
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5, No. 7, September-October 2006

Cite this article as follows: Horatiu Jula: “Alternative Implementation of the C# Iterator Blocks”,
in Journal of Object Technology, vol. 5, no. 7, September–October 2006, pp. 33-41
http://www.jot.fm/issues/issue_2006_09/article1

Alternative Implementation of the C#
Iterator Blocks

Horatiu Jula, Department of Computer Science, ETH Zurich, Switzerland

Abstract
In this paper, we propose an alternative implementation of the C# iterator blocks in
terms of standard C# constructions. This implementation is based on syntactic
sugar, so as the implementation described in the C# specification. Unlike the
standard implementation, the syntactically transformed code that implements the
iterator blocks is executed in a separate thread in a server-like manner by an
enumerator object that handles access requests for its elements. The interface,
represented by client routines such as MoveNext(), Current, Dispose() or Reset(),
accesses the iterator in a thread-safe manner. The synchronization between these
two layers is done using well known routines like lock(), Pulse() or Wait().

1 INTRODUCTION

An iterator block is a block that yields an ordered sequence of values through
yield statements. They are executed in a lazy manner, i.e. instead of returning an
iterator object encapsulating all the elements yielded by the iterator block, an
enumerator object (lazy iterator) is returned, whose execution can be outlined as
follows:

• At each call of a MoveNext() method, it resumes its execution till its next
interruption, which can be caused by an yield statement or by an exception
occurred inside the iterator block.

• An yield return exp statement instantiates the current item with exp and then
suspends the execution till the next call of MoveNext(), Dispose() or Reset().

• An yield break statement triggers the termination of the iterator block’s
execution, but not before all the finally blocks associated with the enclosing
try blocks are executed. If the statement is triggered by a MoveNext() call then,
after the execution ends, MoveNext() returns false.

• A call of the Dispose() method resumes the execution and then, after all the
finally blocks associated with the enclosing try blocks are executed, terminates
the execution of the iterator block.

• The Reset() method first calls the Dispose() method, that causes a clean
termination of the enumerator object’s associated thread, then reinitializes the
enumerator object, i.e. resets its parameters with their initial values and creates

ALTERNATIVE IMPLEMANTATION OF THE C# ITERATOR BLOCKS

34 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

a new thread for its new execution. Initially, the execution of the enumerator
object is suspended, awaiting a call of MoveNext(), Dispose() or Reset() , in
order to be resumed.

Our implementation executes the syntactically transformed iterator block totally
separated from the interfacing methods, i.e. in a new thread, using in a natural way
common synchronization routines like lock(), Pulse() or Wait() , while the standard
implementation executes everything in the MoveNext() method. Furthermore, the
standard implementation transforms the iterator block in a state machine, i.e. into a
switch-if-goto code, which necessitates a prohibitive amount of syntactic sugar when
the iterator block’s code becomes complicated, whereas our implementation requires a
minimal amount of straightforward syntactical transformations for the iterator block.
Moreover, our method allows a straightforward implementation of the Reset()
method. This implementation’s drawback is that, each new enumerator object handles
its requests in a separate thread. Furthermore, the threads of the enumerator objects
that didn’t finish their execution remain alive in a suspended state, awaiting for a new
request. But, this inconvenient can be easily surpassed by creating a pool in which the
references to all the enumerator objects are kept, in order to cleanly terminate them at
the end of the application, by invoking their Dispose() methods.

2 COMPARATIVE EXAMPLE

In this section, we present a comparative example of the syntactical transformations
performed upon the iterator block in the standard implementation and those performed
in our implementation proposal. In the standard implementation, the iterator block:

{
 for (int i = from; i >= to; i--) {
 if (i == to+ 1)
 yield break;
 yield return this.items[i];
 }
}

is transformed in a state-machine like code, enclosed by the enumerator object’s
MoveNext() method:

public bool MoveNext() {
 switch (__state) {
 case 1: goto __state1;
 case 2: goto __state2;
 }
 i = __from;
 __loop:
 if (i < __to)
 goto __state2;
 if (i == __to+ 1)
 goto __state2;
 __current = __this.items[i];
 __state = 1;
 return true;
 __state1:

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 35

 i--;
 goto __loop;
 __state2:
 __state = 2;
 return false;
}

whereas in our implementation proposal the iterator block is minimally transformed in
a natural way, being enclosed by the __run() method of the iterator thread:

public void __run() {
 //enclosing lock and try-catch-finally blocks
 {
 //awaiting first request
 //guard to handle a possible dispose request
 for (int i = __from; i >= __to; i--) {
 if (i == __to+ 1)
 return;
 __return(__this.items[i]);
 //dispose request guard
 }
 }
}

The __return(...) method is explained in the fifth section.

