
JOURNAL OF OBJECT TECHNOLOGY 
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006 

 
Vol. 5, No. 7, September-October 2006 

 
 
 
 

Cite this article as follows: J.F. Gélinas, M. Badri, L. Badri: “A Cohesion Measure for Aspects”, in 
Journal of Object Technology, vol. 5, no. 7, September - October 2006, pp. 97 - 114 
http://www.jot.fm/issues/issue_2006_09/article5 

A Cohesion Measure for Aspects 
Jean-François Gélinas, University of Quebec at Trois-Rivières 
Mourad Badri, University of Quebec at Trois-Rivières 
Linda Badri, University of Quebec at Trois-Rivières 

Abstract 
Aspect-Oriented Software Development is a promising new software engineering 
paradigm. It promotes, in particular, improved separation of crosscutting concerns 
into single units called aspects. AspectJ, the most used aspect-oriented 
programming language, represents an extension of Java. In fact, existing object-
oriented programming languages suffer from a serious limitation in modularizing 
adequately crosscutting concerns. Many concerns crosscut several classes in an 
object-oriented system. Moreover, several metrics have been proposed in order to 
assess object-oriented software quality attributes. However, these metrics do not 
cover the new abstractions and complexity dimensions introduced by the aspect 
paradigm. As a consequence, new metrics must be developed to assess aspect-
oriented systems quality attributes. Cohesion is considered as one of the most 
important software quality attributes. Cohesion refers to the degree of relatedness 
between members of a software component. We propose, in this paper, a new 
approach for aspect cohesion measurement based on dependencies analysis. We 
introduce several cohesion criteria taking into account aspects' features and 
capturing various dependencies between their members. We also propose a new 
aspect cohesion metric and compare it, using several case studies, to few existing 
aspect cohesion metrics. 

1 INTRODUCTION 

Aspect-Oriented Software Development (AOSD) is a promising new software 
engineering paradigm [Sabb04]. AspectJ, as an aspect-oriented programming 
language, represents an interesting extension of Java [Kicz01]. In fact, existing object-
oriented programming languages suffer from a serious limitation in modularizing 
adequately crosscutting concerns [Kicz97, Kicz01]. Many concerns crosscut several 
classes in an object-oriented system. Crosscutting is a structure that goes beyond 
hierarchy as stated in [Kicz04]. The code related to a crosscutting concern is generally 
duplicated within several classes in an object-oriented system. Consequently, these 
classes would be difficult to understand, maintain and reuse. Aspect-Oriented 
Programming (AOP) deals with scattered and tangled code related to crosscutting 
concerns. It particularly promotes improved separation of crosscutting concerns into 
single units called aspects. 

Several metrics have been proposed in the literature in order to assess quality 
attributes (complexity, coupling, cohesion, etc.) in object-oriented systems [Badr95, 
Badr04, Biem95, Chid94, Hend95, Hend96, Hitz95]. Metrics have become essential 



 
A COHESION MEASURE FOR ASPECTS 

 
 
 
 

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 7 

tools in some disciplines of software engineering [Pres01]. However, existing object-
oriented metrics are not adequate to capture all the features of aspect-oriented 
software as mentioned in many papers [Cecc04, Sant03, Zaca03, Zhao03, Zhao04]. 
AOSD introduces new abstractions and complexity dimensions to software 
engineering. As a consequence, new metrics taking into account aspects' features must 
be developed to assess aspect-oriented systems quality attributes. 

High cohesion is a desirable property of software components. Cohesion is an 
underlying goal to continually consider during the design process [Larm04]. It is 
widely recognized that highly cohesive components tend to have high maintainability 
and reusability [Biem95, Bria98, Chae00, Li93]. Cohesion refers to the degree of 
relatedness between component members. Grady Booch describes high functional 
cohesion as existing when the elements of a component all work together to provide 
some well-bounded behavior [Booc94]. The cohesion degree of a component is high 
when it implements a single logical function. It should be difficult to split such a 
component. Cohesion can be used to identify the poorly designed components. A 
component with low cohesion may have disparate and non-related members. Such a 
component has probably been assigned many unrelated responsibilities. Design 
elements with low cohesion may be considered for restructuring. AOP promotes 
separating crosscutting concerns and addresses some of these problems. We can 
expect, for example, cohesion improvement in classes since the code corresponding to 
crosscutting concerns is implemented in a more modular way. However, we believe 
that aspect responsibility assignment should also follow these well-tested software 
engineering principles. An aspect must express a concern (or a part of a concern) in a 
cohesive manner. Like classes assigned disparate responsibilities, an aspect 
implementing several and disparate concerns will present a low cohesion. We can 
expect that such an aspect will be difficult to understand, to test, to reuse and to 
maintain. 

Only few papers addressing aspect cohesion have been published in the literature. 
We discuss, in the following sections, some aspects' features and particularly the 
various dependencies that exist between their members. Based on these dependencies, 
several aspect members' connection criteria will be introduced. These criteria will 
define our foundations for aspect cohesion and the metric we propose for its 
assessment. The proposed metric is evaluated using several concrete case studies and 
compared to the few existing aspect cohesion metrics. 

The rest of the paper is structured as follows: Section 2 summarizes the few 
related works. Section 3 discusses the different dependencies between aspect 
members. We present, in section 4, several aspect members' connection criteria. 
Section 5 presents our approach for aspect cohesion and a new metric allowing its 
measurement. In section 6, several small case studies will be presented illustrating our 
proposal and comparing it to the other related approaches. Section 7 presents the 
results of the first experimental study that we conducted in this field. Finally, section 
8 gives some conclusions and future work directions. 



