
JOURNAL OF OBJECT TECHNOLOGY 
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006 

 
Vol. 5, No. 8. November-December 2006 

 
 
 
 

Cite this article as follows: Mariela Cortés, Marcus Fontoura, Carlos Lucena: “Framework 
Evolution Tool”, in Journal of Object Technology, vol. 5, no. 8, November-December 2006, pp. 
101 - 124 http://www.jot.fm/issues/issue_2006_11/articlex 
 

Framework Evolution Tool 
Mariela Cortés, Computer Science Department. State University of Ceará, Av. 
Paranjana 1700, Itaperi – 60.740-020, Fortaleza, CE, Brazil 

Marcus Fontoura, Computer Science Department. IBM Almaden Research 
Center, 650 Harry Road, 8CC/B1, San Jose, CA, 95120, USA.  

Carlos Lucena, Computer Science Department. PUC-Rio, Rua Marquês de 
São Vicente, 225 – 22453-900, Rio de Janeiro, RJ, Brazil. 

Abstract 
Framework development is very expensive, not only because of the intrinsic difficulty 
related to capturing the domain knowledge, but also because of the lack of appropriate 
methods and techniques to support the evolution of the framework architecture. 
Extension rules in combination with the refactoring approach can be used to support 
framework evolution, assuring consistency with the previously instantiated applications. 
In this paper we present a refactoring tool that has been extended to support most 
complex refactorings to implement the extension rules. This feature allows framework 
redesign and evolution that are consistent with its application instances. 

1. INTRODUCTION 

Over the past years, framework technology has become a common reuse technology in 
object oriented software development. The major reason is to introduce a software 
development approach where entire software families are developed as opposed to stand-
alone software applications. 

A framework is an extensible semi-finished piece of software that represents a 
generic solution to a set of applications in a specific domain. A framework is composed 
of a kernel subsystem, which is common to all the applications that may be generated 
within the framework, and variation points, which represent areas of variability within a 
framework that can be adapted or extended to provide application specific behavior 
[Codenie97]. 

An intrinsic property of software in a real-world environment is its need to evolve. In 
particular, framework technology constitutes an ever-evolving representation of our 
knowledge of the domain in terms of variations and commonalties. A key point in 
framework development is that design work should not start by trying to model its 



 
FRAMEWORK EVOLUTION TOOL 

 
 
 
 

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8 

variability and flexibility at once. Instead, a fixed application should be designed from the 
framework domain; and it should be generalized only when the fixed case is understood 
[Schmid99], as it is used. Clearly, such evolution affects existing instantiations, which 
need to be updated in a consistent way. Because of this, high costs are devoted to the 
maintenance of products built with the framework. In the context of framework 
evolution, refactoring and extension techniques are used to improve the quality of the 
framework. In [Cortes05], specialized extension rules are proposed to support the 
framework evolution consistent with its instance applications. 

Although it is possible to refactor manually, this activity can be tedious and error-
prone. Consequently, tool support is considered crucial. A tool provides information 
management that makes it possible to make better and well-informed decisions about the 
framework’s evolution, especially with respect to the following issues: identification of 
evolution-prone modules and change impact analysis. Extension rules can be visualized 
as a composition of primitive refactorings. Since each primitive refactoring preserves the 
program behavior, the entire composition is itself behavior-preserving. Today, a wide 
range of tools are available that automate various aspects of refactoring1. Much of the 
prior work has focused on developing a small, primitive set of refactorings. However, the 
extension activity to support framework evolution is not supported by available tools.  

The remainder of this paper is organized as follows: Section 2 describes the 
evolution processes. Section 3 presents the JRefactory tool. Section 4 details the 
incorporation of new features into the JRefactory tool to support extension rules. Section 
5 describes a utilization sample of the tool. In Section 6 we comment on some related 
works. Finally, Section 7 concludes and presents future research directions. 

2. EVOLUTION PROCESS 

In [Butler01], framework development is considered equivalent to evolution process 
involving the execution of two tasks: restructure and extension. Refactoring is the object-
oriented variant of restructuring: “the process of changing a [object-oriented] software 
system in such a way that it not alter the external behavior of the code, yet improves its 
internal structure” [Fowler99]. Complicated changes to a program can require both 
refactorings and extensions. In [Cortés05], the refactoring technique [Opdyke92, 
Fowler99] and extension rules are used, respectively, to support the execution of these 
tasks. We consider both techniques as evolution processes that are used to restructure the 
code and to add new abstractions preserving the observable behavior of the original 
design2. These techniques are very useful in developing efficient and flexible application 
frameworks and they fit well into the iterative framework development process.  

Evolution processes may be used to avoid the architectural drift problem 
[Codenie97] by changing the variation point structure of the system. This phenomenon 
                                                           
1 For an extensive and up-to-date overview of refactoring tools, we refer to http://www.refactoring.com/ 
2 In computational sense, this implies that these transformations always result in legal programs equivalent 
to the original program.  



