
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5, No. 4, Mai - June 2006

Cite this column as follows: Douglas Lyon and Francisco Castellanos: “The Initium RJS
Screensaver: Part 1, MS Windows”, in Journal of Object Technology, vol. 5, no. 4, Mai – June
2006, pp. 7-16 http://www.jot.fm/issues/issue_2006_05/column1

7

The Initium RJS Screensaver: Part 1,
MS Windows

By Douglas A. Lyon and Francisco Castellanos

Abstract
This paper describes a Java-based screensaver technology for the Initium Remote Job
Submission (RJS) system running on Microsoft Windows. Initium RJS is a Java Web
Start (JAWS) technology that enables Java-based grid computing. The Initium RJS
system uses screensavers to enable CPU scavenging.
A screensaver is a program that activates during a period of user-computer quiescence.
Detection of this quiet time enables the use of otherwise wasted CPU cycles. When the
period of user-computer quiescence ceases, the screensaver terminates any currently
running compute jobs, releasing the computer back for general use. Such a program
constitutes a first step toward utilizing otherwise idle compute resources in a grid
computing system.
We are motivated to study screen-savers because they represent a minimally invasive
technology for volunteering CPU services. Typically, computers are used between 40
and 60 hours out of a 168-hour week. This represents approximately 35% utilization.
Screen-saver based cycle scavenging improves this number dramatically.
We are motivated to provide a Java-based environment in order to capitalize on Java’s
inherent heterogeneity. This makes a larger universe of grid-compute servers available,
without requiring changes to the computational program.
This paper is part 1 of a 5 part series on Java-based screensavers. Part 1 addresses
the creation of screensavers on MS Windows platform systems. Parts 2 and 3 address
the Linux and Macintosh-based screensavers. Part 4 addresses the automatic
deployment and installation of the screensavers. Part 5 speaks to the problem of
integration of the screensavers with the Initium RJS system.
Initium RJS is a joint project between DocJava, Inc. and Fairfield University. The goal of
the Initium RJS system is to screen-saver based grid computing available the Java
development community.

THE INITIUM RJS SCREENSAVER. PART 1, MS WINDOWS

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

1 INTRODUCTION

We are interested in screen-saver technologies, in Java, in order to facilitate a minimally
invasive computing service able to make use of otherwise unused computational
resources. There is little written on the subject of screen-saver based grid computing, in
Java.

Screen-saver based grid computing systems are not new [Boinc] but their use for
Java computing is. Also, Java-based screensavers have, in the past, been restricted to MS
Windows and Xwindows (UNIX)-based systems. The idea for using screensavers to
accelerate Java grid computing has been mentioned in literature, but implementations
have not been forthcoming [SaverScience].

We theorize that the creation of a Java-based screensaver that is both cross-platform
and automatically installed will help in the promotion of Java as a grid-based computing
platform. This paper shows how to create a screensaver using an existing framework
called SaverBeans. The SaverBeans development kit is an open-source, freely-available
framework consisting of both C/C++ code and Java code.

2 A JAVA-BASED SCREENSAVER

The SaverBeans Screensaver SDK project, under the Java.net group, provides a set of
native subroutines that invokes Java methods in the screensaver. The SaverBeans SDK
has its roots in the JDIC project (JDesktop Integration Components). The JDIC project
aims to make Java™ technology-based applications ("Java applications") first-class
citizens of current desktop platforms without sacrificing platform independence. Its
mission is to enable seamless desktop/Java integration [JDIC1]. The kit is available from
[JDIC2] as an open-source distribution.

2.1. Building the SaverBeans SDK

Once the development kit has been downloaded, create a copy of the saverbeans_startup
directory and rename it to saverbeans_1. Figure 2.1-1 shows the contents of the
SaverBeans startup directory.

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 9

Figure 2.1-1. The Contents of the SaverBeans Startup Directory

The build directory contains the libraries and platform specific files needed in the
building process. The src directory contains the documentation, packages, and Java code
used by the screensaver.

THE INITIUM RJS SCREENSAVER. PART 1, MS WINDOWS

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

Figure 2.1-2. The Dist Directory is created during the Ant build.