 
 
 
 
 
 

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 99 

2 RELATED WORK 

Presently, few papers addressing aspect-oriented programs quality have been 
published in the literature [Cecc04, Sant03, Zaca03, Zhao03, Zhao04]. Zhao and Xu's 
approach [Zhao04] is the first proposal in the field of aspect cohesion measurement. It 
is based on a dependency model for aspect-oriented software that consists of a group 
of dependency graphs. According to Zhao and Xu’s approach, cohesion is defined as 
the degree of relatedness between attributes and modules. Zhao and Xu present, in 
fact, two ways for measuring aspect cohesion based on inter-attributes (γa), inter-
modules (γm) and module-attribute (γma) dependencies. The first way suggests that 
each measurement (γa,γm,γma) works as a field. Therefore, aspect cohesion for a given 
aspect A is defined as a 3-tuples Γ(A) = (γa,γm,γma). They also suggest another way for 
cohesion measurement where each facet could be integrated as a whole with β 
parameters. Aspect cohesion is then expressed as: 
 

 
  0 n = 0 
Γ(A) =  β* γm k = 0 and n ≠ 0 
  x Others 
 

 
Where x = β1* γa + β2* γm +  β3 * γma, k the number of attributes and n the number of 
modules in aspect A. 

The choice of the evaluation method (in tuples or as a whole) and/or the 
parameters weight β1, β2, and β3 is arbitrary. In addition, some relationships definition 
(inter-attributes cohesion in particular) and their consideration in aspect cohesion 
measurement are difficult to capture. In general, this approach suggests a complex 
way to measure aspect cohesion that may be problematic to use in a real development 
context and particularly in the case of real scalable aspect-oriented software. 
Generating such dependency graphs is a time consuming process while parameter’s 
weighting could be misleading. 

Sant’ Anna et al. proposed in [Sant03] an extension of the well-known LCOM 
(Lack of Cohesion in Methods) metric developed by Chidamber and Kemerer 
[Chid94]. The proposed metric LCOO (Lack of Cohesion in Operations) measures the 
amount of method/advice pairs that do not access to the same instance variables. This 
metric measures the lack of cohesion of a component. According to their approach, if 
a component Ci has n operations (methods and advice) Oi,…, On then {Ij} is defined 
as the set of instance variables used by operation Oj. Let |P| be the number of null 
intersections between instance variables sets. Let |Q| be the number of non-empty 
intersections between instance variables sets. Then, the lack of cohesion is defined by: 
 

LCOO = |P| – |Q|, if |P| > |Q|,  
LCOO = 0 otherwise. 

 



 
A COHESION MEASURE FOR ASPECTS 

 
 
 
 

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 7 

A high LCOO value, according to Sant' Anna et al., indicates disparateness in the 
functionality provided by the aspect. The LCOM metric, on which the LCOO metric 
is based, has been widely experimented and discussed in the literature. It suffers from 
several problems as stated, among others, by B. Henderson-Sellers in [Hend96]. The 
fact that this metric is not normalized leads to some difficulties in the interpretation of 
the results. We believe that the LCOO metric suffers from the same problems. This 
will be discussed in section 6. 

3 ASPECT MEMBERS DEPENDENCIES 

Our basic concepts will be illustrated using AspectJ [Aspe05]. The proposed approach 
is easy to implement using static analysis of the code. AspectJ introduces several new 
language constructs such as: aspect, join points, pointcuts, advice as well as inter-type 
declarations. These various elements (including attributes and methods), which we 
call aspect members, allow an aspect expressing a concern that crosscut several basic 
modules. A join point represents well-defined points in the program flow, such as 
method calls and field sets. Pointcuts describe join points and context to expose. 
Advice is a method-like abstraction that defines code to be executed when a join point 
is reached. Pointcuts are used in the definition of an advice. Inter-type declarations 
defines how an aspect modifies a program's static structure, namely, the members and 
the relationship between components. Pointcuts and advice dynamically affect 
program flow, and inter-type declarations statically affects a program's class 
hierarchy. For further information on AspectJ mechanisms, one can see [Aspe02]. 

Such as for class members, high relatedness must exist between aspect members. 
To achieve its role, various interactions (direct and indirect) between its members are 
necessary. So, the degree of relatedness between members of a cohesive aspect should 
be high. Pointcut usage is closely tied with the advice concept. Anonymous pointcuts 
definition seems to reinforce this idea. Pointcuts dependencies are indirectly taken 
into account by advice. We believe that dependencies based on context exposure 
(provided by pointcuts, for example) are rather related to coupling concept. 

4 ASPECT COHESION CRITERIA 

We believe that aspects should implement crosscutting concerns in a cohesive way. 
As for classes, high functional cohesion exists when the elements of an aspect all 
work together to provide some well-bounded behavior. Aspect cohesion is an internal 
software attribute that measures the degree to which its members are bounded 
together. Cohesion can be used to identify the poorly designed aspects. An aspect with 
low cohesion has probably been assigned unrelated concerns. We can expect that such 
an aspect will be difficult to understand, to test, to reuse and to maintain. 

An aspect may be represented by its data members (attributes) and its modules 
(methods and advice). In this section, we define the various connections that may 
exist between aspect members. To this end, we present various dependencies between 
attributes and modules. The interactions between aspect’s members are situated at two 



 
 
 
 
 
 

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 101 

distinct levels: Modules-Data level and Modules-Modules level. From these 
interactions, several relationships between aspect members will be defined. 