 
 
 
 
 
 

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 103 

occurs when the framework does not support the required customization and the 
application developers need to violate its structure. When the design modeled by the 
application is not a valid instance of a framework, evolution processes may be applied to 
add flexibility into the framework design, therefore, promoting its reutilization. The 
framework flexibility is based on the variation point structure that can be accessed by the 
users (application developers). Evolution processes can be considered behavior-extending 
transformations, since the cardinality of the application set can be increased after its 
application. The implementation of refactoring and extension rules to evolve framework 
designs into an evolution tool is the key point of this work. 

2.1. Refactorings  

Refactoring of source code [Opdyke92, Fowler99] is a well-known approach suggested 
for the development and evolution of frameworks by restructuring a program in a way 
that allows other changes to be made more easily. In specific situations, refactorings can 
be useful to implement extensions into the framework design, creating variation points 
[Fayad99]. The mechanics consist of turning the common behavior (kernel) into an 
alternative one that is encapsulated into prefabricated classes. However, refactorings are 
not sufficient to deal satisfactorily with all possible extension processes. 

The refactoring activity involves redesign of a program unit to take advantage of 
good practices in design, such as design patterns, to improve it. A natural relation 
between patterns and refactorings is presented in the design patterns catalogue 
[Gamma95]: “Patterns... supplies targets for your refactorings”. In other words, 
refactorings let designers focus on patterns when they are developing software projects. 
Patterns can be added through refactorings: “… refactorings turn explicit the design 
patterns that are subjacent into the code”. The use of design patterns has costs related to 
complexity and indirection. For this reason, design should be as flexible as needed, not as 
flexible as possible. Refactorings have been shown to directly implement certain design 
patterns [Tokuda01]. Examples of refactorings with this property are Replace Type Code 
with State/Strategy and Form Template Method [Fowler99]. 

In counterpart, there are no refactorings for all design patterns (for example, no 
refactoring addresses the incorporation of design patterns using recursive subsystems). 
This incompleteness in the refactoring catalogue [Fowler99] can be solved through the 
use of extension rules, which are based on metapatterns. Metapatterns model all the 
possible combinations of template and hooks methods, including the recursive 
composition. These combinations are used to model framework variation points. 

2.2. Extension Rules 

Extension rules are used to extend the framework behavior, making it possible to 
instantiate a greater number of applications. These rules implement transformations that 
alter the framework variation point structure. 

The variation point structure introduces variability that is transparent outside the 
subsystem, either by inheritance or by composition. Using extension rules during the 



 
FRAMEWORK EVOLUTION TOOL 

 
 
 
 

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8 

evolution process, two situations are possible: whether the base class of the variation 
point subsystem is introduced as a new class, or whether the responsibility of an existing 
class is extended by the responsibility of the base class. In the first case, we speak of an 
expanding transformation since we have expanded the original class structure by a new 
class. In the second case, we speak of an extending transformation, since we have 
extended an original class by new responsibilities. 

Extension rules are based on framework metapatterns [Pree94], which implement 
variation points as a combination of template and hook methods [Gamma95, Pree96]. A 
template method3 provides the skeleton of behavior. A hook method is called by the 
template method and can be tailored to provide different behaviors. Currently, there are 
four extension rules that automate the incorporation of the basic patterns proposed by 
Pree [Pree94]: Add Hook Method, Add Unification Pattern, Add Separation Pattern and 
Add Recursive Pattern. In Section 4, we present the extension rule by means of short 
descriptions and the solution implemented into the JRefactory tool. 

3. JREFACTORY TOOL 

JRefactory4 is an open source tool provided under the GPL written in Java to allow easy 
application of semi-automatic refactorings. The tool supports the application of the 
following refactorings: 

• Repackage or move class  
• Rename class  
• Add an abstract parent class  
• Add a child class  
• Removes a class  
• Push up field  
• Push down field  
• Push up method  
• Push up abstract method  
• Push down method  
• Move method  

JRefactory can be integrated directly into industrial strength IDEs and it also can be used 
in command line variant. The tool carries through the formatting of the code source 
(Java) received as entered. On the basis of the supplied Java language grammar, a parse 
tree representing the code structure is generated. This information is used to generate 
summaries and metadata from the code. On the basis of this excellent information the 
graphic user interface (GUI) is created on the basis of UML class diagram 
[Rumbaugh98]. 

                                                           
3 Template method must not be confused with the C++ template construct, which has a completely different 
meaning. 
4 http://jrefactory.sourceforge.net 



 
 
 
 
 
 

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 105 

Refactorings in design level are applied by selecting the target element (field, 
method, and class) in the UML diagram. Since the appropriate refactoring in the menu is 
selected, the transformation is automatically applied. Differently, refactorings in code 
level are applied by the selection of the appropriated code from the IDE screen and the 
selection of the correspondent refactoring through the standard interface. 