The dist directory is created automatically during the compilation and construction
process, as shown in Figure 2.1-2. Platform specific files of the screensaver are placed in
this directory during the construction process. Copy the building.properties.sample file to
a new file called build.properties. This file contains the SDK home property, and this
must be set correctly. For example:

sdk.home=C:\\j2sdk1.4.2_04

The build.xml file contains the ant build code. In order to perform a correct ant build, you
must set the saverbeans.path in the build.xml file. To enable ant compilation, use:

saverbeans.path=C:/saverbeans-sdk-0.2

2.2 Compiling, Debugging and Deploying

Under windows, we install the Cygwin system [Cygwin]. Using the command prompt,
change directory to saverbeans_1. Type ant clean in order to remove anything left over
from the last build. Type ant debug in order to compile and run the project. A frame will
open, displaying the demo screensaver (a bouncing line).

In order to create a distribution, type ant dist. This step creates the dist directory
containing windows specific files, ready for installation.

Install the screensaver by changing to the bouncingline-win32 folder. This directory
contains three files of interest: bouncingline.jar, bouncingline.src, SaverBeans-api.jar.
Copy these files into the Windows system directory. The exact location is a function of
the windows version:

For Windows XP, the location is: windows/system32
For Windows 98, the location is: windows/system

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 11

For Windows NT, the location is: winnt/system
Figure 2.2-1 shows the files after deployment.

Figure 2.2-1. A Sample Windows XP Deployment

THE INITIUM RJS SCREENSAVER. PART 1, MS WINDOWS

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

Figure 2.2-2. Setting the Screensaver

The last step is to set the screensaver to the bouncingline demo. Open the control panel
and select the bouncingline screensaver in the screensaver tab. We set the time for “Wait”
and apply the changes. The bouncingline screensaver is triggered automatically after the
entered time has passed (given an idle machine, as shown in Figure 2.2-2.

The installation of a screensaver, in windows, requires that the user have write
permission to the windows system directories. Typically, this is a non-issue, for a single
users’ machine. However, in an industrial setting, this can be a showstopper.

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 13

3 IMPLEMENTATION DETAILS

3.1 Screensaver class

As part of the startup package, the code of the bouncingline screensaver is included. The
code is found in the bouncingLine class located in src directory. The complete path is
<startup project location>\src\java\org\jdesktop\jdic\screensaver\bouncingline.

package org.jdesktop.jdic.screensaver.bouncingline;

 public class BouncingLine extends SimpleScreensaver {
 public void init(){…}
 public void paint(Graphics g) {…}
 public void destroy() {…}
 …
}

There are a few points to notice about this class. The BouncingLine extends
SimpleScreensaver, an abstract class that is part of the SaverBeans API. Developers
should extend either SimpleScreensaver or JOGLScreensaver (an OpenGL screensaver
that typically makes use of 3D graphics).

SimpleScreensaver declares the abstract paint method. The frame is rendered by a
regular callback to the paint method. In the BouncingLine class, the paint method erases
the previous painted line and draws the new line. For example:

public void paint(Graphics g) {
 Component c = getContext().getComponent();
 int width = c.getWidth();
 int height = c.getHeight();

 // Erase old line:
 g.setColor(c.getBackground());
 g.drawLine(p1.x, p1.y, p2.x, p2.y);

 // Move points and bounce off walls:
 bounce(p1, dir1, width, height);
 bounce(p2, dir2, width, height);

 // Draw new line:
 g.setColor(lineColor);
 g.drawLine(p1.x, p1.y, p2.x, p2.y);
 }

The SimpleScreensaver class extends the abstract ScreensaverBase class [SaverBeans].
SimpleScreensaver implements the renderFrame method, which is used as a call-back
method from the SaverBeans framework.