Let’s consider an aspect Aspecti. Let A={ A1, A2 … Aa} be the set of its 
attributes and M={ M1, M2 ... Mm} the set of its modules. The modules-data 
connection criterion, defined in what follows, is based on attributes usage. It allows 
capturing modules sharing common attributes. The modules-modules connection 
criterion is based on methods invocation. It allows capturing interactions between 
modules, which do not share any attribute in common. 

Modules-Data Connection Criterion 

Definition 1: Let UAMi be the set of attributes used directly or indirectly by the 
module Mi. An attribute is used directly by a module Mi if the attribute appears in its 
body. An attribute is indirectly used by a module Mi if it is used directly by another 
module invoked directly or indirectly by Mi. There are m sets UAM1, UAM2, … 
UAMm. Two modules Mi and Mj of an aspect are related by the UAM relationship if 
UAMi ∩ UAMj ≠ ∅. It means that there is at least one attribute shared (directly or 
indirectly) by the two modules.  

In the example illustrated by figure 1, we can notice for example that modules M1 
and M2 are related by the UAM relationship. They share the same attribute A1. In the 
other hand, modules M1, M3 and M4 are also related by the UAM relationship. Module 
M1 access directly to attribute A2 as it is the case of module M3, while the module M4 
uses the module M3 which access to the attribute A2. In fact, according to figure 1, we 
have: UAM1 = {A1, A2}, UAM2 = {A1}, UAM3 = {A2} and UAM4 = {A2}. We have 
then, UAM1 ∩ UAM2 = {A1}, UAM1 ∩ UAM3 = {A2} and UAM1 ∩ UAM4 = {A2}. 
 

 
 

Figure 1. Modules sharing the same attributes. 
 

Modules-Modules Connection Criterion 

Definition 2: Let UMMi be the set of modules used directly or indirectly by the module 
Mi. A module Mj is used directly by a module Mi if Mj appears in the body of Mi. A 
module Mj is indirectly used by a module Mi if it is used directly by another module 
used directly or indirectly by Mi. There are m sets UMM1, UMM2, … UMMm. Two 
modules Mi and Mj of an aspect are related by the UMM relation if UMMi ∩ UMMj ≠ 
∅. It means that there is at least one module jointly used (directly or indirectly) by the 
two modules. We also consider that Mi and Mj are directly related if Mj Є UMMi or Mi 
Є UMMj. 
 



 
A COHESION MEASURE FOR ASPECTS 

 
 
 
 

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 7 

 
 

Figure 2. Modules calling the same module. 
 
In the example illustrated by figure 2, we can notice for example that modules M1 and 
M4 are related by the UMM relationship. They use the same module M2. In the other 
hand, modules M1 and M5 are also related by the UMM relationship. Module M1 uses 
directly the module M2 as it is the case of module M4, which is used by the module 
M5. In fact, according to figure 2, we have: UMM1 = {M2}, UMM4 = {M2, M3}, UMM5 
= {M2, M3, M4}. We have then, UMM1 ∩ UMM4 = {M2}, UMM1 ∩ UMM5 = {M2} and 
UMM4 ∩ UMM5 = { M2, M3}. 

5 ASPECT COHESION MEASUREMENT 

Based on the introduced connection criteria, we define the cohesion of an aspect by 
the degree of relatedness of its modules. The other members of the aspect are, in fact, 
indirectly considered. We are inspired by some approaches proposed for class 
cohesion measurement [Badr95, Badr04, Biem95]. We define, in what follows, our 
measurement of aspect cohesion. Let us define NM(Aspecti) as the total number of 
modules pairs in an aspect. NM is the maximum number of connections between 
aspect modules. Thus, in an aspect having N modules, NM(Aspecti ) = N * (N –1) / 2, 
N > 1. 

Definition 3: Two modules Mi and Mj can be connected in many ways: by 
sharing attributes (definition 1) or by sharing modules (definition 2) or both. 

Consider an undirected graph GD where the vertices represent the modules of the 
aspect. There’s an edge between two modules Mi and Mj if they are related. Let 
NC(Aspecti ) be the number of connections between modules. NC(Aspecti) is given 
by the number of edges in the graph GD. We define a new metric for aspect cohesion 
measurement based on relationships between its modules. The proposed aspect 
cohesion metric ACoh represents the relative number of connected modules: 
ACoh(Aspecti ) = NC(Aspecti ) / NM(Aspecti ) Є [0,1]. 

Moreover, the considered graph may be used to generate the number of different 
groups of connected members (NCM) in the aspect. The number of groups of 
connected members (NCM) in an aspect may also be considered as an indicator of the 
lack of cohesion in the aspect. It is intended that an NCM value equal to 1 indicates 
that there is a single group of connected members, whereas an other value (> 1) of 
NCM may be used to indicate that an aspect may be more successful if split into two 
or more aspects. This may reveals the disparateness in the functionality provided by 
the aspect. The NCM value, in the case of an aspect where all its members work all 
together to achieve some bounded behavior, will be equal to 1. 