Both possibilities for interfacing make it possible to deal with refactorings in both 
design and code levels. In counterpart, the utilization of two different interfaces to apply 
the refactoring transformations introduces the need to keep both artifacts (class diagram 
and source code) in sync. Furthermore, functionalities of JRefactory tool provide the 
ability to format and print both UML class diagrams and Java code. UML class diagrams 
can be resized and are useful for navigating through lots of code. In particular, the GUI 
allows zooming (in certain steps), moving classes and changing association lines. The 
major modules of JRefactory are showed in the package diagram (Figure 1), indicating 
<<import>> dependencies. 

 

 
Figure 1. The major modules of JRefactory tool. 

 
Another interesting feature supplied by the tool is support for metrics. It is possible to 
gather metrics about the java source code about package or class, including absolute and 
average numbers of classes, methods, and statements, each averaged for the higher 
structural units (e.g. average statements per class, or per method). The metric information 
highlights problems in classes or methods where there are either too many methods or too 
many statements per method, for example. 

Several characteristics affect the usability of a tool, such as automation, reliability, 
configurability, coverage, and scalability [Mens04]. The degree of automation of a 
refactoring tool varies, depending on the refactoring activities that are supported. The 
JRefactory tool includes a refactoring browser that supports a semiautomatic approach to 
refactoring. While it remains the task of the developer to identify which part of the 

Source 
Code  

Parser 
(javacc) Refactor 

Pretty 
Printer 

IDE 

UML 

Summary  

Java 
Grammar 

Metrics 



 
FRAMEWORK EVOLUTION TOOL 

 
 
 
 

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8 

software needs to be restructured and to select the most appropriate refactoring to apply, 
the actual application of the refactoring is automated. 

The reliability of a refactoring tool mainly depends on the ability to guarantee that 
the provided refactoring transformations are truly behavior preserving. In this sense, 
JRefactory checks specific refactoring preconditions before applying it. In addition, an 
undo mechanism is provided. 

In the context of configurability and openness, JRefactory can be easily integrated 
into industrial strength IDEs. This is typically achieved using the built-in extensibility 
mechanisms of these tools (e.g., plug-ins, APIs, or wizards). Moreover, JRefactory is an 
open tool that allows the addition of new refactorings and definition of composite 
refactorings from primitives ones. This refactoring composition increases the scalability 
and performance of the tool. 

4. JREFACTORY EXTENSIONS 

The JRefactory tool was enriched with the following new features to support the 
extension rules presented in Section 2.2: Add Hook Method, Add Unification Pattern, Add 
Separation Pattern, and Add Recursive Pattern. In Figure 2, an updated diagram is 
presented in which the tag stereotype <<application>> marks packages that had been 
modified or incorporated into the JRefactory tool. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Upgrade of JRefactory to support extension rules 
 

The upgrade of the JRefactory tool was carried out in three stages: 
 

1. Modification to IDE interface, mostly from the graphical interface (GUI) to 
allow access to the rules.  

2. Implementation of the extension rules.  

Source 
Code  

Parser 
(javacc) Refactor 

Pretty 
Printer Summary  

Java 
Gramm

<<application>> 
UML 

<<application>> 
Metrics 

<<application>> 
IDE

<<application>> 
Rule 



 
 
 
 
 
 

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 107 

3. Incorporation of additional metrics that help verify the impact of the evolution 
processes on the framework design, as, for example, the number of abstract 
methods — since framework variation points generally are implemented 
through them. 

The first stage involves the manipulation of menus in the JRefactory GUI. Using this 
interface, refactorings are associated with the active component (class, method or field) in 
the class diagram. Refactorings applied to classes are always accessible; however, 
refactorings for methods and fields are accessible only if the respective element is active 
in the diagram. The application of extension rules from the GUI is restricted to the 
application of Add Hook Method and Add Recursive Pattern rules, since only the 
selection of the respective method is needed. This selection can be realized from the class 
diagram. Other rules require code selection that only can be performed from the IDE to 
complete their execution. All extension rules must be raised from the IDE menu 

Refactorings are implemented in classes grouped into packages. Classes 
implementing refactorings are defined as specialization of the abstract class Refactoring 
into the Refactor package. The main method in the Refactoring class that carries out the 
transformation is run() (Figure 3). 

 

preconditions() 

recordUsage()

transform() 

 
 

Figure 3. Activity diagram of run() method. 
 

The execution of the run() method involves checking of pre-conditions. If all pre-
conditions are satisfied, the transformation is realized. Otherwise, the execution is 
aborted and an exception is raised. Finally, a log file is generated with the information 
about the refactoring execution. The run() method is a template method, which represents 
the execution skeleton for all refactorings in three steps: preconditions(), transform() and 
recordUsage(). The hook methods preconditions() and transform() are defined in 
subclasses to realize the specific behavior. Extension rules are implemented following the 
same structure of standard refactorings: as specialization of the base class Refactoring. In 
this way, the implementation of an extension rule is as shown in Figure 3. 