3 THE ENUMERATOR OBJECT

The enumerator object contains the interfacing methods, the iterating thread, the
iterator lock that assures thread-safe access to the iterator, the current item, the current
state, and finally the attributes inherited from outside, i.e. the copies of the parameters
of the method that encloses the iterator block, and the reference to this object. These,
together with the creation and initialization of a new enumerator object are illustrated
in the following code fragment:

ALTERNATIVE IMPLEMANTATION OF THE C# ITERATOR BLOCKS

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

 class Stack<T>: IEnumerable<T> {
 T[] items;
 ...

 public IEnumerator<T> GetEnumerator() {
 //sample iterator block

 for (int i = this.items.Length - 1; i >= 0; i--)
 yield return this.items[i];
 }
 public IEnumerator Iterate(int from, int to) {

//the iterator block is replaced by a return of an
//enumeration object

 return new __StackEnumerator(this, from, to);
 }

 class __StackEnumerator : //the class of the enumerator
object
 IEnumerator<T>, IEnumerator,
 IEnumerable<T>, IEnumerable, IDisposable {

 const int __before = 0; //the iteration is not started yet
 const int __inside = 1; //the last item is not reached yet
 const int __after = 2; //the last item has been reached

 int __state; //the current
 T __current; //the current item to be returned
 Exception __exc; //the exception thrown by the iterator
block
 Stack<T> __this; //the ‘this’ object of the enclosing class
 //the initial values of the inherited parameters
 int __from_0;
 int __to_0;
 //the current values of the inherited parameters
 int __from;
 int __to;

 object __iterLock; //the iterator lock
 Thread __iterThread; //the iterating thread

 public __StackEnumerator(Stack<T> __this,int __from,int
__to){
 this.__this = __this;
 __from_0 = __from;
 __to_0 = __to;
 __iterLock = new object();
 __Iterators.__add(this); //the iterator is added to the
pool
 __init();
 }
 private void __init() { //initialization
 __state = __before;
 __from = __from_0;
 __to = __to_0;
 __exc = null;
 //relaunches the iterator block’s execution
 __iterThread = new Thread(new ThreadStart(__run));
 __iterThread.Start();
 }
 ...
 }
 }

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 37

4 THE INTERFACING METHODS

In this section, we present the implementation of the interfacing methods, namely
MoveNext(), Current, Dispose() and Reset().
The property Current returns the current item of the iterator in a thread-safe manner,
i.e. inside the iterator lock.

 public T Current {
 get {
 lock (__iterLock) {
 return __current;
 }
 }
 }

The MoveNext() method advances to the next item if there is any, otherwise it returns
false. If an exception occurred in the iterator block, then it rethrows it.

 public bool MoveNext() {
 lock(__iterLock) {
 if (__state == __before)

 __state = __inside;//starts the iteration
 if (__state == __inside) {
 //requests a move_next operation
 //resumes the iterator’s execution
 Monitor.Pulse(__iterLock);
 //waits the effectuation of the operation
 Monitor.Wait(__iterLock);
 //if the execution triggers an exception,
 //then the exception is rethrown
 if (__exc != null) {
 Exception __exc1 = __exc;
 __exc = null;
 throw __exc1;
 }
 }
 if (__state == __after)
 return false;
 return true;
 }
 }

The Dispose() method terminates the iteration cycle, provoking the end of the
iterator’s execution and consequently the termination of its associated thread, by
simply setting the iterator’s state to __after.

ALTERNATIVE IMPLEMANTATION OF THE C# ITERATOR BLOCKS

38 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

 public void Dispose() {
 lock(__iterLock) {
 if (__state == __after)
 return;
 __state = __after;
 //requests a dispose operation
 Monitor.Pulse(__iterLock);
 //waits the effectuation of the operation

 Monitor.Wait(__iterLock);
 }
 }

The Reset() method first disposes the enumerator object, the it reinitializes it.

 public void Reset() {
 lock(__iterLock) {
 this.Dispose();
 this.__init();
 }
 }

5 THE SYNTACTICALLY TRANSFORMED ITERATOR BLOCK

The iterator block is executed by the __run() method inside the iterator thread. The
iterator block’s code suffers just minor modifications. The yield return x statement is
replaced with a __return(x) call and the yield break statement is replaced with a
return statement. The rest is just added to the code. The code is enclosed by the
iterator lock due to mutual exclusion considerations, and also by a try-catch-finally
block, in order to handle the possible exceptions thrown from the iterator block.
Guards that handle the possible dispose requests are also added to the code.