 
 
 
 
 
 

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 103 

The ACoh metric gives the degree of relatedness between aspect' members. A 
low value of ACoh indicates that the aspect' members are poorly related, in spite of 
the fact that they may constitute a single group of related members working together 
to implement a bounded behavior. However, it may also indicate (in an implicit way) 
the existence of several (two or more) groups of connected members. In fact, these 
different groups may reflect, in some cases, the disparateness of the roles assigned to 
an aspect. In this case, we will be able to determine it only by reviewing the code. A 
low value of ACoh may be interpreted in different ways and reveals in fact various 
situations: (1) the members of the aspect constitute a single group of connected 
members but are however poorly related, (2) the roles assigned to the aspect are in 
fact disparate (unrelated), and (3) possibly both. In practice, we may have two aspects 
with comparable values of cohesion (let us assume 0.50): In the case of the first 
aspect, the members are poorly related but constitute a single group of connected 
members, and in the case of the second aspect the roles assigned to the aspect are 
disparate (unrelated) which will be reflected in its implementation. Without the NCM 
metric, only by reviewing the code we will be able to determine it. The metric NCM 
reveals in an explicit way this problem. Together, they reflect in several situations 
some design problems. The case studies (section 6) illustrate this dimension. The 
ACoh metric indicates the cohesion degree of the aspect. The NCM (taken with 
ACoh) helps in interpreting the results. 

Moreover, Briand et al. suggest in [Bria98] that cohesion measurement must have 
the following properties: nonnegative and standardized, has a minimum and a 
maximum, monotonous and that cohesion should not increase when two components 
are combined. ACoh metric provides a nonnegative and continuous value that range 
between a minimum of 0 and a maximum of 1. The last property will be illustrated in 
the next section. 

6 CASE STUDIES 

In this section, we present three case studies. Each one will illustrate our approach on 
a concrete example. Examples were selected in order to illustrate various situations 
while comparing our metric to the others proposals. 

Case Study 1 

Our first case study will be based on the example used by Zhao and Xu [Zhao04] to 
illustrate their approach. The code is presented in figure 3. This will allow us giving a 
first illustration of our proposal on a concrete example and positioning it in 
comparison with Zhao and Xu and Sant’ Anna et al. approaches.  
 
 



 
A COHESION MEASURE FOR ASPECTS 

 
 
 
 

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 7 

 
Figure 3: Point and Shadow example. 

 
While examining the code of this aspect, several dependencies exist between aspects 
members. The association between a Point and a Shadow is adequately captured. 
Figure 4 illustrates the various members (data and modules) in the considered 
example with their respective interactions. The graph given by figure 5 represents 
pairs of connected modules captured by our approach. Modules are represented by 
vertices in the graph. Connections between modules are represented by edges. 
 

Figure 4: Interactions between aspect members. 

 

 
Figure 5: Connections between aspect modules. 



 
 
 
 
 
 

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 105 

 
For example, using definition 1, we get an edge between M2: associate() and M3: 
getShadow() (figure 5). Indeed, both M2: associate() and M3: getShadow() modules 
access the data member D2: shadow (figure 4). Using definition 1 again, one can 
directly connect Module M4: after setting with Module M6:after settingY (figure 5). 
Indeed, the attribute D2: shadow is indirectly used by both advices (M4 and M6) since 
it is respectively used directly by Module M2: associate () (which is used by M4) and 
M3: getShadow() (which is used by M6). Modules M5: after settingX and M6: 
afterSettingY can be related using definition 1 or definition 2. In order to simplify the 
notation, we’ll use PSP to represent PointShadowProtocol. We give, in what follows, 
the obtained cohesion values for the considered example according to the three 
approaches: 
 

ACoh (PSP) = NC (PSP) / NM(PSP) = 11 / 15 = 0.73 
LCOO =   |P| - |Q| = 13 – 2 = 11 
Γ(A) (Zhao) = 1/18 = 0.056 

 
As mentioned above, several dependencies exist between the aspect members. The 
obtained value (0.73), according to our approach, reflects these dependencies. The 
NCM number is equal to 1. In this example, the cohesion value suggested by Zhao 
and Xu' metric is equal to 1/18 (0.056) as stated in their paper [Zhao04] (based on a 
scale from 0 to 1). This measure indicates a very low cohesion, not to say a non-
existent cohesion. However, this is not true. The obtained value does not reflect the 
structure of this aspect. With the present case study, LCOO gives 11. It is difficult to 
interpret since there is no guideline on the interpretation of any particular value. 

Case Study 2 

Gregor Kiczales stated in [Kicz04] that a concern is any element of a program (or 
design, requirements, test …) that you’d like to consider as a single unit. Concerns 
can be large or small. For example, the error-handling strategy of a system may itself 
be composed of many smaller aspects. We believe that aspect responsibility 
assignment should follow well-tested software engineering principles. An aspect must 
express a concern in a cohesive manner. Like classes that have been assigned 
disparate responsibilities, an aspect implementing several and disparate concerns will 
present a low cohesion. Such aspect will (intuitively) be difficult to understand, to 
test, to re-use and to maintain. In order to reflect this important design problem, let us 
take a concrete example. 

Let us assign to aspect PointShadowProtocol (from previous case study 1) a new 
concern, the validation of pre-conditions assignment for attributes x and y in Point. A 
simple message will be displayed if the pre-conditions are not respected. Therefore, 
the aspect is expressing two concerns: association between a Point and its Shadow 
(concern A) as well as the validation of the pre-conditions (concern B). These two 
roles are, in fact, disparate. No direct or indirect connection exists between them. 
 



 
A COHESION MEASURE FOR ASPECTS 

 
 
 
 

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 7 

 
 

Figure 6: Connections between aspect members. 
 