 
FRAMEWORK EVOLUTION TOOL 

 
 
 
 

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8 

Framework design implies the existence of a set of instance applications that are 
generated from it. In the context of framework evolution, the process introduces extra 
complexity, since application instances must be considered to ensure consistency with the 
framework, thus avoiding the architectural drift [Codenie97]. Extension rules are defined 
to support iterative development and framework evolution. In this way, the evolution of 
instance applications must be considered during the application of the extension rules. In 
the next sections, a detailed description of the implementation of each rule into the tool is 
presented. In the following section, we present each extension rule through a short 
description and the solution proposed and implemented into the JRefactory tool. 
Illustrations are presented in terms of UML class diagrams. In addition, we use visual 
representations for the UML-F tags for framework, application and patterns 
[Fontoura01]. 

Add Hook Method Rule 

Description. This rule is used to incorporate a hook method into the framework design to 
implement a new variation point. 

Solution. The instance application needs to change the implementation of a kernel 
method. In this way, each application can define alternative behaviors. Figure 4 illustrates 
this process. 

 
 <<framework>>

T 
 

 M( ) 

<<framework-H>> 
T 
 

 M( )  <<hook>> 

<<application>> 
T 
 

 M( ) 
 

 

Figure 4. Application of Add Hook rule 
 

Implementation. AddHookMethodRule class implements the rule, which is a tail of an 
inheritance tree rooted in Refactoring class. Specifically, the rule extends the abstract 
class AddClassRefactoring (Figure 5). 



 
 
 
 
 
 

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 109 

 Refactoring 
 
run() 
preconditions() 
transform() 
recordUsage() 

AddClass 
Refactoring 

preconditions() 
transform() 
createClass()

<<application>>
AddHook 

MethodRule 
createClass()  

 
Figure 5. Class diagram for the inheritance tree of AddHookMethodRule. 

 
Typically, several concrete classes must be created before the correct abstraction 
becomes apparent. AddClassRefactoring class partially implements a refactoring to 
incorporate a new class into the system. This class is used as the base for other classes to 
implement a specific behavior in order to add a new class under particular conditions. For 
example, the already existent AddChildRefactoring subclass implements a refactoring to 
add a new class as the child of a specific one. 

AddClassRefactoring extends the base class Refactoring; thus, the run() method 
displays the structure showed in Figure 3. Preconditions() method checks the valid 
application for the refactoring, verifying if the new class already exists. The template 
method transform() deferring the creation of the new class to subclasses. Consequently, 
subclasses must define the hook method createClass() to implement this step. 

The hook method createClass() in the AddHookMethodRule subclass is depicted in 
the following activity diagram (Figure 6). The activities involve the insertion of an empty 
class as a subclass of an existing and selected one (candidate for hook class in the 
framework). In sequence, the system’s metadata is updated. 



 
FRAMEWORK EVOLUTION TOOL 

 
 
 
 

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8 

CreateClass(type, name, false)

PushDownMethodRefactoring

SummaryTraversal(workDirectory)

 
Figure 6. Activity diagram for the createClass() method in Add Hook Method rule. 

 
Next, the target method for the Add Hook Method rule application, selected from the 
super class, is pushed down to the recently created subclass, remaining abstract in the 
base class. To realize this step, the Push Down Method refactoring, already existent in the 
tool, is used. The repetition of this sequence of activities occurs for each instance 
application. In this way, the consistency of the instance applications is preserved, since 
the original behavior of the framework core is transferred to classes of instance 
applications. The abstract method in the superclass represents a new framework variation 
point. 

Add Unification Pattern Rule 

Description. This rule is used to incorporate the Unification pattern into the design. This 
pattern occurs when both the template and hook methods belong to the same class. 

Solution. Variant steps are implemented as combinations of template-hook methods. The 
hook method executes the special behavior required by the application developer. The 
method might be created through the Extract Method refactoring [Fowler99], which 
replaces a fragment of code with a call to the newly created method (Figure 7). 

 

.................... 
If (...) 
  M1 
...........  

<<framework-TH>> 
T 

 
M()  <<Unif-t>> 
M1() <<Unif-h>>

.......... .......... 
If (...) 
   ....      .... ...........  

<<framework>> 
T 
 

 M() 

<<application>> 
T1 
 

M1()  
 

Figure 7. Application of Add Unification Pattern rule 



 
 
 
 
 
 

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 111 

Implementation. Add Unification Pattern rule is implemented as a specialization of the 
abstract class Refactoring (Figure 8). In this way, the abstract methods in the superclass 
preconditions() and transform() must be implemented. 

Preconditions for the application of this rule consist of the verification of properties 
about the integrity of the selected fragment of code. 

 
 Refactoring 

 
run() 
preconditions() 
transform() 
recordUsage() 

AddClass 
Refactoring 

preconditions() 
transform() 
createClass()

<<application>>
AddHook 

MethodRule 
createClass() 

<<application>>
AddUnification 
PatternRule 

preconditions() 
transform()

 
Figure 8. Class diagram for the inheritance tree of Add Unification Pattern rule. 