THE INITIUM RJS SCREENSAVER. PART 1, MS WINDOWS

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

Two other callback methods include init and destroy. These are called when the
screensaver starts and stops. The init method is called once, and only once, after the
screensaver starts. It will not be called, for example, if screen resolutions change. Our
implementation of the init method follows:

public void init(){
 ScreensaverSettings settings =
getContext().getSettings();
 Component c = getContext().getComponent();
 int width = c.getWidth();
 int height = c.getHeight();
 randomizePoint(p1, width, height);
 randomizePoint(p2, width, height);
 dir1 = new Point(randomVector(), randomVector());
 dir2 = new Point(randomVector(), randomVector());
 String colorOption = settings.getProperty("color");

The second useful method defined in ScreensaverBase is the destroy method, which we
will not need now.

3.2 Screensaver settings

The SaverBeans framework provides an XML file that is used to store screensaver
properties. In the case of the bouncingLine screensaver, the file contains the following
XML, located in src/bouncingline.xml:

<screensaver name="bouncingline" _label="Bouncing Line">
 <command arg="-root"/>
 <command arg="-jar bouncingline.jar"/>
 <command arg="-class
 org.jdesktop.jdic.screensaver.bouncingline.BouncingLine"/>

 <file id="jdkhome" _label="Java Home (blank=auto)" arg="-
 jdkhome %" />

 <select id="color">
 <option id="blue" _label="Blue Line" /> <!-- default -->
 <option id="green" _label="Green Line" arg-set="-color
 #00ff00" />
 <option id="red" _label="Red Line" arg-set="-color
 #ff0000" />
 </select>

 <_description> …..</_description>
</screensaver>

While the use of an XML file to establish these properties seems cumbersome, it is
required because of the framework. These XML files do not need to be altered, once they
are established for a screensaver with a stable class name.

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 15

4 CONCLUSION

Screensavers in a heterogeneous computing environment are an enabling technology for
grid computing based on cycle scavenging. The screensaver software development kit
provides a framework for the construction of screensavers in Java.

The nature of the deployment and construction of the screensaver is labor intensive,
error-prone and tedious. In our next article we will describe the deployment and
construction of the screensaver in an Xwindows environment, under UNIX. A follow-on
article will show how to create a Java-based screensaver for the Macintosh operating
system using the Apple Quartz interface (as opposed to running X on the Mac). After the
three platforms are described, we show how the installation of screensavers can be made
nearly automatic, using Webstart technologies.

A basic limitation of the screensaver is the requirement that the user have write
access to the windows systems directory. The question of how to overcome this limitation
remains a topic of future work.

5 REFERENCES

[Boinc] http://boinc.berkeley.edu/ Last accessed March 14, 2005.

[Cygwin] http://www.cygwin.com Last accessed March 14, 2005.

[JDIC1] Java.net : “JDIC project home”, https://jdic.dev.java.net/ Last accessed March
14, 2005.

[JDIC2] https://jdic.dev.java.net/documentation/incubator/screensaver/index.html Last
accessed March 14, 2005.

[SaverBeans] https://jdic.dev.java.net/documentation/incubator/screensaver/index.html
Last accessed March 14, 2005.

[SaverScience] William L. George and Jacob Scott, “Screen Saver Science: Realizing
Distributed Parallel Computing with Jini and JavaSpaces” in 2002
Conference on Parallel Architectures and Compilation Techniques
(PACT2002), Charlottesville, VA, September 22-25, 2002.

THE INITIUM RJS SCREENSAVER. PART 1, MS WINDOWS

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

About the authors

After receiving his Ph.D. from Rensselaer Polytechnic Institute, Dr.
Lyon worked at AT&T Bell Laboratories. He has also worked for the
Jet Propulsion Laboratory at the California Institute of Technology. He
is currently the Chairman of the Computer Engineering Department at
Fairfield University, a senior member of the IEEE and President of
DocJava, Inc., a consulting firm in Connecticut. E-mail Dr. Lyon at

Lyon@DocJava.com. His website is http://www.DocJava.com.

Francisco Catellanos. Earned his bachelors degree with honors in
Computer Science at Western Connecticut State University. Francisco
Castellanos worked at Pepsi Bottling Group in Somers, NY as a
software developer. Currently he is working on a thesis to complete his
Master's Degree in Computer Engineering from the Fairfield University.
His research interests include grid computing. Francisco Castellanos is

also employed by Access Worldwide in Boca Raton, FL as a software developer. He can
be contacted at fsophisco@yahoo.com.