Our objective, through this case study, is to show that using concrete example our 
approach reflects (through the obtained measurement) the disparateness that may exist 
in the functionality provided by an aspect (several roles assigned to the aspect). This 
should result, inevitably, in a significant drop of cohesion within the aspect. Graph 
presented by figure 6 illustrates the pairs of connected modules in the aspect. Aspect 
modules are represented by vertices while edges represent relationships between 
them. Further examination of figure 6 content shows that the two roles do not share 
anything. We give, in what follows, the obtained cohesion values for the considered 
example according to the three approaches: 
 

ACoh (PSP) = NC (PSP) / NM (PSP) = 17 / 45 = 0.38 
LCOO =   |P| - |Q| = 42 – 3 = 39 
Γ(A) (Zhao) = 7 / 270 = 0.026 

 
We have, in fact, two unrelated concerns that have been assigned to the same aspect. 
A significant drop of cohesion is reflected by the new value of ACoh. This drop is 
also reflected by LCOO metric since we get a value equals to 39. As stated, for 
example, by Henderson-Sellers in [Hend96] (for the LCOM metric), this is difficult to 
explain since there is no guideline on the interpretation of any particular value. When 
there is no cohesion, we expect the cardinality of the set P (the number of pairs that 
have no similarity) to be high and of the set Q (the number of pairs which have some 
similarity) to be low, and thus LCOO has a large value in this example. Another 
concern is that LCOM (and LCOO indirectly) attempts to measure only structural 
cohesion, whereas a major focus of OO is its ability to create logically (i.e., 
semantically) cohesive modules (classes) [Hend96]. LCOO do not capture this 
characteristic, which is important in an aspect-oriented system. Henderson-Sellers 
also suggest in [Hend95] that a better LCOM measure should have values on a 
percentage range (a fraction/percentage of a perfect value). The ACoh metric 
correctly reflects those properties. Finally, the measurement obtained with Zhao and 
Xu's metric in this case also does not reflect the structure (in terms of dependencies 
between members) of the considered aspect. 

Moreover, and knowing that the responsibilities assigned to the aspect are 
(intuitively) non-related, we should have more than one group of connected members. 
In fact, this is also reflected by the NCM number (equal to 2 in this case) of the 



 
 
 
 
 
 

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 107 

considered example. By examining the GD graph (figure 6) and the non represented 
details regarding the attributes (interactions between modules and attributes), we can 
observe that the aspect is composed of two unrelated groups of connected members. 
The two groups of connected members are non-related. This explains also the lack of 
cohesion in the considered example that is adequately reflected by the ACoh value. 
This aspect may be considered for restructuring (splitting it into two separate aspects). 

Case Study 3 

The following case studies will be based on the AspectJ implementation of some GOF 
Design Patterns [Gamm95] proposed by Hanneman and Kiczales [Hann02]. 
Hanneman and Kiczales stated in [Hann02] that improvements of using aspect 
paradigm come primarily from modularizing the implementation of the pattern. Using 
the aspect paradigm, 74% of GoF patterns are implemented in a more modular way 
and 52% are reusable. An integral part of achieving this consists in removing code-
level dependencies from the participant classes to the implementation of the pattern. 
Using aspect programming, 12 of 23 design patterns are represented as abstract aspect 
into reusable library. Cohesion amongst those aspects should be high. This is our first 
investigation of an interesting dimension introduced by aspect programming. 
Reusable aspects could be seen as design pattern templates. For this first review, we 
choose to exclude abstract methods, interface declarations as well as inheritance 
considerations from our measurement. We present, in what follows, three of the GOF 
design patterns. We give, for each pattern, the obtained cohesion measures using our 
metric (ACoh), the LCOO metric [Sant03], and the Γ(A) metric [Zhao04]. 

Discussion 

Table 1 gives a summary on the obtained cohesion values for the design patterns. For 
this first review, we present the Observer, the Mediator and the Command patterns. 
We obtained strong cohesion measurement using our metric (ACoh = 1) for the 
Observer and Mediator patterns. By examining the different details related to the 
dependencies that exist between the pattern members, we can note that their members 
constitute a single group of connected members. This indicates that all the members 
of the Observer and the Mediator pattern work together to provide some well-bounded 
behavior. The NCM number is also equal to 1. High cohesion for an aspect indicates 
that its various members express in a cohesive way a singular role (concern) that will 
be difficult to split. However, we obtained with the command pattern a significant 
drop of cohesion (ACoh = 0,5 and LCOO = 32). These results reflect the structure of 
the Command pattern. The members of the Command pattern are not as strongly 
related as the members of the Observer and Mediator patterns. Moreover, the obtained 
value in this case for the number of groups of connected members (NCM) is 2. This 
indicates that the members of the Command pattern constitute two groups of 
connected members in opposite to the two other patterns. This dimension is reflected 
by NCM value. We see, according to this case, that the ACoh metric discriminates the 
patterns according to their structures. 

On the other hand, we can notice that the obtained values according to LCOO 
metric are difficult to interpret since there is no guideline on the interpretation of any 
particular value. If we consider the Observer pattern and the Mediator pattern, which 



 
A COHESION MEASURE FOR ASPECTS 

 
 
 
 

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 7 

are quite similar in terms of members' relatedness, the corresponding LCOO values 
are respectively 6 and 1. It is difficult to interpret the difference between the two 
values since there is no range between a minimum and a maximum value. 
 