 

After the precondition, checking the transformation process is initiated. The execution of 
the transform() method involves the activities showed in Figure 9. 

The creation of the new method from a portion of an existent method in the 
framework core is carried out using the Extract Method refactoring. After the extraction 
and since the metadata have been actualized, the new method must be transformed into a 
hook method. In this sense, the evolution process is similar to the Add Hook Method rule 
involving the creation of a class hierarchy to represent the specific application classes, 
and moving down the method through the hierarchy. 



 
FRAMEWORK EVOLUTION TOOL 

 
 
 
 

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8 

AddHookMethodRule

CreateClass(type, name, false)

PushDownMethodRefactoring

SummaryTraversal(workDirectory)

ExtractMethodRefactoring

 
Figure 9. Activity diagram for transform() method for Add Unification Pattern rule 

 
As a result, the concrete class in the original framework design is transformed into a 
template-hook class; meanwhile, the concrete subclasses implement the original behavior 
for each instance application. 

Add Separation Pattern Rule 

Description. This rule is used to incorporate the Separation pattern into the design. This 
pattern occurs when template and hook methods belong to different classes. The 
application of this rule transforms a fragment of code from a method in the core into a 
hook method.  

Solution. Create a new variation point method in a separate hook class (Figure 10). This 
variation point must be extended by composition. In the obtained design, an additional 
class is required to host the template method upon adding to the variation point 
subsystem. 

 

<<application>> 
H1 
 

M1() 

<<framework-T>> 
T 
 

M()  <<Sep-t>> 
T

<<framework-H>> 
H 
 

M1()  <<Sep-h>> 

.................... 
If (...) 
  ref->M1 
...........  

ref 
<<framework>> 

T 
 

M() 

.......... .......... 
If (...) 
   ....      .... ...........  

 
Figure 10. Add Separation Pattern rule 



 
 
 
 
 
 

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 113 

Implementation. Similar to Add Unification Pattern, the Add Separation Pattern rule 
transforms a fragment of code from a method from the framework core into a variation 
point. The main difference is that the variation point is created as a member of a 
separated class. Consequently, the extension rule transforms the concrete class in the 
original design into a template class and a new hook class is added into the framework 
core. 

The Add Separation Pattern rule is defined as a specialization of the base class 
Refactoring (Figure 11). Since this rule is a composition of basic refactorings already 
existing in the JRefactory tool, preconditions for its execution are partially checked for 
each refactoring that comprises the rule. 

 
 

 
Refactoring 

 
run( ) 
preconditions() 
transform() 
recordUsage() 

AddClass 
Refactoring 

preconditions() 
transform() 
createClass() 

<<application>>
AddHook 

MethodRule 
createClass() 

<<application>>
AddSeparation 
PatternRule 

preconditions() 
transform() 

<<application>> 
AddUnification 
PatternRule 

preconditions() 
transform()

 
 

Figure 11. Class diagram for the inheritance tree of Add Separation Pattern rule. 
 

The transform() method (Figure 12) that implements the rule involves the execution of 
Extract Method refactoring. This refactoring is responsible for extracting the selected 
fragment of code and transforming it into a new method, as a member of the original 
concrete class in the framework core. After that, a new separate class is created and the 
extracted method in the first step is moved into the new class using Move Method 
refactoring, already existent in the tool. In the current situation, Add Hook Method rule 
can be applied to transform the recently created class into a hook one. All changes are 
reflected in metadata and summaries of code using the SummaryTraversal method. 

Finally, the relationship between the template and hook classes is established using 
Add Field refactoring, already existent in the tool. The refactoring is applied to the 
template class to create a reference for an object in the hook class. Both template and 
hook classes belong to the framework core. 



 
FRAMEWORK EVOLUTION TOOL 

 
 
 
 

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8 

 

AddHookMethodRule

CreateClass(type, name, false)

PushDownMethodRefactoring

SummaryTraversal(workDirectory)

ExtractMethodRefactoring

CreateClassOnly()

MoveMethodRefactoring

AddFieldRefactoring

 

Figure 12. Activity diagram for transform() method for Add Separation Pattern rule 

Add Recursive Pattern Rule 

Description. This rule is used to incorporate the Recursive pattern into the design. This 
pattern occurs when an object in the template class refers to objects in the hook class. In 
particular, the template class is a descendent of the hook class. 

As a result, the Add Recursive Pattern rule creates a composite class to implement a 
recursive variation point. The composite class extends a base class already existing in the 
framework core that represents an interface for objects. 
Solution. Create an object composition to handle object collections in order to selectively 
add or modify behavior to instances (Figure 13). 

In the Recursive pattern design any number of template classes can be defined as 
subclasses of H. These template classes can define additional/modified behavior. Note 



 
 
 
 
 
 

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 115 

that any number and combination of instances of template classes can be attached to 
instances of H descendants. 

