a separate code cache; unloading is
performed when the cache is full. Their experiment consisted of initializing the code cache size
to 64KB and enlarging it by 32KB every 10 unloading cycles. They anticipated two difficulties
that were not studied: dynamically determining the size of the code cache and determining how
often and by what increments to grow. Our proposed activity further investigates and improves the
performance of this code cache management scheme.

It is worth noticing that they reported in their earlier work that native IA32 code tends to be
6 to 8 times larger than the bytecode written in Java. They also reported that on average 61% of
compiled methods are no longer accessed after the first 10% of execution [24].

8 CONCLUSIONS

We have performed experiments to demonstrate the effects of code-pitching on the overall perfor-
mance of .NET applications. We find that the compiled methods have the following properties.
First, they are much larger than typical objects with averages ranging from 300 bytes to 1100
bytes. Second, a large number of methods are repeatedly accessed. Third, these accesses often
occur within the first 6% of execution time. Fourth, methods are compiled prolifically. At 64KB
cache size, the applications compiled over 3.3 million methods.

Based on the above finding, we conduct multiple experiments using different code cache con-
figurations. First, we set the initial cache size to 256KB. We allow the system to expand the cache
as needed. By setting a larger initial cache size (e.g. 512KB versus 256KB), we can reduce the
number of pitch events by 29% (from 7 events to 5 events). Having a large initial cache size can
be advantageous since most of the method reuse occurs within the first few percent of execution.
Larger cache size may defer pitching and promote more reuse. Second, we also find that excessive
pitching can cause significant overhead. However, a moderate amount of pitching barely incurs
overhead. In our experiment we find that when the cache size is set at 2MB, no pitching occur.
However, if we reduce the cache size by half, only 3 pitch events would occur (in LCSC) but the
overall execution time increases only slightly. Thus, we conclude that a well designed pitching
policy can greatly reduce the amount of the code cache footprint without incurring substantial
overheads. In addition, a policy to reduce the code cache size after the initial state can also be
employed to further reduce the code cache footprint.

We also find that there is a significant number of methods that are shared by all applications.
These methods account for 16% of all methods. This methods are invoked prolifically and when
the cache size is set to 64KB, they account for nearly 24% of all method invocations. By looking
at the type of these methods, they are all part of the System library. One possible optimization
based on this insight is not to pitch these methods to minimize recompilation efforts.

124 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

9 ACKNOWLEDGEMENT

9 ACKNOWLEDGEMENT

We would like to acknowledge Tyson Stewart for helping during the initial phase of this project.
This project is partially supported by the National Science Foundation under grant CNS-0411043,
University of Nebraska UCARE program, and University of Nebraska Layman’s Award.

REFERENCES

[1] D. Anthony, M. Leung, and W. Srisa-an. To JIT or not to JIT: The effect of code-pitching
on the performance of .NET framework. In Proceedings of 3rd International Conference on
.NET Technologies, pages 165–173, Plzen, Czech Republic, May 30-31, 2005.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive optimization in the
Jalapeño JVM. In Proceedings of the 15th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 47–65, New York, NY, USA,
2000. ACM Press.

[3] P. Brown. Throw-away compiling. Software Practice and Experience, 6:423–434, 1976.

[4] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic
optimization. In CGO ’03: Proceedings of the international symposium on Code generation
and optimization, pages 265–275, Washington, DC, USA, 2003. IEEE Computer Society.

[5] B. Cmelik and D. Keppel. Shade: a fast instruction-set simulator for execution profiling. In
SIGMETRICS ’94: Proceedings of the 1994 ACM SIGMETRICS conference on
Measurement and modeling of computer systems, pages 128–137, New York, NY, USA,
1994. ACM Press.

[6] R. F. Cmelik and D. Keppel. Shade: A fast instruction set simulator for execution profiling.
Technical report, Mountain View, CA, USA, 1993.