Table 1: Case studies cohesion values. 
Pattern ACoh LCOO Γ(A) 
Observer 1 6 0.41 
Mediator 1 1 0.66 
Command 0.50 32 0.032 

 
Finally, plotting the results of Zhao and ACoh metrics for the patterns will show that, 
in relative terms, the two behave identically. It would thus seem that the essence of 
cohesiveness is captured by both metrics. However, upward shifts of Zhao's metric 
seem problematic. The reason why we get such a high value comparatively to the 
previous case studies could be partially explained by the fact that the Observer and 
Mediator patterns only uses a single attribute. Consequently, the measure of the inter-
attribute cohesion (γa) suggested by their approach is 1. As a reminder, Γ(A) is 
calculated using β1* γa + β2* γm +  β3 * γma; where every γ is a cohesion facet. Since 
we are using, in our opinion, an arbitrary value of 1/3 for our β parameters, the 
contribution of β1* γa is important. While examining the values obtained using the 
Zhao and Xu' metric, the difference between the cohesion values of Observer and 
Mediator patterns, in the one hand, and the cohesion value of Command pattern, in the 
other hand, is important. ACoh suggests that Observer and Mediator patterns are 
twice cohesive than the Command pattern where Zhao and Xu's metric suggests that 
those patterns are, respectively, 12 and 20 times more cohesive. This behavior seems 
revealing instability of this metric. It is, however, necessary to make more 
investigations before drawing any final conclusion on this particular subject. 

7 EXPERIMENTAL STUDY 

In practice, the true value of cohesion metrics lies in their potential to help assess 
large pieces of code that cannot easily be characterized by developers. So far, the 
aspects used to contrast ACoh with the other two metrics are all small and 
uncomplicated. So far we only presented simple examples with limited interactions. 
However, given the situation of AOSD, it is quite difficult to find some real scalable 
aspect-oriented applications. 

For this first experimental investigation, we developed a cohesion measurement 
tool (in Java) for AspectJ programs to automate (in the present version) the 
computation of the LCOO and ACoh metrics. We also choose to exclude abstract 
methods and interface declarations for this first review. While we believe that the 
proposed approach adequately reflects aspect cohesion compared to the others 
proposals, an interesting dimension is brought by inheritance. Concrete aspect will 
give a concrete implementation for abstract methods or will specify concrete 
participants with corresponding interface implementations. We plan to include this 
dimension in a future work and extend our approach with regards to inheritance 
mechanisms and relationships. 



 
 
 
 
 
 

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 109 

Selected system 

Even if it is still in a development process, we choose to analyze the Atrack project, 
an open source bug tracking application developed by Bodkin and Mulez [Atra05] 
that demonstrates use of Aspect-Oriented Programming (AOP) with AspectJ. It uses 
AOP pragmatically to provide systematic support for technical, middleware, and 
business concerns. The project also provides and demonstrates effective use of a 
proposed common support library for AspectJ, which provides flexible support for 
exception handling, security, logging, tracing, transaction and persistent session 
management, and virtual mock objects for testing. 

Results 

We measured aspect cohesion values according to ACoh and LCOO metrics for the 
selected test system. Table 2 provides the obtained results. LCOO measures the 
amount of method/advice pairs that do not access the same instance variables. A high 
LCOO value indicates disparateness in the functionality provided by the aspect. ACoh 
is based on modules-data and modules-modules connection criteria and count the 
degree of relatedness of the modules. 
 

List of aspects # LCOO ACoh 
AjeeExceptionHandling 1 0 1 
AjeeLogManager 0 0 0 
AtrackActionDefinition 0 0 0 
AtrackLogManager 0 0 0 
ATrackTransactionControl 1 0 1 
Authentication 2 1 1 
ControllerExceptionHandling 2 1 1 
ExecutionMonitor 12 66 0.32 
ExecutionTracer 20 170 0.47 
HttpSessionTracer 3 3 1 
Invariants.java 1 0 1 
LogManager 15 105 0.74 
ModelExceptionHandling 1 0 1 
Observing 0 0 0 
Standards 0 0 0 
VirtualMocks 15 101 0.08 

 
Table 2: Atrack project – Cohesion values. 

 
It is intended that a small value of LCOO and a high value of ACoh imply high 
relatedness between aspect members. As stated by Henderson-Seller in [Hend95], a 
measure must give values that can be uniquely interpreted in terms of cohesion. 
LCOO does not have this ability. Since there’s no guideline on the interpretation of 
any LCOO values, the results in table 2 are difficult to compare. This is partially due 
to the fact that LCOO measure does not represent a number of potential connections 



 
A COHESION MEASURE FOR ASPECTS 

 
 
 
 

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 7 

ratio. Moreover, LCOO metric does not include the ability to give values across a full 
range and nor for any specific value to have a higher probability of attainment that 
any others, all other things being equals as stated in [Hend95]. This remark holds for 
LCOO metric since it is based on the LCOM metric. For example, a LCOO value of -
12 or -3 will be treated as a 0. The probability of observing the 0 value is higher than 
any other value. This seems problematic and will be further discussed with an 
example. 

Some results could be extracted from table 2. Let us consider the LCOO values 
for the aspects LogManager (LCOO = 105) and VirtualMocks (LCOO= 101). With 
these results, one can conclude that these aspects are quite disparate. The value of 
ACoh for VitualMocks (ACoh = 0.08) seems to support this assumption while the 
ACoh value of LogManager is fairly high (ACoh =0.74). Indeed, VirtualMocks aspect 
defines 15 modules that are quite disparate. The maximum number of connections 
between the aspect members is N * (N - 1) / 2 =  15 ( 15 -1 ) / 2 = 105. For this 
particular aspect, only 8 modules are directly related. We obtained a low cohesion 
measure (ACoh = 0.08). For the considered aspect VirtualMocks, both metrics LCOO 
and ACoh suggest a low cohesion value (LCOO = 101 et ACoh = 0.08). However, 
this is not the case with the LogManager aspect (LCOO = 105 et ACoh = 0.74). 