 

<<framework>> 
T1 
 

M() 

<<framework-H>> 
H 
 

M() <<Rec-h>> 

<<framework>> 
T 
 

M() 

<<application>> 
T 
 

M() 
 

 
Figure 13. Application of Add Recursive Pattern rule 

 
The obtained design is coincident with the structural pattern Composite [Gamma95]. 
Thus, the application of this rule is useful for incorporating the corresponding pattern into 
the design. 

Implementation. Similar to the Add Hook Method rule, the Add Recursive Pattern 
rule is implemented as a specialization of the abstract class AddClassRefactoring (Figure 
14). The template method transform() in the super class, lets its subclass redefine the 
hook method createClass() to implement the specific behavior. 

 
 

 
Refactoring 

 
run( ) 
preconditions() 
transform() 
recordUsage() 

AddClass 
Refactoring 

preconditions() 
transform() 
createClass() 

<<application>>
AddHook 

MethodRule 
createClass() 

<<application>>
AddRecursive 
PatternRule 

createClass() 

<<application>> 
AddUnification 
PatternRule 

preconditions() 
transform()

<<application>>
AddSeparation 
PatternRule 

preconditions() 
transform() 

 
Figure 14. Class diagram for the inheritance tree for Add Recursive Pattern rule. 

 



 
FRAMEWORK EVOLUTION TOOL 

 
 
 
 

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8 

The hook method createClass() is implemented in the AddRecursivePatternRule subclass 
as depicted in the following activity diagram (Figure 15), which involves the creation of a 
new class for each instance application. Each class is created as a subclass of an existing 
one into the framework core. In addition, an extra subclass is created representing a 
composite element, which is included in the framework core. The composite class 
maintains a collection of primitive components. 

 

 
Figure 15. Activity diagram for createClass()method in Add Recursive Pattern rule 

 
Since the inheritance tree is created and the system metadata are actualized, the selected 
method in the superclass is moved down to subclasses using Push Down Method 
refactoring, leaving it abstract in the super class. The abstract method represents a new 
variation point in the framework. In this way, the consistency with the application 
instances is preserved since the framework behavior is partially transferred to subclasses. 
Thus, the generic behavior in the framework core becomes a specific one in the instance 
applications, preserving the semantic consistency of the system. 

Finally, a reference to an object from the superclass is added in the composite 
subclass to represent the object composition, using Add Field refactoring. This structural 
pattern allows the redirection of messages through the class hierarchy. Consequently, 
clients treat individual objects and compositions of objects uniformly. 

Metrics 

The JRefactory tool contains an interesting feature to extract metrics about the project 
code using updated summaries generated by the tool. JRefactory supports metrics about 
the complete project, package, class, and methods. Metrics can be calculated in absolute 
or relative values, on the basis of classes, methods and sentences. The results obtained are 
useful for establishing the code’s properties, such as if the method number is too high or 

CreateClass(type, name, false)

PushDownMethodRefactoring

SummaryTraversal(workDirectory)

AddFieldRefactoring



 
 
 
 
 
 

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 117 

if the methods are too long. Moreover, different versions of software can be evaluated by 
comparing the respective metrics. On the basis of this information, the user (developer or 
designer), can restructure the code using refactorings. The available version of the 
JRefactoring tool encompasses the following metrics: 

Framework Structure Level: Metrics for assessment of framework structural 
characteristics. 

• Design Size in Classes – DSC – count of the total number of classes in the 
system  

• Number of Abstract Classes – NAC  
• Number of Interfaces – NOI 
• Number of Statements 
•  

Class Internal Level: Metrics assessing functional characteristics of individual classes. 

• Number of Class Methods (NOM)  
• Number of Public Methods (PubM)  
• Number of Instance Variables (NIC) 
• Number of Class Variables (NCV) 

 
Method Level: Metrics assessing functional characteristics of individual classes. 

• Number of Parameters per Method (NPM). 
 

Metrics have a number of interesting characteristics for providing evolution support 
[Mens01]: “They are simple, precise, general and scalable to large-size software 
systems.” Metrics can be used before the evolution has occurred (i.e., predictive), to 
analyze the software quality, and after the evolution has occurred (i.e., retrospective), to 
find out whether its structure of quality has improved. Alternatively, one can study the 
evolution process, e.g., to understand what has been changed and how. 

In this context, new metrics were incorporated into JRefactory to obtain a measure of 
the framework evolution process to assess whether the evolution goals have been 
achieved. These metrics support reasoning about the framework properties and evaluate 
the framework flexibility and adaptability. Thus, we implemented the following metrics 
into the JRefactory: 
Framework Structure Level: 

• Number of Single Inheritance (NSI) count of the number of classes (subclasses) 
that use inheritance in the system.  
Motivation. During the extension phase none of the classes changes their 
hierarchy nesting level, but many of them increase or decrease the number of 
children. Thus, all changes were made to the leaves of the inheritance 
hierarchy, which is indeed typical for extensions. 