[7] S. Dieckmann and U. Hölzle. A study of the allocation behavior of the SPECjvm98 Java
benchmarks. In Proceedings of the European Conference on Object-Oriented
Programming, June 1999.

[8] DotGNU Project. DotGNU Project - GNU Freedom for the Net. http://www.dotgnu.org,
2006.

[9] Embedded Microprocessor Benchmark Consortium. Grinderbench.
http://www.grinderbench.com/.

[10] R. Jones and R. Lins. Garbage Collection: Algorithms for automatic Dynamic Memory
Management. John Wiley and Sons, 1998.

[11] A. Krall. Efficient JavaVM just-in-time compilation. In J.-L. Gaudiot, editor, International
Conference on Parallel Architectures and Compilation Techniques, pages 205–212, Paris,
1998. North-Holland.

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 125

AN EMPIRICAL STUDY OF THE CODE PITCHING MECHANISM IN THE .NET FRAMEWORK

[12] A. Krall and R. Grafl. CACAO — A 64-bit JavaVM just-in-time compiler. Concurrency:
Practice and Experience, 9(11):1017–1030, 1997.

[13] Microsoft. Ben’s CLI benchmark. http://research.microsoft.com/

[14] Microsoft. Microsoft shared source CLI. http://www.microsoft.com/downloads.

[15] Mono. What is Mono? http://www.mono-project.com/Main Page, 2006.

[16] S. Pratschner. information available from
http://weblogs.asp.net/stevenpr/archive/2004/07/26.aspx.

[17] J. Smith and R. Nair. Virtual Machines : Versatile Platforms for Systems and Processes.
Morgan Kaufmann, June 2005.

[18] D. Stutz, T. Neward, and G. Shilling. Shared Source CLI Essentials. O’Reilly and
Associates, 2003.

[19] Transvirtual. Kaffe virtual machine. http://www.kaffe.org.

[20] D. Ungar. The design and evaluation of a high performance Smalltalk system. ACM
Distinguished Dissertations, 1987.

[21] Q. Yang, W. Srisa-an, T. Skotiniotis, and J. M. Chang. Java virtual machine timing probes:
A study of object lifespan and garbage collection. In Proceedings of 21st IEEE
International Performance Computing and Communication Conference (IPCCC-2002),
pages 73–80, Phoenix Arizona, April 3-5, 2001.

[22] F. Yellin. Just-in-time compiler interface specification.
ftp://ftp.javasoft.com/docs/jit interface.pdf, 1999.

[23] L. Zhang and C. Krintz. Adaptive code unloading for resource-constrained JVMs. In
LCTES ’04: Proceedings of the 2004 ACM SIGPLAN/SIGBED conference on Languages,
compilers, and tools, pages 155–164, New York, NY, USA, 2004. ACM Press.

[24] L. Zhang and C. Krintz. Profile-driven code unloading for resource-constrained JVMs. In
International Conference on the Principles and Practice of Programming in Java, Las
Vegas, NV, June 2004.

ABOUT THE AUTHORS

David Anthony is a senior and an undergraduate research assistant in the Department of Com-
puter Science and Engineering at University of Nebraska-Lincoln, USA. He can be reached at
danthony@cse.unl.edu.

Witawas Srisa-an is an Assistant Professor in the Department of Computer Science and Engi-
neering (http://www.cse.unl.edu) at University of Nebraska-Lincoln, USA. His research interests

126 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

mailto:danthony@cse.unl.edu
http://www.cse.unl.edu

9 ACKNOWLEDGEMENT

include computer architecture, Object-Oriented systems, programming languages, and distributed
systems. He can be reached at witty@cse.unl.edu.

Michael Leung graduated in 2005 with a BS degree in Computer Engineering from the Depart-
ment of Computer Science and Engineering at University of Nebraska-Lincoln, USA. He can be
reached at mleung@cse.unl.edu.

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 127

mailto:witty@cse.unl.edu
mailto:mleung@cse.unl.edu