The code presented in figure 7 is extracted from the LogManager aspect. An 
attribute, logManagerLogger, is defined and accessed by the getLogger() method. No 
other method, besides getLogger(), uses the logManagerLogger attribute directly. This 
partially explains the low value of LCOO since |P| is defined as the number of null 
intersections between instance variables sets. For this example, |P| value will be fairly 
high. With the LCOO metric, interactions between modules are not captured if the 
modules don’t access directly to an instance variable. A fairly high number of related 
modules are not considered by the LCOO approach. On the other hand, the ACoh 
value = 0.74, can be explained by the fact that our approach takes these relationships 
into account. LogTrace, logWarn, logInfo methods access indirectly to 
logManagerLogger attribute with a direct call to getLogger() method. Indirect 
dependencies will be captured by the ACoh approach. This is an important dimension 
that is not reflected by LCOO metric. 
 

Figure 7: LogManager aspect (partial). 
 
Another example concerns the Authentication aspect. This aspect is fairly simple ; it 
only defines an attribute SUBJECT_ID, a method forceRedirect() and one advice 



 
 
 
 
 
 

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 111 

(around type). Using Sant’ Anna et al approach, we obtain a cohesion measure: 
LCOO = |P| – |Q| = 1 – 0 = 1. Modules forceRedirect( ) and around advice do not 
access SUBJECT_ID attribute. However, multiple calls to forceRedirect() method are 
made within the aspect body. Again, this dimension is captured by ACoh. A cohesion 
value of 1 is obtained with ACoh since all the modules are clearly related. The 
Modules-Modules interactions definitions allow us to adequately capture these 
relations that are not reflected by the LCOO approach. 

This first review allowed us to support some of our intuitions. Indirect 
dependencies will be captured by the ACoh approach. Moreover, some aspects 
(Observing, Standards, etc) presented in table 2 do not defined any modules. For these 
aspects, cohesion values of LCOO and ACoh metrics are equal to 0. LCOO suggests a 
perfect cohesion value for this particular aspect: one can obtain LCOO = 0. LCOO 
approach will suggest a perfect cohesion value whether the aspect is empty or 
implementing a well-bounded behavior. Let us consider an example where an aspect 
defines 3 perfectly related modules; the cohesion value LCOO = |P| – |Q| = 0 – 3 = 0. 
To interpret these 2 examples, we have to refer to the source code. Some values of 
LCOO have a higher probability of attainment that any others, all other things being 
equals. The null value is one example; -3 is being treated as 0. This is a major 
problem. With the ACoh approach, an empty aspect will lead to cohesion measure 
equals to 0. We believe that using empty aspects is questionable. 

8 CONCLUSIONS AND FUTURE WORK 

We presented, in this paper, a new approach for aspect cohesion measurement. It is 
based on dependencies between aspect members. The proposed metric measures the 
degree of relatedness of its modules. We believe that this work represents a first 
realistic proposal taking into account aspect's characteristics. ACoh metric is well 
adapted to reflect design problems such as assigning disparate roles to an aspect. 

Also, an interesting dimension brought by inheritance was not addressed in the 
present work. In fact, concrete aspects will give a concrete implementation for 
abstract methods or will specify concrete participants with corresponding interface 
implementations. Moreover, this work was limited to direct relationships between 
aspect's members. It would be interesting to study aspects cohesion with regards to 
their indirect relationships. By indirect relationship we mean, for example, taking 
three modules M1, M2 and M3, that module M1 and module M2 could share 
directly/indirectly a data D1, and module M2 and module M3 could share 
directly/indirectly a data D2. Transitive closure of this relationship suggests that M1 
and M3 are indirectly connected. The concept of transitive closure has been used by 
Bieman et al. [Biem95] in object-oriented systems for measuring the Loose Class 
Cohesion. We feel while examining concrete examples that indirect relationships 
between aspect members also contribute to aspect cohesion. 

As future work, we plan to extend our approach: (1) to take into account the 
indirect relationships between aspect members, (2) to include the inheritance 
dimension (3) to do more investigations on the impact of aspect paradigm on software 
quality attributes (classes’ cohesion for example) (4) to conduct static performance 
analysis on large projects (to see how well our metric scale) and finally (5) to conduct 



 
A COHESION MEASURE FOR ASPECTS 

 
 
 
 

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 7 

an evaluation of cohesion metrics to predict maintenability (using iterated versions of 
a system). 

9 ACKNOWLEDGMENTS 

This research was supported by NSERC (Natural Sciences and Engineering Research 
Council of Canada) and NATEC (Nature et Technologies) grants. 

REFERENCES 

[Atra05] Atrack Project Website: https://atrack.dev.java.net/

[Aspe02] The AspectJ Team. The AspectJ Programming Guide. 2002 

[Aspe05] The AspectJ Website: http://eclipse.org/aspectj/

[Badr95] L. Badri, M. Badri and S. Ferdenache, Towards Quality Control Metrics for 
Object-Oriented Systems Analysis, Proceedings of TOOLS (Technology 
of Object-Oriented Languages and Systems) Europe'95, Versailles, 
France, Prentice-Hall, March 1995.  

[Badr04] L. Badri and M. Badri, A Proposal of a New Class Cohesion Criterion: An 
Empirical Study, in Journal of Object Technology, vol. 3, no. 4, April 
2004. http://www.jot.fm/jot/issues/issue_2004_04/article8/index_html

[Biem95] J.M. Bieman and B.K. Kang, Cohesion and reuse in an object-oriented 
system, Proceedings of the Symposium on Software Reusability (SSR’95), 
Seattle, WA, pp. 259-262, April 1995. 