Class Internal Level: 
• Number of Attributes (NIC + NCV) 



 
FRAMEWORK EVOLUTION TOOL 

 
 
 
 

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8 

• Number of Public Attributes of a Class (PubA)  
Motivation. Used to assess the encapsulation level, and thus allow reasoning of 
the flexibility and reusability levels. 

• Number of Abstract Methods (NAM) 
Motivation. This metric can be used to assess functional characteristics of 
individual classes. A variation point is often implemented via a template 
method [Gamma95, Pree96]. A template method is implemented via a 
polymorphic method invocation of the hook method. Since object-oriented 
languages achieve polymorphism via method overriding, this suggests inferring 
variation points by analyzing overridden methods. Such methods in Java are 
marked as an abstract method. 

 
On the basis of the information supplied from metrics, it is possible to establish design 
properties and consequences of the evolution processes. This feature offers immediate 
feedback after the refactoring application. For example, when an evolution rule is 
applied, the metrics about interfaces, methods and abstract classes must return a bigger 
occurrence index than found in the metrics before the application. This occurs because 
the extension rules incorporate new explicit variation points into the design, which are 
implemented using these elements. 

5. JREFACTORY UTILIZATION 

In this section we present some screen shots of the utilization of JRefactory tool in 
practice using the study case illustrated in [Cortes05]. The project imported into the 
JRefactory environment consists in a framework for web searching. The corresponding 
initial class diagram is shown in Figure 16.  



 
 
 
 
 
 

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 119 

 
 

Figure 16. Screen shot of JRefactory GUI 
 

Another screen shot from the JRefactory presents the browser content consisting of Java 
code from the JBuilder IDE. Using this interface, the application of Add Unification and 
Add Separation Pattern rules are feasible. Figure 17 shows the code selection for the 
application of Add Separation Pattern rule. Next, the tool opens a dialog box presenting 
the candidates parameters for the new method and requesting for information about 
method name, return values and protection properties. Finally, the signature for the 
method is presented. 



 
FRAMEWORK EVOLUTION TOOL 

 
 
 
 

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8 

 
 

Figure 17. Screen shot of JRefactory browser during Add Separation Pattern rule application 
 
The user confirmation raises the effective transformation that is reflected in the code. 
Consequently, the respective metadata and summaries are generated in a way that is 
consistent with this actualization. Figure 18 represents the final design after the 
application of this extension rule. 



 
 
 
 
 
 

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 121 

 
 

Figure 18. Screenshot of the design after Add Separation Pattern rule application 

6. RELATED WORKS 

Currently, there are very few framework design methods that deal with framework 
evolution. Refactoring is a useful technique that is easily carried out manually. However, 
tools can help refactoring proceed more quickly. The first refactoring tool built was the 
Smalltalk Refactoring Browser. The Refactoring Browser [Roberts97] is a tool to help 
maintain frameworks written in Smalltalk. It currently does not support extension rules, 
but it has an open architecture and the introduction of the rules and new refactorings 
seems to be straightforward. Metrics are not supported. Unfortunately, Smalltalk is not a 
mainstream commercial language. 

Subsequently, several refactoring tools for other languages have emerged, in 
particular for Java. [Florijin97, Meijers96, Winsen96, Gruijs97] propose tools that 
provide extensive support for working with design patterns to achieve framework 
restructuring. The tools provide automated transformations that can be used to evolve 
design pattern instances in predefined ways at a high level of abstraction. These 
transformations are similar to our metapattern approach, but neither change propagation 
or application upgrading are addressed. 



 
FRAMEWORK EVOLUTION TOOL 

 
 
 
 

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8 

7. CONCLUSION 

In this work we present an extension of an already existing tool for software refactoring 
to support evolution rules. The extension consists of the inclusion of four extension rules 
to support framework evolution: Add Hook Method, Add Unification Pattern, Add 
Separation Pattern and Add Recursive Pattern. Similar to refactorings, extension rules 
automate many common design transitions and reduce the likelihood of errors. While 
such transformations have been shown to support the introductions of metapatterns in 
object-oriented applications, we are aware of their usage to support the evolution of 
frameworks and guide developers when evolving the framework, by propagating the 
appropriate changes, as well as application upgrading. 

Through the utilization of structural information in addition to formal methods to 
check the behavioral model it is possible verify the correctness of the evolution processes 
that are proposed. Using a combination of these techniques, it is possible to check if the 
processes preserves the external behavior, and establishes some properties regarding the 
flexibility of the evolving design. 

There are other possible evolution rules that can be defined for variation points that 
are not implemented as template-hook combinations. In the future, we hope to elaborate 
and include new rules for different kinds of variation points in the tool. 

Acknowledgments 

This work is being supported in part by the FUNCAP and National Research Council of 
Brazil (CNPq). 

REFERENCES 

[Butler01] Butler G., Xu L. Cascaded Refactoring for Framework Evolution. Proceedings 
of 2001 Symposium on Software Reusability. ACM Press, p. 51-57. 2001. 