{
 for (int i = from; i >= to; i--) {
 if (i == to+ 1)
 yield break;
 if (new Random((int)DateTime.Now.Ticks).Next(4) == 2)
 throw new Exception("exception thrown");
 yield return this.items[i];
 }
}

is syntactically modified as follows:

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 39

private void __run() {

 lock(__iterLock) {
 try {

Monitor.Wait(__iterLock); //awaits the first request
 if (__state == __after) //dispose request guard
 return;
 for (int i = __from; i >= __to; i--) {

 if (i == __to+ 1)
 return; //yield break; --> return;
 if (new Random((int)DateTime.Now.Ticks).Next(4) ==
2)
 throw new Exception("exception thrown");

//yield return x; --> __return(x);
 __return(__this.items[i]);

 //a dispose request might follow
 if (__state == __after)
 return;
 }
 }
 catch (Exception e) {
 //exception saved, in order to be rethrown by MoveNext()
 __exc = e;
 }
 finally {
 __state = __after;
 //announces the end of the execution
 Monitor.Pulse(__iterLock);
 }
 }
}

The __return(T x) method sets the current item to x, then signalizes the end of the
move_next operation and suspends the thread’s execution , waiting for a new request.

 private void __return(T x) {
 __current = x;
 //signalizes the end of move_next
 Monitor.Pulse(__iterLock);
 //waits for the next request
 Monitor.Wait(__iterLock);
 }

6 THE POOL OF ENUMERATOR OBJECTS

In order to cleanly terminate at the end of application all the remaining suspended
enumerator objects, one collects the references to all the enumerator objects, by
adding them to the pool by the time of their creation, i.e. in the constructor, by
invoking __Iterators.__add(this). One cleanly kills the residual enumerator objects by
invoking __Iterators.__killAll(). The class __Iterators, together with these two static
methods, are illustrated in the following code:

ALTERNATIVE IMPLEMANTATION OF THE C# ITERATOR BLOCKS

40 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

 class __Iterators
 {
 private static ArrayList __iterators;

 static __Iterators() {
 __iterators = new ArrayList();
 }

 public static void __add(IDisposable __t) {
 __iterators.Add(__t);
 }

 public static void __killAll() {
 for (int __i = 0; __i < __iterators.Count; __i++)
 ((IDisposable)__iterators[__i]).Dispose();
 }
 }

__Iterators.__killAll() may be invoked automatically or manually anywhere in the
code. For instance, in the case of a graphical application one may insert automatically
the call to __Iterators.__killAll() inside the Dispose() method of the main form.

7 CONCLUSION

The drawback of this implementation is that, each new enumerator object handles its
requests in a separate thread. Moreover, the threads of the residual enumerator objects
stay alive in a suspended state, awaiting new requests. But, this inconvenient can be
easily surpassed by creating a pool with the references to all the enumerator objects,
in order to dispose them all at the end of the application. One can easily notice that, if
the calls to MoveNext() are dense enough (occur very quickly one after another, e.g. in
a loop), then the items’ retrieval is substantially slower than in the case of the standard
implementation, because of the fast alternation of context switches and suspend-
resume cycles, caused by the wait-notify synchronization protocol used in our
approach. But, we believe that this is an extreme situation, i.e. one doesn’t intend in
so many situations to retrieve immediately 1000000 items from the enumerator object.
This method’s advantages are the easiness and the naturalness of the iterator block’s
syntactical transformation and the implementation of the Reset() method, unsupported
in the standard implementation.

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 41

REFERENCES

[C#Spec2004] C# 2.0 Language Specification, MSDN 2004.

[ECMAC#2005] ECMA-334 C# Language Specification, 3rd Edition, June 2005.

About the author
Horatiu Jula research assistant at ETH Zurich, in the department of Computer
Science, institute of Computer Systems, Formal Methods group. My current research
interests are concerning model checking of software programs. I can be contacted at
julah@inf.ethz.ch.