[Booc94] G. Booch, Object-Oriented Analysis and Design With Applications, Second 
edition, Benjamin / Cumming, 1994. 

[Bria98] L.C. Briand, J. Daly and J. Wusr, A unified framework for cohesion 
measurement in object-oriented systems, Empirical Software Engineering, 
Vol.3, No.1, pp. 67-117, 1998. 

[Cecc04] M. Ceccato and P. Tonella, Measuring the Effects of Software Aspectization, 
In Proceedings of the First Workshop on Aspect Reverse Engineering, 
November, 2004. 

[Chae00] H.S. Chae, Y. R. Kwon and D H. Bae, A cohesion measure for object-
oriented classes, Software Practice and Experience, No. 30, pp. 1405-
1431, 2000. 

[Chid94] S.R. Chidamber and C.F. Kemerer, A Metrics suite for object Oriented 
Design, IEEE Transactions on Software Engineering, Vol. 20, No. 6, pp. 
476-493, June 1994.  

[Gamm95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: 
Elements of Reusable Object-Oriented Software, Addison Wesley, 1995. 



 
 
 
 
 
 

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 113 

[Hann02] J. Hannemann and G. Kiczales, Design pattern implementation in Java and 
AspectJ, In Proceedings of the 17th Annual Conference on Object-
oriented Programming Systems, Languages and Applications (OOPSLA), 
pages 161–173, 2002. 

[Hend95] B. Henderson-Sellers, A book of Object-Oriented Knowledge, 2nd ed., 
Prentice Hall, Sydney, Australia, 1995. 

[Hend96] B. Henderson-Sellers, Object-Oriented Metrics Measures of Complexity, 
Prentice-Hall, 1996. 

[Hitz95] M. Hitz and B. Montazeri, Measuring coupling and cohesion in object 
oriented systems, Proceedings of the Int. Symposium on Applied 
Corporate Computing, pp. 25-27, October 1995.  

[Kicz97] G. Kiczales, J. Lamping, A. Menhdekar, C. Maeda, C. Lopes, J.M. 
Loingties, and J. Irwin, Aspect-oriented programming, In M. Aksit and S. 
Matsuoka, editors, European Conference on Object-oriented 
Programming, volume 1241 of Lecture Notes in Computer Science, pages 
220–242. Springer, 1997. 

[Kicz01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. 
Griswold, An Overview of AspectJ, In J. Lindskov Knudsen, editor, 
European Conference on Object-oriented Programming, volume 2072 of 
Lecture Notes in Computer Science, pages 327–353. Springer, 2001. 

[Kicz04] G. Kiczales, It's the crosscutting, Software Development Magazine, February 
2004. 

[Larm04] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process, 2nd edition, 
Prentice-Hall, 2004. 

[Li93] W. Li and S. Henry, Object oriented metrics that predict maintainability, 
Journal of Systems and Software, Vol. 23, pp. 111-122, February 1993. 

[Pres01] R. S. Pressman, Software Engineering, A practitioner's approach, Fifth 
edition, McGraw Hill, 2001. 

[Sabb04] D. Sabbah, From Promise to Reality, Proceedings of the 3rd international 
conference on Aspect-oriented software development (AOSD’04), pages1-
2, 2004. 

[Sant03] C. Sant'Anna, Alessandro Garcia, Christina Chavez, Carlos Lucena & Arndt 
von Staa, On the Reuse and Maintenance of Aspect-Oriented Software: 
An Assessment Framework. XXIII Brazilian Symposium on Software 
Engineering, Manaus, Brazil, October 2003. 

[Zaca03] A. Zacaria, H. Hosny, Metrics for Aspect-Oriented Software Design, In 
Proceedings of Third International Workshop on Aspect-Oriented 
Modeling, AOSD'03, 2003. 

[Zhao03] J. Zhao, Coupling Measurement in Aspect-Oriented Systems, Technical-
Report SE-142-6, Information Processing Society of Japan (IPSJ), July 
2003. 



 
A COHESION MEASURE FOR ASPECTS 

 
 
 
 

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 7 

[Zhao04] J. Zhao and B. Xu, Measuring Aspect Cohesion, Proceeding of 
International Conference on Fundamental Approaches to Software 
Engineering (FASE'2004), LNCS 2984, pp.54-68, Springer-Verlag, 
Barcelona, Spain, March 29-31, 2004. 

About the authors 
Jean-François Gélinas (Gelinaje@uqtr.ca) is a student of 
computer science at the Department of Mathematics and Computer 
Science of the University of Quebec at Trois-Rivières. He recently 
received his master in computer science from the University of 
Quebec at Trois-Rivières. His main areas of interest include aspect-
oriented programming as well as various topic of software 

engineering. 
 

Mourad Badri (Mourad.Badri@uqtr.ca) is professor of computer 
science at the Department of Mathematics and Computer Science of 
the University of Quebec at Trois-Rivières. He holds a PhD in 
computer science (software engineering) from the National Institute 
of Applied Sciences in Lyon, France. His main areas of interest 
include object and aspect-oriented software engineering, software 

quality attributes, and formal methods. 
 

Linda Badri (Linda.Badri@uqtr.ca) is professor of computer 
science at the Department of Mathematics and Computer Science of 
the University of Quebec at Trois-Rivières. She holds a PhD in 
computer science (software engineering) from the National Institute 
of Applied Sciences in Lyon, France. Her main areas of interest 
include object and aspect-oriented software engineering, software 

quality attributes, maintenance, and web engineering. 

mailto:Linda_Badri@uqtr.ca