[Codenie97] Codenie W., Hondt K., Steyaert P., Vercammen A. From Custom 
Applications to Domain-Specific Frameworks. Communications of the ACM, 
40(10): 71-77. 1997 

[Cortés05] Cortés M., Fontoura M, Lucena C. Rule-Based Approach to Framework 
Evolution. To appear in: Journal of Object Technology. 2005. 

[Chindamber94] Chindamber S., Kemerer C. A metrics suite for object-oriented design. 
IEEE Trans. Software Engineering, 20(6): 476-493, June 1994. 

[Fayad99] Fayad M., Schmidt D., Johnson R. Application Frameworks. Building 
Application Frameworks. New York: Wiley. p. 3-28. 1999. 

[Florijin97] Florijin G., Meijers M., Van Winsen P. Tool Support for Object-Oriented 
Patterns. LNCS 1241. Springer-Verlag, p. 472-495. 1997. 



 
 
 
 
 
 

VOL. 5, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 123 

[Fontoura01] Fontoura M., Pree W., Rumpe B. The UML Profile for Framework 
Architectures, Addison-Wesley. 2001. 

[Fowler99] Fowler M. Refactoring: Improving the design of existing code. Addison-
Wesley. 1999. 

[Gamma95] Gamma E., Helm R., Johnson R., Vlissides J. Design patterns. Elements of 
Reusable Object-Oriented Software. Addison-Wesley. 1995. 

[Gruijs97] Gruijs D. A Framework of Concepts for Representing Object-Oriented Design 
and Design Patterns. Master’s thesis, Utrecht University, 1997. 

[Meijers96] Meijers M. Tool Support for Object-Oriented Design Patterns. Master’s 
thesis, Utrecht University, 1996. 

[Mens98] Mens T., Mens K. Assessing the architectural quality of evolve systems. In: 
Proceedings of ECOOP’98: Workshop on techniques, Tools and Formalisms 
for capturing and assessing architectural quality in object-oriented software. 
1998. 

[Mens01] Mens T., Demeyer S. Evolution Metrics. IWPSE 2001, Vienna, Austria. 2001. 

[Mens04] Mens T., Tourwé T. A survey of software refactoring. IEEE transactions on 
software engineering, vol. 30, no. 2. 2004.  

[Opdyke92] Opdyke W. Refactoring Object-Oriented Frameworks, Ph.D. Dissertation, 
Computer Science Department, University of Illinois, Urbana-Champaign. 
1992. 

[Pree94] Pree W. Mettapatterns- A Means for capturing the essentials of reusable object-
oriented design. In: Proceedings, ECOOP’94. Springer-Verlag, Berlin, 1994. 

[Pree96] Pree W. Framework Patterns. New York City: SIGS Books. 1996. 

[Roberts97] Roberts D., Brant J., Johnson R. A Refactoring Tool for Smalltalk. Theory 
and Practice of Object Systems, Volume 3, Issue 4. 1997. 

[Schmid99] Schmid H. Framework design by systematic generalization. Building 
Application Frameworks. New York: Wiley. p. 353-378. 1999. 

[Tokuda01] Tokuda, L., Batory, D. Evolving Object-Oriented Designs with Refactorings. 
Automated Software Engineering, v. 8, p. 89-120. 2001. 

[Winsen96] van Winsen P. (Re)engineering with Object-Oriented Design Patterns. 
Master’s thesis, Utrecht University, 1996. 



 
FRAMEWORK EVOLUTION TOOL 

 
 
 
 

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8 

About the Authors 

Mariela Cortés received her BSc degree from the National University 
of La Plata (UNLP) Argentina, MSc degree from the Militar Institute of 
Engineering (IME), Brazil, and a PhD degree in Computer Science from 
the Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil. 
Her current research interests include object-oriented design and multi-
agents systems development at the Software Engineering Laboratory of 

PUC-Rio. At present, she is adjoint professor and researcher at the State University of 
Ceara (UECE). Email: mariela@larces.uece.br. 
 

Marcus Fontoura had led several framework projects and specializes 
in Web-based software development and service-oriented architectures 
in the realm of IBM's Almaden Research Center. Before that he has held 
research positions at the Computer Systems Group of the University of 
Waterloo, Canada, and at Princeton University's Computer Science 
Department. Email: marcusfontoura@sbcglobal.net. 

 
Carlos Lucena received a BSc degree from the Pontifical Catholic 
University of Rio de Janeiro (PUC-Rio), Brazil, in 1965, a MMath 
degree in computer science from the University of Waterloo, Canada, in 
1969, and a PhD degree in computer science from the University of 
California at Los Angeles in 1974. He has been a full professor in the 
Departamento de Informatica at PUC-Rio since 1982. His current 

research interests include software design and formal methods in software engineering. 
He is member of the editorial board of the International Journal on Formal Aspects of 
Computing. Email: lucena@inf.puc-rio.br. 
 
 


